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ABSTRACT

Aims. Estimating the marginal likelihoods is an essential feature of model selection in the Bayesian context. It is especially crucial to
have good estimates when assessing the number of planets orbiting stars when the models explain the noisy data with different num-
bers of Keplerian signals. We introduce a simple method for approximating the marginal likelihoods in practice when a statistically
representative sample from the parameter posterior density is available.
Methods. We use our truncated posterior mixture estimate to receive accurate model probabilities for models with differing number
of Keplerian signals in radial velocity data. We test this estimate in simple scenarios to assess its accuracy and rate ofconvergence
in practice when the corresponding estimates calculated using deviance information criterion can be applied to receive trustworthy
results for reliable comparison. As a test case, we determine the posterior probability of a planet orbiting HD 3651 given Lick and
Keck radial velocity data.
Results. The posterior mixture estimate appears to be a simple and an accurate way of calculating marginal integrals from posterior
samples. We show, that it can be used to estimate the marginalintegrals reliably in practice, given a suitable selectionof parameter
λ, that controls its accuracy and convergence rate. It is alsomore accurate than the one block Metropolis-Hastings estimate and can
be used in any application because it is not based on assumptions on the nature of the posterior density nor the amount of data or
parameters in the statistical model.

Key words. Methods: Statistical, Numerical – Techniques: Radial velocities – Stars: Individual: HD 3651

1. Introduction

The selection between a collection of candidate models is of
significant in all fields of astronomy but especially so, when
the purpose is to extract weak planetary signals from noisy
data. The ability to tell whether a signal is present in data as
reliably as possible is essential in several searches for low-
mass exoplanets orbiting nearby stars, whether made using the
Doppler spectroscopy method; e.g. the Anglo-Australian Planet
Search (e.g. Tinney et al., 2001; Jones et al., 2002, and refer-
ences therein), High-Accuracy Radial Velocity Planet Searcher
(e.g. Mayor et al., 2003; Lovis et al., 2011, and references
therein), Hich Resolution Echelle Spectrometer (e.g. Vogtet al.,
1994, 2010, and references therein); by searching photometric
transits; e.g. Convection Rotation and Planetary Transits(e.g.
Barge et al., 2007; Hébrard et al., 2011, and references therein),
WASP (e.g. Collier Cameron et al., 2007; Faedi et al., 2011, and
references threrein); or other possible techniques, such as as-
trometry (e.g. Benedict et al., 2002; Pravdo & Shaklan, 2009)
and transit timing (e.g. Holman & Murray, 2005) or other cur-
rent or future methods.

Using Bayesian tools, it is possible to determine the rela-
tive probabilities for each statistical model in some selected col-
lection of models to assess their relative performance, or rela-
tive ability to explain the data in a probabilistic manner. This is
also important to be able to assess their inability to explain sev-
eral data sets in terms of the model inadequacy of Tuomi et al.
(2011). Especially, when different statistical models contain dif-

⋆ The corresponding author, e-mail:m.tuomi@herts.ac.uk;
mikko.tuomi@utu.fi

ferent numbers of planets orbiting the target star, assessing their
relative posterior probabilities given the measurements is ex-
tremely important to detect all the signals in the data (e.g.
Gregory, 2005, 2007a,b; Tuomi & Kotiranta, 2009) and to avoid
the detection of false positives (e.g. Bean et al., 2010; Tuomi,
2011). However, determining the posterior probabilities require
the ability to calculate marginal integrals that are complicated
multidimensional integrals of likelihood functions and priors
over the whole parameter space. While there are several methods
of estimating the values of these integrals, those that are com-
putationally simple and easy to implement are more often than
not the poorest ones with respect to their accuracy and conver-
gence properties (e.g. Kass & Raftery, 1995; Clyde et al., 2007;
Ford & Gregory, 2007). Similarly, there are more complicated
methods for estimating multidimensional integrals but they may
provide more difficult computational problems themselves than
typical data analyses are, which makes it difficult to use them in
practice.

Because of these difficulties, we introduce a simple method
for estimating the marginal integrals in practice if a statistically
representative sample from the parameter posterior density ex-
ists. As such a sample is usually calculated when assessing the
posterior densities of model parameters using posterior sam-
pling algorithms (e.g. Metropolis et al., 1953; Hastings, 1970;
Haario et al., 2001), the ability to use the very same sample in
determining the marginal integral is extremely useful in practice.
There are methods of taking advantage of the posterior sample
in this manner (e.g. Newton & Raftery, 1994; Kass & Raftery,
1995; Chib & Jeliazkov, 2001; Clyde et al., 2007) but their per-
formance, despite some studies (e.g. Kass & Raftery, 1995;
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Ford & Gregory, 2007), is not generally well known in astro-
nomical problems and some of them may also require sampling
from other densities simultaneously, such as the prior density or
the proposal density of the Metropolis-Hastings (M-H) output,
making their application difficult.

