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ABSTRACT

Aims. Estimating the marginal likelihoods is an essential featfrmodel selection in the Bayesian context. It is espsgcalicial to
have good estimates when assessing the number of plangisgsgbars when the models explain the noisy data wiffedént num-
bers of Keplerian signals. We introduce a simple method fipreximating the marginal likelihoods in practice when atistically
representative sample from the parameter posterior geaast/ailable.

Methods. We use our truncated posterior mixture estimate to recaiwarate model probabilities for models withféring number
of Keplerian signals in radial velocity data. We test thisreate in simple scenarios to assess its accuracy and raeneérgence
in practice when the corresponding estimates calculatiedy weviance information criterion can be applied to reediustworthy
results for reliable comparison. As a test case, we deterthia posterior probability of a planet orbiting HD 3651 giv€ck and
Keck radial velocity data.

Results. The posterior mixture estimate appears to be a simple andamate way of calculating marginal integrals from posteri
samples. We show, that it can be used to estimate the maigtegtals reliably in practice, given a suitable selecémparameter
4, that controls its accuracy and convergence rate. It ismls@ accurate than the one block Metropolis-Hastings estirand can
be used in any application because it is not based on assumspin the nature of the posterior density nor the amount taf aia
parameters in the statistical model.

Key words. Methods: Statistical, Numerical — Techniques: Radial eiiles — Stars: Individual: HD 3651

1. Introduction ferent numbers of planets orbiting the target star, assg#seir
) _ ) __relative posterior probabilities given the measuremesitex-
The selection between a collection of candidate models is @fmely important to detect all the signals in the data (e.g.
significant in all fields of astronomy but especially so, whegreqor) 2005, 2007a,b; Tuomi & Kotirahka, 2009) and to dvoi
the purpose is to extract weak planetary signals from noigys detection of false positives (elg. Bean étial., 20100
data. The ability to tell whether a signal is present in da&a gq17), However, determining the posterior probabilitieguire
reliably as possible is essential in several searches of lope apjlity to calculate marginal integrals that are cowatted
mass exoplanets orbiting nearby stars, whether made Using i, tigimensional integrals of likelihood functions andiqrs
Doppler spectroscopy method; e.g. the Anglo-Australi@m®l gyer the whole parameter space. While there are severaboeth
Search (e.g. Tinney etlal., 2001; Jones etal., 2002, and re estimating the values of these integrals, those that ane ¢
ences therein), High-Accuracy Radial Velocity Planet 8eer , tationally simple and easy to implement are more often tha
(e.g. Mayor etal._2003;_Lovis etiall,_2011, and referencggy the poorest ones with respect to their accuracy and conve
therein), Hich Resolution Echelle Spectrometer (€.0. ¥@ll., gence properties (e/g. Kass & Raftery, 1995; Clyde et a0720
1994,02010, and references therein); by searching phot®meg, q g Gregory/ 2007). Similarly, there are more complicate
transits; e.g. Convection Rotation and Planetary Trariei§. methods for estimating multidimensional integrals buytheay
Barge et al., 2007. Hebrard et al,, 2011, and referencesithe proyide more diicult computational problems themselves than
WASP (e.g. Collier Cameron etlal., 2007; Faedi et al.. 2084, aypical data analyses are, which makes fidult to use them in
references threrein); or other possible techniques, sechsa yractice.
trometry (e.g! Benedict etial., 2002; Pravdo & Shaklan, ZOOB
and transit timing (e.g. Holman & Murray, 2005) or other cur-  Because of these fiiculties, we introduce a simple method
rent or future methods. for estimating the marginal integrals in practice if a stéatally
Using Bayesian tools, it is possible to determine the releepresentative sample from the parameter posterior gemsit
tive probabilities for each statistical model in some sldcol- ists. As such a sample is usually calculated when assessing t
lection of models to assess their relative performanceglarr posterior densities of model parameters using posterior sa
tive ability to explain the data in a probabilistic mannehnislis  pling algorithms (e.g. Metropolis etlal., 1953; Hastingg/Q;
also important to be able to assess their inability to exdayv- [Haario et al., 2001), the ability to use the very same sammple i
eral data sets in terms of the model inadequacy of Tuomi et détermining the marginal integral is extremely useful iagtice.
(2011). Especially, when flerent statistical models contain dif-There are methods of taking advantage of the posterior gampl
in this manner (e.d. Newton & Raftery, 1994; Kass & Ratftery,
* The corresponding author, e-mailn.tuomi@herts.ac.uk; 1995; Chib & Jeliazkov, 2001; Clyde et al., 2007) but their-pe
mikko.tuomi@utu. fi formance, despite some studies (e.g. Kass & Raftery, |1995;
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Ford & Gregory/ 2007), is not generally well known in astroestimate more accurate, decrease its convergence rataseeca
nomical problems and some of them may also require samplithg estimate approaches asymptotically the HM estimatasha
from other densities simultaneously, such as the priorideas known to have extremely poor convergence properties (see th
the proposal density of the Metropolis-Hastings (M-H) autp Appendix and Kass & Raftery, 1995). Therefore, we tefedi
making their application dicult. ent values oft to find the best choice in applications. We note,
In this article, we introduce a simple method that can be uskdwever, that whe andé;_,, are independent, i.e. whdnis
to receive accurate estimates for the marginal integraltése large enough given the mixing properties of the Markov chain
our estimate, called the truncated posterior mixture (TEM) used to draw a sample from the posterior density, the TPM can
mate in scenarios where the marginal integral can be caézlilaconverge to the marginal integral. The reason is that itésucl
accurately using simple existing methods. The devianaa-inf from Eq. [3) that occasional very small valuedipthat conse-
mation criterion (DIC| Spiegelhalter etél., 2002) is asyotip quently have a large impact on the sums in the estimate, do not
cally an accurate estimate when the sample size, i.e. thplsanslow down the convergence as much as they would in the HM
drawn from the posterior density, increases and can be tiged i estimate because it is unlikely tHat, is also small at the same
posterior is a multivariate Gaussian. Therefore, we compar time. This is the key feature in the TPM estimate that ensitses
estimate with the DIC estimate in such cases to test its acgurrelatively rapid convergence in practice.
in practice. If accurate, our estimate is applicable whenev
statistically representative sample from the posteriav@lable
because we do not make any assumptions regarding the srf
of the posterior density when deriving the TPM estimate. T
only assumption is, that such a sample exists and it is Stafiy

