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1 Intent

The Leader/Followers design pattern provides a concurrency
model where multiple threads can efficiently demultiplex
events and dispatch event handlers that process I/O handles
shared by the threads.

2 Example

Consider the design of a multi-tier, high-volume, on-line trans-
action processing (OLTP) system shown in the following fig-
ure. In this design, front-end communication servers route
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transaction requests from remote clients, such as travel agents,
claims processing centers, or point-of-sales terminals, to back-
end database servers that process the requests. This multi-tier
architecture is used to improve overall system throughput and
reliability via load balancing and redundancy, respectively.�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, SAIC, Siemens, and Sprint.

The front-end communication servers are actually “hybrid”
client/server applications that perform two primary tasks.
First, they receive requests arriving simultaneously from hun-
dreds or thousands of remote clients over wide area commu-
nication links, such as X.25 or the TCP/IP. Second, they vali-
date the remote client requests and forward valid requests over
TCP/IP connections to back-end database servers. In contrast,
the back-end database servers are “pure” servers that perform
the designated transactions. After a transaction commits, the
database server returns its results to the associated commu-
nication server, which then forwards the results back to the
originating remote client.

The servers in this OLTP system spend most of their time
processing various types of I/O operations in response to re-
quests. For instance, front-end servers perform network I/O
to receive transaction requests from remote clients, forward
them to the appropriate database server, wait for the result,
and finally forward the result back to the client. Likewise,
back-end servers receive transaction requests from front-end
servers, read/write the appropriate database records to perform
the transactions, and return the results to the front-end servers.

A common strategy for improving OLTP server perfor-
mance is to use a multi-threaded concurrency model that
processes requests and results simultaneously [1]. In the-
ory, threads can run independently, increasing overall sys-
tem throughput by overlapping network and disk I/O process-
ing with OLTP computations, such as validations, indexed
searches, table merges, triggers, and stored procedure execu-
tions. In practice, however, it is challenging to design a multi-
threading model that allows front-end and back-end servers to
perform I/O operations and OLTP processing efficiently.

One way to multi-thread a OLTP back-end database server
is to create a thread pool based on the “half-sync/half-reactive”
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variant of the Half-Sync/Half-Async pattern [2]. In large-
scale OLTP systems, the number of I/O handles may be
much larger than the number of threads. In this case, an
event demultiplexer, such asselect [3], poll [4], or
WaitForMultipleObjects [5], can be used to wait for
events to occur on a socket handle set. Certain types of
event demultiplexers, most notablyselect andpoll, do not
work correctly if invoked with the same handle set by multi-
ple threads. To overcome this limitation, therefore, the OLTP
servers can be designed with a dedicatednetwork I/Othread
assigned to the event demultiplexer, as shown in the following
figure. When activity occurs on handles in the set, the event
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demultiplexer returns control to the network I/O thread and in-
dicates which socket handle(s) in the set have events pending.
This thread then reads the transaction request from the des-
ignated socket handle, stores it into a dynamically allocated
command object [6], and inserts the command object into a
message queue implemented using the Monitor Object pat-
tern [7]. This message queue is serviced by a pool ofworker
threads. When a worker thread in the pool is available, it re-
moves the command object from the queue, performs the des-
ignated transaction, and then returns a response to the front-
end communication server.

A similar concurrency design can be applied to front-end
communication servers, where a separate network I/O thread
and a pool of worker threads can validate and forward client
requests to the appropriate back-end servers. In this design, the
front-end communication servers also play the role of “clients”
to back-end servers. Thus, they wait for the back-end servers
to return transaction results. After a front-end server receives
a result from a back-end server, the result must be dispatched
to the appropriate worker thread. Moreover, in multi-tier sys-
tems, front-end servers may need to respond to requests gen-
erated by back-ends while they are processing front-end re-
quests. Therefore, front-end servers must always be able to
process incoming requests and send responses, which implies
that worker threads in front-end servers cannot all block si-
multaneously.

Although the threading models described above are used
in many concurrent applications, they can incur excessive

overhead when used for high-volume servers, such as those
in our multi-tier OLTP example. For instance, even with
a light workload, the half-sync/half-reactive thread pool de-
sign will incur a dynamic memory allocation, multiple syn-
chronization operations, and a context switch to pass a com-
mand object between the network I/O thread and a worker
thread, which makes even the best-case latency unnecessar-
ily high [8]. Moreover, if the OLTP server is run on a
multi-processor, significant overhead can occur from proces-
sor cache coherency protocols required to transfer command
objects between threads [9].