In this article, we introduce a simple method that can be used
to receive accurate estimates for the marginal integral. Wetest
our estimate, called the truncated posterior mixture (TPM)esti-
mate in scenarios where the marginal integral can be calculated
accurately using simple existing methods. The deviance infor-
mation criterion (DIC, Spiegelhalter et al., 2002) is asymptoti-
cally an accurate estimate when the sample size, i.e. the sample
drawn from the posterior density, increases and can be used if the
posterior is a multivariate Gaussian. Therefore, we compare our
estimate with the DIC estimate in such cases to test its accuracy
in practice. If accurate, our estimate is applicable whenever a
statistically representative sample from the posterior isavailable
because we do not make any assumptions regarding the shape
of the posterior density when deriving the TPM estimate. The
only assumption is, that such a sample exists and it is statistically
representative. We also calculate the marginal likelihoods using
the simple Akaike information criterion (AIC) for small sample
size (Akaike, 1973; Burnham & Anderson, 2002), the harmonic
mean (HM) estimate that is a special case of the TPM with
poor convergence properties, and the One Block Metropolis-
Hastings (OBMH) method of Chib & Jeliazkov (2001) that re-
quires the simultaneous sampling of posterior and proposalden-
sities. Kass & Raftery (1995) and Clyde et al. (2007) give de-
tailed summaries of different methods.

2. Estimating marginal integrals

In the Bayesian context, the models in somea priori selected
collection can be equipped with relative numbers representing
the probabilities of having observed the datam if the model was
a correct one. Therefore, fork different modelsM1, ...,Mk, these
probabilities are calculated as

P(Mi|m) =
P(m|Mi)P(Mi)

∑k
j=1 P(m|M j)P(M j)

, (1)

where the marginal integrals, sometimes called the marginal
likelihoods, are defined as

P(m|Mi) =
∫

l(m|θi,Mi)π(θi|Mi)dθi (2)

and l denotes the likelihood function andπ(θ|Mi) is the prior
density of the parameters.

The truncated posterior mixture estimate that approximates
the marginal integral is defined as (see Appendix)

P̂T PM =















N
∑

i=1
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(1− λ)li + λli−h
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(1− λ)li + λli−h
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, (3)

whereli is the value of the likelihood function atθi, andλ ∈ [0, 1]
andh ∈ N are parameters that control the convergence and ac-
curacy properties of the estimate. While it is easy to selecth –
it only needs to be large enough such thatθi and θi−h are in-
dependent – selecting parameterλ is more difficult. If λ is too
large, the sample from the posterior is not close to the sam-
ple from the importance sampling functiong in the Eq. (A.6)
in the Appendix, and the resulting estimate for the marginal
is biased. Conversely, too small values ofλ, while making the

estimate more accurate, decrease its convergence rate because
the estimate approaches asymptotically the HM estimate that is
known to have extremely poor convergence properties (see the
Appendix and Kass & Raftery, 1995). Therefore, we test differ-
ent values ofλ to find the best choice in applications. We note,
however, that whenθi andθi−h are independent, i.e. whenh is
large enough given the mixing properties of the Markov chain
used to draw a sample from the posterior density, the TPM can
converge to the marginal integral. The reason is that it is clear
from Eq. (3) that occasional very small values ofli, that conse-
quently have a large impact on the sums in the estimate, do not
slow down the convergence as much as they would in the HM
estimate because it is unlikely thatli−h is also small at the same
time. This is the key feature in the TPM estimate that ensuresits
relatively rapid convergence in practice.