We estimate the integral in Ed.](2) using five methods. The
estimate (see Appendix), the truncated posterior mexas-

ate introduced here, the DIC, AIC, and the OBMH method of

Chib & Jeliazkov|(2001). While the DIC is a reasonably practi

representative. We also calculate the marginal likelitsaaging cal estimate in certain cases, It requires t_hat the postenmi-
the simple Akaike information criterion (AIC) for small saie modal gnd symmetric an<_:l can be apprOX|mateq asa ’T‘“'t."*a”at
size (Akaike| 1973; Burnham & Andersan, 2002), the harmon%aUSSIan d_enS|ty, which s only rarely the case in appb_ostllt
mean (HM) estimate that is a special case of the TPM wiftt! be eb.‘s"Y calculated by using the average O.f the likedlso
poor convergence properties, and the One Block Metropol%r-]d the I|kel|hqod of the parameter mean, which als_o reveajs
Hastings (OBMH) method of Chib & Jeliazkoy (2001) that reWNy the posterior needs to be unimodal and symmetric for reli
quires the simultaneous sampling of posterior and proftesad able results. These means do not reflect the properties pbthie

sities.| Kass & Rafteryl (1995) and Clyde et al. (2007) give d erior in the cases of skewness and multiple modes, not te men
tailed summaries of fierent methods. ) ion nonlinear correlations between some parameters itovec

6. The DIC is asymptotically accurate when the sample size be-
comes large (Spiegelhalter et al., 2002). We do not consiiger
2. Estimating marginal integrals HM estimate to be a trustworthy one but calculate its value be
) ) o cause it is a special case of the truncated posterior mixtsiie
In the Bayesian context, the models in soenpriori selegted mate whent = 0 (or 1). The AIC could provide a reasonably ac-
collection can be equipped with relative numbers représgnt cyrate estimate in practice, and therefore we compareitsrpe
the probabilities of having observed the daté the model was mance in various scenarios. However, it relies on the maximu

acorrectone. Therefore, fadifferent models\ty, ..., My, these  |ikelihood parameter estimate, and does not thereforeitake

probabilities are calculated as account the prior information on the model parameters.dts a
P(mIM;)P(M) curacy also decreases as the amount of parameters in thé mode