If the OLTP servers run on an operating system platform
that supports asynchronous I/O efficiently, the half-sync/half-
reactive thread pool can be replaced with a purely asyn-
chronous thread pool based on the Proactor pattern [10]. This
alternative will reduce some of the overhead outlined above
by eliminating the network I/O thread. Many operating sys-
tems do not support asynchronous I/O, however, and those
that do often support it inefficiently.1 Yet, it is essential that
high-volume OLTP servers demultiplex requests efficiently to
multiple threads.

3 Context

An application where events occurring on set of I/O handles
must be demultiplexed and dispatched efficiently by multiple
threads.

4 Problem

Multi-threading is a common technique to implement appli-
cations that process multiple I/O events concurrently. Im-
plementinghigh-performancemulti-threaded applications is
hard, however. To address this problem effectively, the fol-
lowing forcesmust be addressed:� Efficient demultiplexing of I/O handles and threads:
High-performance multi-threaded applications process numer-
ous types of events, such as connection, read, and write events,
concurrently. These events often occur on I/O handles, such as
TCP/IP sockets [3], that are allocated for each connected client
or server. A key design challenge, therefore, is determining ef-
ficient (de)multiplexing associationsbetween threads and I/O
handles.

For server applications, it is often infeasible to associate a
separate thread with each I/O handle because this design may
not scale efficiently as the number of handles increases. It
may be necessary, therefore, to have a small, fixed number of

1For instance, many UNIX operating systems support asynchronous I/O
by spawning a thread for each asynchronous operation, thereby defeating the
potential performance benefits of asynchrony.
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threadsdemultiplexevents from a larger number of handles.
Conversely, a client application may have a large number of
threads that are communicating with the same server. In this
case, however, allocating a connection-per-thread may con-
sume excessive operating system resources. Thus, it may be
necessary tomultiplexevents generated by many client threads
onto a smaller number of connections,e.g., by maintaining
a single connection from a client process to each server pro-
cess [11] with which it communicates.! For example, one possible OLTP server concurrency
model could allocate a separate thread for each client connec-
tion. However, this thread-per-connection concurrency model
may not handle hundreds or thousands of simultaneous con-
nections scalably. Therefore, our OLTP servers employ a de-
multiplexing model that uses a thread pool to align the number
of server threads to the available processing resources, such
as the number of CPUs, rather than to the number of active
connections. Likewise, to conserve system resources, multiple
threads in each of our front-end communication servers send
requests to the same back-end server over a singlemultiplexed
connection, as shown in the following figure. Thus, when a
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front-end server receives a result from a back-end server, it
must demultiplex the result to the corresponding thread that is
blocked waiting to process it.� Minimize concurrency-related overhead: To maximize
performance, key sources of concurrency-related overhead,
such as context switching, synchronization, and cache co-
herency management, must be minimized. In particular,
a concurrency model that requires memory to be allocated
dynamically for each request and passed between multiple
threads will incur significant overhead on conventional multi-
processor operating systems [12].! For instance, our example OLTP servers employ a thread
pool concurrency model based on the “half-sync/half-reactive”
variant of the Half-Sync/Half-Async pattern [2]. This model
uses a message queue to decouple thenetwork I/O thread,
which receives client request events, from the pool ofworker
threads, which process these events and return responses to
clients. Unfortunately, this design requires memory to be allo-
cated dynamically, from either the heap or a global pool, in the
network I/O thread so that incoming event requests can be in-
serted into the message queue. In addition, it requires numer-
ous synchronizations and context switches to insert/remove
the request into/from the message queue.

� Prevent race conditions: Multiple threads that demulti-
plex events on a set of I/O handles must coordinate to prevent
race conditions. Race conditions can occur if multiple threads
try to access or modify certain types of I/O handles simultane-
ously. This problem often can be prevented by protecting the
handles with a synchronizer, such as a mutex, semaphore, or
condition variable.! For instance, a pool of threads cannot useselect [3]
to demultiplex a set of socket handles because the operat-
ing system will erroneously notify more than one thread call-
ing select when I/O events are pending on the same sub-
set of handles [3]. Thus, the thread pool would need to re-
synchronize to avoid having multiple threadsread from the
same handle. Moreover, for bytestream-oriented protocols,
such as TCP, having multiple threads invokingread on the
same socket handle will corrupt or lose data. Likewise, mul-
tiple simultaneouswrites to a socket handle can “scramble”
the data in the bytestream.