We estimate the integral in Eq. (2) using five methods. The
HM estimate (see Appendix), the truncated posterior mixture es-
timate introduced here, the DIC, AIC, and the OBMH method of
Chib & Jeliazkov (2001). While the DIC is a reasonably practi-
cal estimate in certain cases, it requires that the posterior is uni-
modal and symmetric and can be approximated as a multivariate
Gaussian density, which is only rarely the case in applications. It
can be easily calculated by using the average of the likelihoods
and the likelihood of the parameter mean, which also reveals
why the posterior needs to be unimodal and symmetric for reli-
able results. These means do not reflect the properties of thepos-
terior in the cases of skewness and multiple modes, not to men-
tion nonlinear correlations between some parameters in vector
θ. The DIC is asymptotically accurate when the sample size be-
comes large (Spiegelhalter et al., 2002). We do not considerthe
HM estimate to be a trustworthy one but calculate its value be-
cause it is a special case of the truncated posterior mixtureesti-
mate whenλ = 0 (or 1). The AIC could provide a reasonably ac-
curate estimate in practice, and therefore we compare its perfor-
mance in various scenarios. However, it relies on the maximum
likelihood parameter estimate, and does not therefore takeinto
account the prior information on the model parameters. Its ac-
curacy also decreases as the amount of parameters in the model
increases or the number of measurements decreases. Finally, we
calculate the OBMH estimate (Chib & Jeliazkov, 2001). While
this estimate appears to provide reliable results, e.g. thenumber
of companions orbiting Gliese 581 determined in Tuomi (2011)
was supported by additional data (Forveille et al., 2011), its per-
formance has not been studied throughly with examples. It is
also computationally more expensive than the TPM estimate,
and indeed the other estimates compared here, because it re-
quires the simultaneous sampling from the proposal densityof
the M-H algorithm.

When assessing the convergence of our TPM estimate given
some selection ofλ, we say that it has converged if the estimate
at theith member of the Markov chain, namelŷPT PM(i), satis-
fies |P̂T PM(i + k) − P̂T PM(i)| < r for all k > 0 and some small
numberr – in accordance of the standard definition of conver-
gence. However, in practice, we use the logarithms ofP̂T PM and
a value ofr = 0.1 on the logarithmic scale for simplicity. We
also approximate the estimate as having converged if the con-
vergence condition holds for 0< k < 105 for practical reasons.
While all the estimates except the AIC (which is based only on
the maximum likelihood value) converge the better the greater
sample they are based on, we only plot this convergence for the
TPM estimate. For DIC, HM, and OBMH, we calculate the final
estimate using the mean and standard deviation of values from
several samplings.
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3. Comparison of estimates: radial velocities of HD
3651

To assess the performance of the TPM estimate for the marginal
integral, we compare its performance with different selections
of parameterλ in simple cases where the marginal integral can
be calculated reliably using the DIC, i.e. when the model pa-
rameters receive close-Gaussian posteriors and the samplesize
is large. Therefore, we select as test cases radial velocitytime-
series made using several telescope-instrument combinations
that have different velocity offsets and different noise levels. The
simple model without any Keplerian signals provides a suitable
scenario where the DIC is known to be accurate and the accuracy
of our estimate can be assessed in practice.

The nearby K0 V dwarf HD 3651 has been reported to
be a host to a 0.20 MJup exoplanet with an orbital period of
62.23± 0.03 days and an orbital eccentricity of 0.63± 0.04
(Fischer et al., 2003). The radial velocity variations of HD3651
have been observed using the HIRES at the Keck I telescope
(Fischer et al., 2003; Butler et al., 2006) and the Shane and
CAT telescopes at the Lick observatory (Fischer et al., 2003;
Butler et al., 2006). These datasets contain measurements at 42
and 121 epochs, respectively. The reason we chose these datais
that they enable us to investigate several scenarios reliably. The
fact that the planet orbiting HD 3651 is on an eccentric orbitand
there is plenty of data available make it possible to assess the
accuracy of the TPM estimate in several scenarios by enabling
the comparison to the DIC estimate that is accurate as long as
the posterior density is Gaussian. Therefore, we investigate the
accuracy and convergence properties of of the TPM in various
scenarios: with high and low numbers of data compared to the
number of model parameters, and when the marginal likelihoods
of two models are close to each other and as far from each other
as possible given the available data.

We analyse the radial velocities of HD 3651 made using the
HIRES and Lick exoplanet surveys and calculate the marginal
likelihoods of models with 0 and 1 Keplerian signals using the
methods based on DIC, AIC, TPM, HM, and OBMH. We de-
note these estimates of Eq. (2) asP̂DIC , P̂AIC, P̂T PM, P̂HM, and
P̂OBMH, respectively.