PMiIm) = — ' LA (1) increases or the number of measurements decreases. Rivally

=1 P(MM;)P(M;) calculate the OBMH estimate (Chib & Jeliazkov, 2001). While

_ ) ) _this estimate appears to provide reliable results, e.gndingber
where the marginal integrals, sometimes called the margid companions orbiting Gliese 581 determinefin Tudmi (2011

likelihoods, are defined as was supported by additional data (Forveille et al., 2018 per-
formance has not been studied throughly with examples. It is
P(MM;) = f [(mi6;, Mi)r(6 I M;)d6; (2) also computationally more expensive than the TPM estimate,

and indeed the other estimates compared here, because it re-
and| denotes the likelihood function andg| M) is the prior quires the simultaneous sampling from the proposal dewsity
density of the parameters. the M-H algorithm.
The truncated posterior mixture estimate that approximate

O ; X ; When ing th nvergen f our TPM estim iven
the marginal integral is defined as (see Appendix) en assessing the convergence of ou estimate give

some selection of, we say that it has converged if the estimate

N N -1 at theith member of the Markov chain, nameftpw (i), satis-
Broy = Z li Z 1 3) fies|Prpm(i + k) — Prpm(i)l < r for all k > 0 and some small
— Q- + Al s @A-Dh+ | numberr — in accordance of the standard definition of conver-

gence. However, in practice, we use the logarithmBef, and
wherel; is the value of the likelihood function &t and2 € [0,1] a value ofr = 0.1 on the logarithmic scale for simplicity. We
andh € N are parameters that control the convergence and atso approximate the estimate as having converged if the con
curacy properties of the estimate. While it is easy to seleet vergence condition holds for @ k < 10° for practical reasons.
it only needs to be large enough such thatnd 6,_, are in- While all the estimates except the AIC (which is based only on
dependent — selecting parameteis more dificult. If 2 is too the maximum likelihood value) converge the better the great
large, the sample from the posterior is not close to the sasample they are based on, we only plot this convergencedor th
ple from the importance sampling functignin the Eq. [A6) TPM estimate. For DIC, HM, and OBMH, we calculate the final
in the Appendix, and the resulting estimate for the marginastimate using the mean and standard deviation of valuas fro
is biased. Conversely, too small valuesigfwhile making the several samplings.
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3. Comparison of estimates: radial velocities of HD
3651 o~

To assess the performance of the TPM estimate for the mérgina |
integral, we compare its performance withffdient selections

of parametenl in simple cases where the marginal integral ¢ ©
be calculated reliably using the DIC, i.e. when the model pa- «~
rameters receive close-Gaussian posteriors and the saimple 3’ ™
is large. Therefore, we select as test cases radial veltigigr
series made using several telescope-instrument comdmirsati

that have dferent velocity fsets and dferent noise levels. The o |
simple model without any Keplerian signals provides a sléta N R =
scenario where the DIC is known to be accurate and the agcurac | |

- 1 1 L -

1 1 1 l 1 1 1
of our estimate can be assessed in practice. 104 10° 1 5%10° %10°
The nearby KO V dwarf HD 3651 has been reported to 0 >x10 0 510 2x10
be a host to a 0.20 M, exoplanet with an orbital period of N

62.23+ 0.03 days and an orbital eccentricity of 0.630.04

(Fischer et dl/, 2003). The radial velocity variations of 661 Fig. 1. The marginal integrals of the 1-planet model given the
have been observed using the HIRES at the Keck | telescdpéRES data (case 1): DIC and its-3incertainty (black dashed
(Fischer et dl.| 2003; Butler etlal., 2006) and the Shane aliite and black dotted lines), AIC (blue dashed), OBMH and its
CAT telescopes at the Lick observatofy (Fischer etlal., 2003 uncertainty (red dashed and red dotted), and the TPM esti-
Butler et al.| 2006). These datasets contain measuremiehps amates withl = 0.5,0.1,107%,10°3,10°%, 10 (black, grey, blue,
and 121 epochs, respectively. The reason we chose thesis dagarple, pink, and red curves).

that they enable us to investigate several scenarios helibie

fact that the planet orbiting HD 3651 is on an eccentric aabd  Table 1. The Bayes factors in favour of the one-Keplerian model
there is plenty of data available make it possible to assess given the HIRES data (case 1).

accuracy of the TPM estimate in several scenarios by ergablin

the comparison to the DIC estimate that is accurate as long as Estimate B

the posterior density is Gaussian. Therefore, we investitfe TPM 1.Ix10% + 1.2 x 1083
accuracy and convergence properties of of the TPM in various DIC 1.1x10% + 1.1 x 103
scenarios: with high and low numbers of data compared to the AIC 3.3x10'°
number of model parameters, and when the marginal liketlisoo OBMH  2.8x10'% + 5.6 x 10'°
of two models are close to each other and as far from each other HM 3.3x10" + 6.5 x 103

as possible given the available data.