5 Solution

Allow one thread at a time – the leader – to wait for an event
to occur on a set of I/O handles. Meanwhile, other threads
– the followers – can queue up waiting their turn to become
the leader. After the current leader thread demultiplexes an
event from the I/O handle set, it promotes a follower thread
to become the new leader and then dispatches the event to a
designated event handler, which processes the event. At this
point, the former leader and the new leader thread can execute
concurrently.

In detail: multiple former leader threads can process events
concurrently while the current leader thread waits on the han-
dle set. After its event processing completes, an idle follower
thread waits its turn to become the leader. If requests arrive
faster than the available threads can service them, the underly-
ing I/O system can queue events internally until a leader thread
becomes available. The leader thread may need to handoff an
event to a follower thread if the leader does not have the neces-
sary context to process the event. This scenario is particularly
relevant in high-volume, multi-tier distributed systems, where
results often arrive in a different order than requests were ini-
tiated. For example, if threads use the Thread-Specific Stor-
age pattern [22] to reduce lock contention, the thread that pro-
cesses a result must be the same one that invoked the request.

6 Structure

The participants in the Leader/Followers pattern include the
following:
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Handles and handle sets: Handlesidentify I/O resources,
such as socket connections or open files, which are often im-
plemented and managed by an operating system. Ahandle set
is a collection of I/O handles that can be used to wait for events
to occur on handles in the set. A handle set returns to its caller
when it is possible to initiate an operation on a handle in the
set without the operation blocking.! For example, OLTP servers are interested in two types
of events –CONNECTION events andREAD events – which
represent incoming connections and transaction requests, re-
spectively. Both front-end and back-end servers maintain a
separate connection for each client. Each connection is rep-
resented in a server by a separate socket handle. Our OLTP
servers use theselect [3] event demultiplexer, which iden-
tifies handles that have events pending, so that applications
can invoke I/O operations on handleswithout blocking call-
ing threads. However, multiple threads cannot callselect
on the same handle set simultaneously because more than one
thread will be notified erroneously that I/O events are pending.

Event handler: An event handler specifies an interface con-
sisting of one or more hook methods [6, 13]. These methods
represent the set of operations available to process application-
or service-specific events that occur on handle(s) associated
with an event handler.

Concrete event handler: Concrete event handlers special-
ize from the event handler and implement a specific service
that the application offers. Each concrete event handler is as-
sociated with a handle that identifies this service within the
application. In addition, concrete event handlers implement
the hook method(s) responsible for processing events received
through their associated handle.! For example, concrete event handlers in front-end OLTP
servers receive and validate remote client requests and for-
ward valid requests to back-end database servers. Likewise,
concrete event handlers in back-end database servers receive
transaction requests from front-end servers, read/write the ap-
propriate database records to perform the transactions, and re-
turn the results to the front-end servers.

Leader/followers thread set: Threads play several roles in
the Leader/Followers pattern. A leader thread waits for an
event to occur on a handle set, as which point it processes the
event and performs some type of service. After a thread is
finished processing an event it can wait on athread set. Zero
or more follower threads can queue up waiting to become the
leader or to receive event dispatches from the current leader
thread. When the current leader receives an event from its
handle set it promotes afollower thread to become the new
leader and then processes the event itself. The follower set
can be maintained implicitly, for example, using a semaphore

or condition variable, or explicitly, using a collection class.
The choice depends largely on whether the leader thread must
notify a specific follower thread explicitly to perform event
handoffs.! For example, each OLTP back-end database server has a
pool of threads waiting to process transaction requests. At any
point in time, multiple threads in the pool can be processing
transaction requests and sending results back to their front-end
communication servers. Up to one thread in the pool is the cur-
rent leader, which waits on the handle set for newCONNECT

andREAD events to arrive. Any remaining threads in the pool
are thefollowers, which wait on thethread setfor their turn
to be promoted to become the leader thread or to receive event
handoffs from the current leader.

The following figure illustrates the structure of participants
in the Leader/Followers pattern.
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7 Dynamics

Two types of collaborations can occur between participants in
the Leader/Followers pattern, depending on whether there is a
boundor unboundassociation between I/O handles in a handle
set and threads, as described below.