3.1. Case 1. HIRES data

The HIRES data with 42 epochs reveals some interesting differ-
ences between the five estimates for marginal integrals. Thelog-
marginal integrals are plotted in Fig. 1 as a function of Markov
chain length. The estimated uncertainties of DIC and OBMH es-
timates represent the standard deviations of 6 different Markov
chains. The DIC estimate can be considered a reliable one in this
case, because the posterior density is very close to a multivariate
Gaussian. It can be seen that the AIC is biased because of the
low number of measurements (42) compared to the number of
parameters of the statistical model (7). Also, the OBMH estimate
gives the 1-planet model a greater marginal likelihood thanDIC.
However, the TPM is similarly biased forλ = 0.5, 0.1, 10−2, 10−3

but converges to the DIC estimate forλ = 10−4, 10−5. The HM
estimate is not shown in the Fig. because its extremely poor con-
vergence properties – it receives values between -130 and -140
on the logarithmic scale of Fig. 1.

When using as small values ofλ for the TPM as possible
such that it converges in the sense that it approaches some lim-
iting value, we calculate the Bayes factors (B) in favour of the
one-Keplerian model against the model without Keplerian sig-
nals. These values are shown in Table 1. The TPM estimate con-

Fig. 1. The marginal integrals of the 1-planet model given the
HIRES data (case 1): DIC and its 3σ uncertainty (black dashed
line and black dotted lines), AIC (blue dashed), OBMH and its
3σ uncertainty (red dashed and red dotted), and the TPM esti-
mates withλ = 0.5, 0.1, 10−2, 10−3, 10−4, 10−5 (black, grey, blue,
purple, pink, and red curves).

Table 1. The Bayes factors in favour of the one-Keplerian model
given the HIRES data (case 1).

Estimate B
TPM 1.1×1014 ± 1.2× 1013

DIC 1.1×1014 ± 1.1× 1013

AIC 3.3×1015

OBMH 2.8×1016 ± 5.6× 1015

HM 3.3×1013 ± 6.5× 1013

verges to the same value as DIC, which is known accurate in
this case because the posterior densities of both models arevery
close to Gaussian. However, the AIC and OBHM overestimate
the posterior probability of the model containing a Keplerian sig-
nal. Also, the problems of the HM estimate are clear because its
uncertainty becomes greater than the estimated value.

3.2. Case 2. Combined HIRES and Lick data

Increasing the number of measurements likely makes the AIC
yield a more accurate estimate for the marginal likelihood.
However, to see how this affects the other estimates, we again
compare them to the DIC which is reliable because of the
close-Gaussianity of the posterior density. The inclusionof addi-
tional Lick data also makes the posterior probability of theone-
Keplerian model much greater than that of the model without
Keplerian signals, and enables us to investigate the accuracy and
convergence of the TMP in such a scenario. Therefore, we study
the properties of the different estimates for marginal integrals
using the combined HIRES and Lick data of HD 3651 with 163
epochs.

The TMP converges to the DIC estimate whenλ = 10−3 for
the model without any Keplerians, whereas its convergence takes
place forλ = 10−5 for the one-Keplerian model (Fig. 2, pink
curve). Clearly, the AIC is indeed closer to the DIC estimate
because of the greater number of data but the OBHM is also
consistent with the DIC estimate. We note that the HM estimate
is again omitted from the Fig. 2 because it receives significantly
lower values than the other estimates.
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Fig. 2. As in Fig. 1 but for the combined data (case 2) and the
TPM estimates withλ = 0.1, 10−2, 10−3, 10−4, 10−5, 10−6 (black,
grey, blue, purple, pink, and red curves).

Table 2. The Bayes factors in favour of the one-Keplerian model
given the combined HIRES and Lick data (case 2).

Estimate B
TPM 2.0×1038 ± 1.0× 1037

DIC 2.2×1038 ± 1.9× 1037

AIC 5.7×1038

OBMH 2.0×1041 ± 9.0× 1039

HM 1.4×1038 ± 1.7× 1038

Now, we calculate the Bayes factors in favour of the one-
Keplerian model and present them in Table 2. The TPM esti-
mate is again very close to the DIC estimate and the AIC is
close to these, providing slightly greater support for the one-
Keplerian model. The OBMH again overestimates the one-
Keplerian model and the HM estimate, while this time being
rather accurate, has an uncertainty in excess of the estimate it-
self. Clearly, the TPM estimate can be used to receive reliable
estimates for the marginal integral in this case as well, because
the posterior density is again very close to Gaussian and theDIC
estimate is therefore a reliable one in assessing the integral.