We analyse the radial velocities of HD 3651 made using the
HIRES and Lick exoplanet surveys and calculate the marginarges to the same value as DIC, which is known accurate in
likelihoods of models with 0 and 1 Keplerian signals using ththis case because the posterior densities of both modelegre
methods based on DIC, AIC, TPM, HM, and OBMH. We declose to Gaussian. However, the AIC and OBHM overestimate
note these estimates of Efl (2)Rsic, Paic, Prem, Pum, and  the posterior probability of the model containing a Kegersig-
PoswmH, respectively. nal. Also, the problems of the HM estimate are clear becasse i

uncertainty becomes greater than the estimated value.

3.1. Case 1. HIRES data

. . . . 3.2. Case 2. Combined HIRES and Lick data
The HIRES data with 42 epochs reveals some interestifigrdi as : :

ences between the five estimates for marginal integralslofie Increasing the number of measurements likely makes the AIC
marginal integrals are plotted in Fig. 1 as a function of Mark yield a more accurate estimate for the marginal likelihood.
chain length. The estimated uncertainties of DIC and OBMH edowever, to see how thisffects the other estimates, we again
timates represent the standard deviations offedint Markov compare them to the DIC which is reliable because of the
chains. The DIC estimate can be considered a reliable ohésin tclose-Gaussianity of the posterior density. The inclusiteddi-
case, because the posterior density is very close to a imudtie tional Lick data also makes the posterior probability of dime-
Gaussian. It can be seen that the AIC is biased because ofKleplerian model much greater than that of the model without
low number of measurements (42) compared to the numberKgplerian signals, and enables us to investigate the acgara
parameters of the statistical model (7). Also, the OBMHmeate convergence of the TMP in such a scenario. Therefore, weg stud
gives the 1-planet model a greater marginal likelihood thEP.  the properties of the ffierent estimates for marginal integrals
However, the TPM is similarly biased far= 0.5,0.1,1072,10% using the combined HIRES and Lick data of HD 3651 with 163
but converges to the DIC estimate for= 104,10°. The HM epochs.
estimate is not shown in the Fig. because its extremely pmor ¢~ The TMP converges to the DIC estimate whes 1073 for
vergence properties — it receives values between -130 &t -the model without any Keplerians, whereas its convergeaiesst
on the logarithmic scale of Figl 1. place fora = 107 for the one-Keplerian model (Figl 2, pink
When using as small values dffor the TPM as possible curve). Clearly, the AIC is indeed closer to the DIC estimate
such that it converges in the sense that it approaches some lbecause of the greater number of data but the OBHM is also
iting value, we calculate the Bayes factoB) (n favour of the consistent with the DIC estimate. We note that the HM esémat
one-Keplerian model against the model without Kepleriapa siis again omitted from the Figl 2 because it receives sigmifiga
nals. These values are shown in Tdble 1. The TPM estimate ctmwer values than the other estimates.
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Table 3. The Bayes factors in favour of the one-Keplerian model
given the partial HIRES data (case 3).

9) Estimate B

“ﬁ TPM 3.1 +5.1x 107
o DIC 2.8x10°P + 8.1 x 10*

< AlC 1.2x10°
S OBMH  1.4x1CF + 33x 10F
- HM 4.3x10° + 8.1 x 10°

-536

4. Conclusions

P
1 5%10° 92x10° Calculating the marginal integral for model selection msgs is
generally a challenging computational problem. While ¢hae
N several good estimates for these integrals, they are ysual
: I ) applicable under certain limiting assumptions about theinea
Fig.2. As in Fig.[1 but for the é:omglned‘ldatas(casg 2) and thté)the posterior density, the amount of parameters in thistta
TPM estimates withl = 0.1,10°% 107,107,107, 10 (black, 4] model or the number of measurements available. Therefor
grey, blue, purple, pink, and red curves). we have introduced a new method for estimating these irigegra
in practice. Given the availability of a sample from the est
Table2. The Bayes factors in favour of the one-Keplerian mod«%lhor;dees?iﬁgtg Esmaogeegsp())a:]r;\g; ;eg;g:é grligcvaetri/deg(;ﬁ;?;gw
given the combined HIRES and Lick data (case 2). in practice. We have only assumed that a statistically sre
: tative sample drawn from the posterior density exists when d
Estimate B riving our posterior mixture estimate (see Appendix). Hifere,