Unbound handle/thread association: In this use case, there
is no fixed association between threads and I/O handles. Thus,
any thread can process any event that occurs on any I/O handle
in a handle set. Unbound associations are often used when a
pool of threads take turns sharing a handle set.! For example, our OLTP back-end database server ex-
ample illustrates an unbound association between threads in
the pool and the I/O handles in the handle set managed by
select. Concrete event handlers that process request events
in a database server can run in any thread. Therefore, there is
no need to maintain a bound association between I/O handle
and thread. In this case, maintaining an unbound thread/handle
association simplifies back-end server programming.
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Bound handle/thread association: In this use case, each
thread is bound to its own I/O handle, which it uses to pro-
cess particular events. Bound associations are often used when
a client application thread waits on a socket handle for a re-
sponse to a two-way request it sent to a server.2 In this case,
the client application thread expects to process the response
event on this I/O handle in a specific thread,i.e., the thread
that sent the original request.! For example, threads in our OLTP front-end communi-
cation server forward incoming client requests to a specific
back-end server chosen to process the request. To reduce
the consumption of operating system resources in large-scale
multi-tier OLTP systems, worker threads in front-end server
processes can communicate to back-end servers usingmulti-
plexed connections[11]. After a request is sent, the worker
thread waits for a result to return on a multiplexed connec-
tion to the back-end server. In this case, maintaining a bound
thread/handle association simplifies front-end server program-
ming and minimizes unnecessary context management over-
head for transaction processing [14].

Given the two types of associations described above, the fol-
lowing collaborations occur in the Leader/Followers pattern.

1: Leader demultiplexing: The leader thread waits for
an event to occur on the handle set.

2: Follower promotion: There are two cases, depending
on which type of thread/handle associations are used:� For unboundthread/handle associations, after the leader
thread has demultiplexed an event, it chooses a follower thread
to become the new leader using one of the promotion protocols
described inimplementationactivity 4.� For boundthread/handle associations, after the leader de-
multiplexes one event, it checks the I/O handle associated with
the event to determine which thread is responsible for process-
ing it. If the leader thread discovers that it is responsible for the
event, it promotes a follower thread to become the new leader
using the same protocols used for unbound thread/handle as-
sociations. Conversely, if the event is intended for another
thread, the leader must handoff the event to the designated
follower thread. This follower thread then unregisters itself
from the leader/followers thread set and processes the incom-
ing event concurrently. Meanwhile, the current leader thread
continues to wait for another event to occur on the handle set.

3: Event processing: For unbound handle/thread asso-
ciations, the former leader thread concurrently processes the
event it demultiplexed after promoting a follower to become
the new leader. For bound handle/thread associations, either

2Note that multiple threads can be bound to the same I/O handleif con-
nections are multiplexed.

the former leader continues to process the event it demulti-
plexed or a follower thread processes the event that the leader
thread handed off to it.

4: Rejoining the leader/followers thread set: To de-
multiplex the I/O handles in a handle set, a thread must first
(re)join the leader/followers thread set. This action often oc-
curs when event processing is completed and a thread is avail-
able to process another event. A thread can become the leader
immediately if there is no current leader. Otherwise, the thread
becomes a follower and must wait until it is promoted by a
leader.

The following figure illustrates the collaborations among
participants in the Leader/Followers pattern.
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At any point in time, a thread participating in the
Leader/Followers pattern is in one of following three states:� Leader: A thread in this state is currently the leader,
waiting for an event to occur on the handle set. A thread in
the leader state can transition into the processing state when it
receives an event.� Processing: A thread in this state can execute concur-
rently with the leader thread and any other threads that are in
the processing state. A thread in the processing state typically
transitions to the follower state, though it can transition to the
leader state immediately if there is no current leader thread
when it finishes its processing.� Follower: A thread in this state waits in the follow
thread set. A follower thread can transition to the leader state
when promoted by the current leader or it can move directly
to the processing state if it receives an event handoff from the
leader.

The figure below illustrates the states and the valid transi-
tions in the Leader/Followers pattern.
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8 Implementation

The following activities can be used to implement the
Leader/Followers pattern.

1. Choose the I/O handle and handle set mechanisms:A
handle set is a collection of I/O handles that can be used to
wait for events to occur on handles in the set. Developers of-
ten choose the I/O handles and handle set mechanisms pro-
vided by an operating system, rather than implementing them
from scratch. The following sub-activities can be performed
to choose the I/O handle and handle set mechanisms.