3.3. Case 3. Partial HIRES data

As a third test, we calculate the different estimates for marginal
integral given only 20 epochs of HIRES data – the first 20 epochs
between 366 and 2602 JD-2450000 – to see their relative per-
formance when the number of parameters is comparable to the
number of measurements. We find that the TPM converges to the
marginal integral very accurately withλ = 10−3 for both models
and yields very reliable estimates for these integrals. It is again
very close to the DIC estimate, making it reliable because ofthe
Gaussianity of the posterior density for both models and thecon-
sequent reliability of the DIC estimate. It is not surprising that
the AIC overestimates the Bayes factor and therefore also the
posterior odds of the one-Keplerian model because of the low
number of data. However, the OBMH overestimates it as well as
was in fact found to be the case in test cases 1 and 2 as well.

Table 3. The Bayes factors in favour of the one-Keplerian model
given the partial HIRES data (case 3).

Estimate B
TPM 3.0×105 ± 5.1× 104

DIC 2.8×105 ± 8.1× 104

AIC 1.2×109

OBMH 1.4×106 ± 3.3× 105

HM 4.3×103 ± 8.1× 103

4. Conclusions

Calculating the marginal integral for model selection purposes is
generally a challenging computational problem. While there are
several good estimates for these integrals, they are usually only
applicable under certain limiting assumptions about the nature
of the posterior density, the amount of parameters in the statisti-
cal model or the number of measurements available. Therefore,
we have introduced a new method for estimating these integrals
in practice. Given the availability of a sample from the poste-
rior density of model parameters, our truncated posterior mix-
ture estimate is a reasonably accurate and very easily calculated
in practice. We have only assumed that a statistically represen-
tative sample drawn from the posterior density exists when de-
riving our posterior mixture estimate (see Appendix). Therefore,
it is applicable to any model comparison problems in astronomy
and other fields of scientific inquiry and is not restricted toprob-
lems where the posterior has a certain shape and dimension.

The comparisons of different estimates given the radial ve-
locities of HD 3651 revealed that the TPM yields estimates very
close to the DIC estimate, which is known to be a reliable one
in case of Gaussian posterior density. In fact, we chose the HD
3651 as an example star because of the planet orbiting it is
known to have an eccentric orbit that enables the Gaussianity of
the probability distributions of eccentricity and the two angular
parameters of the Keplerian model, namely, longitude of peri-
centre and mean anomaly. However, the simple small-sample
version of the AIC proved reasonably accurate as well when
the number of measurements well exceeded the number of free
parameters of the model (e.g. Table 2). We also note that the
OBMH estimate of Chib & Jeliazkov (2001), while converging
rapidly, tends to yield somewhat biased results that exaggerate
the posterior probability of the more complicated model, mak-
ing it possibly – at least in the test cases of the current work–
prone to detections of false positives.

In practice, the TMP can be used by calculating its value
directly from the sample drawn from the posterior density of
the model parameters. Selecting a suitable value for parameter
λ is then of essence when calculating its value in practice. In
all the three different test cases studied in this article, a choice
of λ = 10−4 yielded estimates that converged rapidly for all the
models in all the test cases and resulted in posterior probabili-
ties that differed little from those calculated using the DIC es-
timate. When the difference between the two models was the
smallest (case 3.), there was practically no bias in the TMP es-
timate with respect to the DIC. Also, when the posterior odds
of the one-Keplerian model was the greatest (case 2.), the TPM,
with λ = 10−4, overestimated the posterior probability of the
one-Keplerian model by a factor of 10, though, in that case,
the Bayes factor used in model selection was already so heav-
ily in favour of the one-Keplerian model that this overestimation
is not significant in practice in terms being able to select the best
model.
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Because of these possible biases caused by too largeλ, it
would then be convenient in practice to calculate the TPM esti-
mate using few different values of parameterλ. With the sample
from the posterior density available, this could be done with little
computational cost. Then, it would be possible to use the lowest
value forλ that still converges to receive a trustworthy TPM es-
timate and correspondingly trustworthy model selection results.

Acknowledgements. M. Tuomi is supported by RoPACS (Rocky Planets Around
Cools Stars), a Marie Curie Initial Training Network fundedby the European
Commission’s Seventh Framework Programme.

Appendix A: Marginal integrals from importance
sampling

In the context of Bayesian model selection, the marginal integral
needed to assess the relative probabilities of different model is

P(m|M) =
∫

θ∈Θ

l(m|θ,M)π(θ|M)dθ, (A.1)

whereM is a model with parameter vectorθ constructed to
model the measurementsm using the likelihood functionl.
Functionπ(θ|M) is the prior probability density of the model
parameters. This quantity is essential in calculating the posterior
probabilities of different models in Eq. (1).