- 1 - -

l 1 1 l 1
4 WO5

0 5x10

8 7 .. . . .
EIP(':V' ggigzg f 1-8 X 18:7 it is applicable to any model comparison problems in astnoyno
Al - 7;1(')3;( and other fields of scientific inquiry and is not restrictegtob-

OBMH  2.0x10" + 9.0 % 10°° lems where the posterior has a certain shape and dimension.
HM 1.4x10%8 + 1.7 x 10°8 The comparisons of ffierent estimates given the radial ve-
locities of HD 3651 revealed that the TPM yields estimatey ve
close to the DIC estimate, which is known to be a reliable one
in case of Gaussian posterior density. In fact, we chose he H
3651 as an example star because of the planet orbiting it is
known to have an eccentric orbit that enables the Gausgiahit

Now, we calculate the Bayes factors in favour of the onéhe probability distributions of eccentricity and the twagalar
Keplerian model and present them in Table 2. The TPM esRarameters of the Keplerian model, namely, longitude of per
mate is again very close to the DIC estimate and the AIC §§ntre and mean anomaly. However, the simple small-sample
close to these, providing slightly greater support for tine-o Version of the AIC proved reasonably accurate as well when
Keplerian model. The OBMH again overestimates the on#le number of measurements well exceeded the number of free
Keplerian model and the HM estimate, while this time beingarameters of the model (e.g. Table 2). We also note that the
rather accurate, has an uncertainty in excess of the estitnat OBMH estimate of Chib & Jeliazkov (2001), while converging
self. Clearly, the TPM estimate can be used to receive feliatiapidly, tends to yield somewhat biased results that exagge
estimates for the marginal integral in this case as wellabse the posterior probability of the more complicated modelkma
the posterior density is again very close to Gaussian andithe ing it possibly — at least in the test cases of the current work

estimate is therefore a reliable one in assessing the altegr ~ Prone to detections of false positives. o
In practice, the TMP can be used by calculating its value

directly from the sample drawn from the posterior density of
3.3. Case 3. Partial HIRES data the model parameters. Selecting a suitable value for paesme

A is then of essence when calculating its value in practice. In
As a third test, we calculate theffiirent estimates for marginalall the three dierent test cases studied in this article, a choice
integral given only 20 epochs of HIRES data — the first 20 epocbf A = 10~ yielded estimates that converged rapidly for all the
between 366 and 2602 JD-2450000 — to see their relative peredels in all the test cases and resulted in posterior pilbbab
formance when the number of parameters is comparable to ties that ditered little from those calculated using the DIC es-
number of measurements. We find that the TPM converges to tireate. When the diierence between the two models was the
marginal integral very accurately with= 103 for both models smallest (case 3.), there was practically no bias in the THP e
and yields very reliable estimates for these integrals #gain timate with respect to the DIC. Also, when the posterior odds
very close to the DIC estimate, making it reliable becaugb@f of the one-Keplerian model was the greatest (case 2.), thg TP
Gaussianity of the posterior density for both models and¢tme with 2 = 107*, overestimated the posterior probability of the
sequent reliability of the DIC estimate. It is not surprisithat one-Keplerian model by a factor of 10, though, in that case,
the AIC overestimates the Bayes factor and therefore also the Bayes factor used in model selection was already so heav-
posterior odds of the one-Keplerian model because of the Idwin favour of the one-Keplerian model that this overesttion
number of data. However, the OBMH overestimates it as well &snot significant in practice in terms being able to seleettast
was in fact found to be the case in test cases 1 and 2 as well.model.
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Because of these possible biases caused by too larije contains less information and is therefore much broadesitien
would then be convenient in practice to calculate the TPM esthan the posterior, most of the values in this sample coomsp
mate using few dferent values of parameterWith the sample to very low likelihoods and the convergence of this estinigte
from the posterior density available, this could be donéVitie  slow. The resulting value is also dominated by few high likel
computational cost. Then, it would be possible to use thesbw hoods, which can make it too biased to be useful in applinatio
value forA that still converges to receive a trustworthy TPM es- Also, while converging to the desired value, the har-
timate and correspondingly trustworthy model selectiGults. monic mean estimate does it extremely slowly in practice
- M. Tuomii ted by ROPACS (Rocky Planets A q(Kass & Raftery| 1995) and its usage cannot be recommended.