1.1. Determine the type of I/O handle: There are two gen-
eral types of I/O handles:� Concurrent handles: This type of handle allows mul-
tiple threads to access the handle concurrently without incur-
ring race conditions that can corrupt, loose, or scramble the
data [3]. For instance, the Socket API for record-oriented pro-
tocols, such as UDP, allows multiple threads to invokeread
or write operations on the same handle concurrently.� Iterative handles: This type of handle requires multiple
threads to access the handle iteratively because concurrent ac-
cess will cause race conditions. For instance, the Socket API
for bytestream-oriented protocols, such as TCP, does not guar-
antee thatread orwrite operations are atomic. Thus, if I/O
operations on the socket are not serialized properly, corrupted
or lost data can result.

1.2. Determine the type of handle set: There are two gen-
eral types of handle sets:� Concurrent handle set: This type of handle set can be
called concurrently,e.g., by a pool of threads. When it is
possible to initiate an operation ononehandle without block-
ing the operation, a concurrent handle set returns that han-
dle to one of its calling threads. For example, the Win32
WaitForMultipleObjects function [5] supports con-
current handle sets by allowing a pool of threads to wait on
the same set of handles simultaneously.

� Iterative handle set: This type of handle set returns to
its caller when it is possible to initiate an operation onone
or morehandles in the set without the operation(s) blocking.
Although an iterative handle set can return multiple handles
in a single call, it cannot be called simultaneously by mul-
tiple threads of control. For example, theselect [3] and
poll [4] functions only support iterative handle sets. Thus, a
pool of threads cannot useselect or poll to demultiplex
events on the same handle set.

1.3. Determine the consequences of selecting certain
I/O handle and handle set mechanisms: In general, the
Leader/Followers pattern is used to prevent multiple threads
from corrupting or losing data erroneously, such as invoking
reads on a shared TCP bytestream socket handle concur-
rently or invokingselect on a shared handle set concur-
rently. However, some applications need not guard against
these use cases. In particular, if the I/O handle and handle
set mechanisms are both concurrent, many of the remaining
implementation activities can be skipped.

For instance, certain network programming APIs, such as
UDP support in Sockets, support concurrent multiple I/O
operations on a shared handle. Thus, a complete mes-
sage is always read by one thread or another, without risk
of partial reads or interleaved data corruption. Like-
wise, certain handle set mechanisms, such as the Win32
WaitForMultipleObjects function [5], return a single
handle per call, which allows them to be called concurrently
by a pool of threads.3 In these situations, it may be possible to
implement the Leader/Followers pattern by simply using the
operating system’s thread scheduler to (de)multiplex threads,
handle sets, and handles robustly. Such implementations can
skip implementationactivity 2. Moreover, if inimplementa-
tion activity 3 it is determined that the threads are unbound,
there is no need to implement any subsequent implementation
activities.

1.4. Encapsulate the lower-level handle set mechanisms
with s higher-level patterns (optional): One way to imple-
ment the Leader/Followers pattern is to use native operating
system handle set event demultiplexing mechanisms, such as
select andWaitForMultipleObjects. Conversely,
developers can leverage higher-level patterns, such as Reac-
tor [15], Proactor [10], and Wrapper Facade [16]. These pat-
terns simplify the Leader/Followers implementation and re-
duce the effort needed to address the accidental complexities
of programming to low-level native handle set mechanisms di-
rectly. Moreover, applying higher-level patterns makes it eas-
ier to decouple the I/O and demultiplexing aspects of a system
from its concurrency model, thereby reducing code duplica-
tion and maintenance effort.

3However,WaitForMultipleObjects does not by itself address the
problem of notifying a particular thread when an event is available.
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! For example, in our OLTP server example, I/O events
must be demultiplexed to concrete event handlers, which are
dispatched according to which I/O handle received the event.
The Reactor pattern [15] supports this activity, thereby simpli-
fying the implementation of the Leader/Followers pattern. In
the context of the Leader/Followers pattern, however, a reactor
only dispatchesoneconcrete event handler during its demul-
tiplexing phase, regardless of how many handles have events
pending on them. The following C++ class illustrates the in-
terface of our Reactor pattern implementation:

typedef unsigned int Event_Types;
enum {
// Types of indication events handled by the
// <Reactor>. These values are powers of two so
// their bits can be "or’d" together efficiently.
ACCEPT_EVENT = 01, // ACCEPT_EVENT is an
READ_EVENT = 01, // alias for READ_EVENT.
WRITE_EVENT = 02, TIMEOUT_EVENT = 04,
SIGNAL_EVENT = 010, CLOSE_EVENT = 020