Importance sampling can be used to receive estimates for
the integral in Eq. (A.1). Choosing functionsg andw such that
π(θ) = w(θ)g(θ) and dropping the model from the notation, the
marginal integral can be written using the expectation withre-
spect to densityg as

Eg

[

w(θ)l(m|θ)
]

=

∫

θ∈Θ

g(θ)w(θ)l(m|θ)dθ = P(m). (A.2)

whereg(θ) is usually called the importance sampling function.
Now, the idea of importance sampling is that if we draw a sample
of N values fromg and denoteθi ∼ g(θ) for all i = 1, ...,N, we
can calculate a simple estimate for the marginal integral as(e.g.
Kass & Raftery, 1995)

P̂ =















N
∑

i=1

π(θi)l(m|θi)
g(θi)





























N
∑

i=1

π(θi)
g(θi)















−1

. (A.3)

All there remains is to chooseg such that it is easy to draw a sam-
ple from it and that the estimate in Eq. (A.3) converges rapidly
to the marginal integral.

Some simple choices ofg would be the prior density or the
posterior density. In these cases, the resulting estimateswould
be called the mean estimate and the harmonic mean estimate
(Newton & Raftery, 1994; Kass & Raftery, 1995). We denote
these estimates aŝPM andP̂HM and write

P̂M =
1
N

N
∑

i=1

l(m|θi) (A.4)

and

P̂HM = N















N
∑

i=1

1
l(m|θi)















−1

. (A.5)

Though easily computed in practice, these estimates have
some undesirable properties. For instance, the mean estimate re-
quires drawing a sample from the prior density and computation
of the corresponding likelihoods. However, because the prior

contains less information and is therefore much broader density
than the posterior, most of the values in this sample correspond
to very low likelihoods and the convergence of this estimateis
slow. The resulting value is also dominated by few high likeli-
hoods, which can make it too biased to be useful in applications.

Also, while converging to the desired value, the har-
monic mean estimate does it extremely slowly in practice
(Kass & Raftery, 1995) and its usage cannot be recommended.
In applications, this estimate doesn’t generally convergeto the
marginal integral within the limited sample available fromthe
posterior. The reason is that occasional small values ofl(m|θi)
have a large impact on the sum which makes its convergence ex-
tremely slow. For these reasons, better estimates are needed to
approximate the marginal integrals in model selection problems.

A.1. The posterior mixture estimate

To construct a better estimate for the marginal integral, westart
by assuming that a statistically representative sample hasbeen
drawn from the posterior density using some posterior sam-
pling algorithm. Therefore, we have a collection ofN vectors
θi ∼ π(θ|m), for all i = 1, ...,N. These values form a Markovian
chain withN members. Selecting integerh > 0, the value of the
posteriorπ(θi−h|m) is available if the value corresponding toθi is
available giveni > h > 0. Here we can denoteπi = π(θi|m) and
see that ifθi is a random vector thenπi is some random num-
ber corresponding to the value of the posterior atθi. Using the
notation similarly forgi, and settingλ ∈ [0, 1], we can set

gi = (1− λ)πi + λπi−h. (A.6)

Now, if λ is a small number, it follows thatgi ≈ πi – the im-
portance sampling functiong is close to the posterior but not ex-
actly equal. We call it a truncated posterior mixture (TPM) func-
tion. The sample from the posterior is close to a sample fromg
– a desired property because a sample from the posterior can be
calculated rather readily with posterior sampling algorithms (e.g.
Metropolis et al., 1953; Hastings, 1970; Haario et al., 2001).
Therefore, assuming that the parameter spaceΘ is a bounded
subset ofRK and that the prior is a proper constant prior – actu-
ally, it is sufficient to assume that the prior is a broad density that
has almost the same value in the setDδ of the posterior – the es-
timate in Eq. (A.3) can now be calculated. We denoteli = l(m|θi)
and write the resulting posterior mixture estimate as

P̂T PM =















N
∑

i=1

li
(1− λ)li + λli−h





























N
∑

i=1

1
(1− λ)li + λli−h















−1

. (A.7)

If the Markov chain has good mixing properties such that the
valueθi has already become independent ofθi−h, the likelihoods
of these values are also independent. When comparing this esti-
mate withP̂HM in Eq. (A.5), it can be seen that occasional small
values ofli do not have such a large effect on the sum in the de-
nominator because it is unlikely that the corresponding value of
li−h is also small at the same time.
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