nowledgements. M. fLOMI IS Supported Dy R0 OCKy Planets Arounqn gpplications, this estimate doesn’t generally conveogene
ggﬂ;iﬁfg,’sasgl\',aerr:fhcpligfng}\'gﬂ(Lri;g'rg%]meet_work fundeg the European marginal integral within the limited sample available frahe

posterior. The reason is that occasional small valud$ngé;)
have a large impact on the sum which makes its convergence ex-
Appendix A: Marginal integrals from importance tremely slow. For these reasons, better estimates are shéede
sampling approximate the marginal integrals in model selection |emois.

In the context of Bayesian model selection, the marginagrsl ] ] .
needed to assess the relative probabilities fiécknt modelis ~ A-1. The posterior mixture estimate

To construct a better estimate for the marginal integralstaet
P(MM) = f I(mio, M)r (61 M)do, (A.1) by assuming that a statistically representative sampleobas
6 drawn from the posterior density using some posterior sam-
where M is a model with parameter vectér constructed to pling algorithm. Therefore, we have a collection fvectors
model the measurements using the likelihood functior. 6 ~ n(6lm), for alli = 1,..., N. These values form a Markovian
Functionz(6]M) is the prior probability density of the modelchain withN members. Selecting integer> 0, the value of the
parameters. This quantity is essential in calculating thetqrior posteriorr(6;_n/m) is available if the value correspondingéds
probabilities of diferent models in Eq[11). available giveri > h > 0. Here we can denotg = n(6;/m) and
Importance sampling can be used to receive estimates $6€ that if¢; is a random vector them is some random num-
the integral in Eq.[{A11). Choosing functiogsandw such that ber corresponding to the value of the posteriof;atJsing the
m(6) = w(f)g(h) and dropping the model from the notation, théotation similarly forg;, and settingl € [0, 1], we can set
?paggsrt]gldgt]esgi;tgggan be written using the expectation wéth g = (1= ) + Amin. (A.6)
Now, if 1 is a small number, it follows thaj; ~ 7; — the im-
]Eg[w(e)l(m|9)] = f g(O)W(B)I(m)de = P(m). (A.2) portance sampling functiagis close to the posterior but not ex-
0e® actly equal. We call it a truncated posterior mixture (TPM)d-
whereg(¥) is usually called the importance sampling functiorfion- The sample from the posterior is close to a sample fgom
Now, the idea of importance sampling is that if we draw a sempt & desired property because a sample from the posteriorecan b

of N values fromg and denote; ~ g(6) for alli = 1,..,N, we calculated rather readily with posterior sampling alduris (g.g.
can calculate a simple estimate for the marginal integrééas Metropolis etal.,| 1953; Hastings. 1970; Haario etal.. 001
Kass & Raftery| 1995) Therefore, assuming that the parameter sgds a bounded
' subset oR¥ and that the prior is a proper constant prior — actu-
A N ()1 (M6) N (6) -1 ally, it is sufficient to assume that the prior is a broad density that
= [Z ' ' HZ ' } (A.3) hasalmost the same value in the $gtof the posterior — the es-
= 9@) = 9() timate in Eq.[[A.8) can now be calculated. We denptel(mig)

L . and write the resulting posterior mixture estimate as
All there remains is to chooggsuch that it is easy to draw a sam- gp

ple from it and that the estimate in EG.(A.3) converges rigpid N 1 N 1 -1
to the marginal integral. Prpm = ' . (AT
i i i i 1- )l + Al 1- )l + Al
Some simple choices @f would be the prior density or the (1= + Ain || & Q=i + Alip
posterior density. In these cases, the resulting estinvatesd . o .
be called the mean estimate and the harmonic mean estima If the Markov chain has good mixing properties such that the

(Newton & Raftery,[ 1994] Kass & Raftéry, 1995). We denoté2!Ue? has already become independeniof, the likelihoods
these estimates ﬁ andPyy and write of these values are also independent. When comparing titis es

mate withPyy in Eq. (A.), it can be seen that occasional small
R 1N values ofl; do not have such a largéect on the sum in the de-
Py = N Z [(mi@y) (A.4) nominator because it is unlikely that the correspondingealf

i=1 li_n is also small at the same time.
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