};

class Reactor {
public:
// Register an <Event_Handler> of a
// particular <Event_Type>.
int register_handler (Event_Handler *eh,

Event_Type et);
// Remove an <Event_Handler> of a
// particular <Event_Type>.
int remove_handler (Event_Handler *eh,

Event_Type et);
// Entry point into the reactive event loop.
int handle_events (Time_Value *timeout = 0);

};

Developers provide concrete implementations of the
Event Handler interface below:

class Event_Handler {
public:
// Hook method dispatched by a <Reactor> to
// handle events of a particular type.
virtual int handle_event (HANDLE,

Event_Type et) = 0;

// Hook method returns the I/O <HANDLE>.
virtual HANDLE get_handle (void) const = 0;

};

2. Implement a protocol for temporarily (de)activating
handles in a handle set: When an event arrives, the leader
thread deactivates the handle from consideration in the han-
dle set temporarily, promotes a follower thread to become the
new leader, and continues to process the event. Temporarily
deactivating the handle from the handle set avoids race condi-
tions that could occur between the time when a new leader is
selected and the event is processed. If the new leader waits on
the handle set during this interval, it could falsely dispatch the
event a second time. After the event is processed, the handle is

reactivated in the handle set, which allows the leader thread to
wait for events to occur on it and any other activated handles
in the set.! In our OLTP example, this handle (de)activation protocol
is provided by the reactor implementation, as follows:

class Reactor {
public:

// Temporarily remove the <Event_Handler> from the
// internal handle set.
int suspend_handler (Event_Handler *,

Event_Type et);
// Restore a previously suspended <Event_Handler>
// to the internal handle set.
int resume_handler (Event_Handler *,

Event_Type et);
};

3. Implement the thread set: To promote a follower thread
to the leader role, as well as determine which thread is the cur-
rent leader, an implementation of the Leader/Followers pat-
tern must manage a set of threads. The two general strategies
for implementing thread sets –unboundandbound– are de-
scribed below.�Unbound thread set: In this design, all follower threads
in the set simply wait on a single synchronizer, such as a
semaphore or condition variable. This strategy is designed for
unbound handle/thread associations, where it does not matter
which thread processes an event, as long as multiple threads
sharing a handle set are serialized.

In certain applications, the leader thread need not handoff
events to specific follower threads. For example, a “pure”
server that receives requests from the network and sends re-
sponses through the same connection can assign any thread
to process each new event. In this case, only threads en-
gaged in server processing must participate in the unbound
leader/followers thread set. These requirements can yield a
smaller, simpler Leader/Followers pattern implementations.! For example, the unbound thread set class shown below
can be used for the back-end database servers in our OLTP
example.

class Unbound_Thread_Set {
public:

Application threads invoke thejoin method to wait to de-
multiplex and dispatch new I/O events.

int join (Time_Value *timeout = 0);

This method blocks until the application terminates or a time-
out occurs. Implementation activity4 illustrates how this
method can be defined.

Thepromote new leader method is invoked by server
concrete event handlers before they perform application-
specific event processing.
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int promote_new_leader (void);

This method promotes one of the follower threads in the set to
become the new leader.Implementation activity6 illustrates
how this method can be defined.

The constructor caches the reactor passed to it. This reactor
implementation usesselect, which only supports iterative
handle sets. Therefore,Unbound Handle Set is responsi-
ble for allowing multiple threads to callselect on the reac-
tor’s handle set serially.

Unbound_Thread_Set (Reactor *reactor =
Reactor::instance ()):

reactor_ (reactor) {}

By default, ourUnbound Thread Set uses the reactor sin-
gleton, though this choice can be overridden easily by an ap-
plication.

The implementation ofUnbound Thread Set uses the
following data members:

private:
// Pointer to the event demultiplexer/dispatcher.
Reactor *reactor_;

// The thread id of the leader thread, which is
// set to NO_CURRENT_LEADER if there is no leader.
Thread_Id leader_thread_;

// Follower threads wait on this condition
// variable until they are promoted to leader.
Thread_Condition followers_condition_;

// Serialize access to our internal state.
Thread_Mutex mutex_;

};

Note that a single condition variable synchronizer is shared
by all threads in this set. Moreover, the implementation of
the Unbound Handle Set is designed using the Monitor
Object pattern [2].� Bound thread set: In this design, each follower thread
waits on its own synchronizer. This strategy is well-suited for
bound handle/thread associations, where a leader thread may
need to handoff I/O events to specific follower threads. For
example, a reply received over a multiplexed connection by
the leader thread in a front-end OLTP communication server
may belong to one of the follower threads.

In addition, a bound thread set may be necessary if an appli-
cation multiplexes connections among two or more threads, in
which case the bound thread set can serialize access to the mul-
tiplexed connection. This multiplexed design minimizes the
number of network connections used by the front-end server.
However, front-end server threads must now serialize access
to the connection when sending and receiving over a multi-
plexed connection to avoid corrupting the request and reply
data, respectively.

! For example, below we illustrate how a bound handle
set implementation of the Leader/Followers pattern can be
used for the front-end communication servers in our OLTP
example. We focus on how a server can demultiplex events
on a single iterative handle, which threads in front-end com-
munication servers use to wait for responses from back-end
data servers. This example complements the implementation
shown in the unbound thread set above, where we illustrated
how to use the Leader/Followers pattern to demultiplex an it-
erativehandle set.

We first define aThread Context class that is nested
within theBound Thread Set class:

class Bound_Thread_Set {
public:

class Thread_Context {
public:
// The response we are waiting for.
int request_id (void) const;

// Returns true when response is received.
bool response_received (void);
void response_received (bool);

// The condition the thread waits on.
Thread_Condition *condition (void);

private:
// ... data members omitted for brevity ...

};

Thread Context provides a separate condition variable
synchronizer for each waiting thread, which allows a leader
thread to notify the appropriate follower thread when its re-
sponse is received. Thus, a thread that wants to send a re-
quest uses the following method to register its associated
Thread Context with the bound thread set to inform the
set that it expects a response.

int expecting_response (Thread_Context *context);

This registration must be performedbeforethe thread sends
the request. Otherwise, the response could arrive before the
bound thread set is informed which threads are waiting for it.

After the request is sent, the client thread invokes thewait
method defined in theBound Thread Set class to wait for
the response:

int wait (Thread_Context *context) {
// step (a): wait as a follower or become a leader
// step (b): dispatch event to bound thread
// step (c): elect new leader

}

The definition of steps (a), (b) and (c) in thewait method of
Bound Thread Set are illustrated inimplementation activ-
ities 4, 5, and 6, respectively.

public:
Bound_Thread_Set (HANDLE mutex_stream_handle)
: muxed_stream_ (muxed_stream_handle) {}
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The implementation ofBound Thread Set uses the fol-
lowing data members:

private:
// Wrapper facade for the the multiplexed
// connection stream.
SOCK_Stream muxed_stream_;

// The thread id of the leader thread.
// Set to NO_CURRENT_LEADER if there
// is no current leader.
Thread_Id leader_thread_;

// The set of follower threads indexed by
// the response id.
typedef std::map<int, Thread_Context *>

Follower_Threads;
Follower_Threads follower_threads;

// Serialize access to our internal state.
Thread_Mutex mutex_;

};

By comparing the data members ofBound Thread Set and
Unbound Thread Set, it is clear that the primary differ-
ences are thatUnbound Thread Set contains anexplicit
collection of threads, represented by theThread Context
objects, and a multiplexedSOCK Stream wrapper fa-
cade object. In contrast, the collection of threads in the
Unbound Thread Set is implicit, namely, the queue of
waiting threads blocked on its condition variable. Thus, each
follower thread can wait on a separate condition variable until
they are promoted to become the leader thread or receive an
event handoff from the current leader.

4. Implement a protocol to allow threads to initially join
(and rejoin) the leader/followers thread set: This protocol
is used when event processing is completed and a thread is
available to process another event. If no leader thread is avail-
able, a follower thread can become the leader immediately.
If a leader thread is already available, a thread can become a
follower by waiting on the thread set. The protocol implemen-
tation depends on which strategy – unbound or bound – is used
to implement thread sets, as described below.� Unbound thread set: For unbound thread/handle asso-
ciations, the join protocol can be implemented by simply call-
ing wait on the condition variable used by the thread set.! For example, our back-end database servers can imple-
ment thejoin method of theUnbound Thread Set as
follows:

int Unbound_Thread_Set::join (Time_Value *timeout)
{
// Use Scoped Locking idiom to acquire mutex
// automatically in the constructor.
Guard<Thread_Mutex> guard (mutex_);

for (;;) {
while (leader_thread_ != NO_CURRENT_LEADER)
// Sleep and release <mutex> atomically.

followers_condition_.wait (timeout);

// Become leader.
leader_thread_ = Thread::self ();

// Leave monitor temporarily to allow other
// follower threads to join the set.
guard.release ();

// Run the reactor to dispatch the <handle_event>
// hook method associated with the next event.
if (reactor_->handle_events () == -1)
return;

// Reenter monitor to serialize the test
// for <leader_thread_> in the while loop.
guard.acquire ();

}
}

Note how the thread alternates between its role as a leader and
a follower. In the first part of the loop, the thread waits until
it becomes a leader. After becoming the leader, it waits for
I/O events. After dispatching an I/O event via its reactor, it
re-assumes a follower role. This process continues until the
application terminates or a timeout occurs.

Before the thread can process the event it must promote a
new leader to handle any other incoming I/O events. The fol-
lowing concrete event handler is responsible for initiating this
task, as follows:

class LF_Event_Handler : public Event_Handler {
private:

// Instance of an <Unbound_Thread_Set>.
Unbounded_Thread_Set unbound_thread_set_;
// ...

public:
// Hook method dispatched by a <Reactor> to
// handle events of a particular type.
virtual int handle_event

(HANDLE, Event_Type et) {
unbound_thread_set_->suspend_handler (this, et);
unbound_thread_set_->promote_new_leader ();

// ...application-specific event processing code...

unbound_thread_set_->resume_handler (this, et);
}

};� Bound thread set: For bound thread/handle associa-
tions, the follower must first add its condition variable to the
map in the thread set and then callwait on it. This allows
the leader to use the Specific Notification pattern [17, 18] if it
must handoff an event to a specific follower thread.! For example, our front-end communication servers must
maintain a bound set of follower threads. This set is updated
when a new leader is promoted, as follows:

int
Bound_Thread_Set::wait (Thread_Context *context)
{
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// Step (a): wait as a follower or become a leader.

// Use Scoped Locking idiom to acquire mutex
// automatically in the constructor.
Guard<Thread_Mutex> guard (mutex_);

while (leader_thread_ != NO_CURRENT_LEADER
&& !context->response_received ()) {

// There is a leader, wait as a follower...
// Insert the context into the thread set.
int id = context->response_id ();
follower_threads_[id] = context;

// Go to sleep and release <mutex> atomically.
context->condition ()->wait ();

// The response has been received, so return.
if (context->response_received ())
return 0;

}
// No leader, become the leader.
for (leader_thread = Thread::self ();

!context->response_received ();
) {

char buffer[HEADER_SIZE];

// Leave monitor temporarily to allow other
// follower threads to join the set.
guard.release ();
if (muxed_stream_.recv (handle, buffer,

HEADER_SIZE) == -1)
return -1;

// Reenter monitor.
guard.acquire ();
// ... more below ...

After the thread is promoted to the leader role, the thread must
perform all its I/O operations, waiting until its own event is
received.

5. Implement the event handoff mechanism: Unbound
handle/thread associations do not require event handoffs be-
tween leader and follower threads. For bound handle/thread
associations, however, the leader thread must be prepared to
handoff an event to a designated follower thread. The Spe-
cific Notification pattern [17, 18] can be used to implement
this handoff scheme. Each follower thread has its own syn-
chronizer, such as a semaphore or condition variable, and a set
of these synchronizers is maintained by the thread set. When
an event occurs, the leader thread can locate and use the ap-
propriate synchronizer to notify a specific follower thread.! In our OLTP example, front-end communication servers
can use the following protocol to handoff an event to the thread
designated to process the event:

int
Bound_Thread_Set::wait (Thread_Context *context)
{
// ... Follower code omitted ...

// Step (b): dispatch event to bound thread.
for (leader_thread_ = Thread::self ();

!context->response_received ();
) {

// ... Leader code omitted ...

// Parse the response header and
// get the response id.
int response_id = parse_header (buffer);

// Find the correct thread.
Follower::iterator i =
follower_threads_.find (response_id);

// We are only interested in the value of
// the <key, value> pair of the STL map.
Thread_Context *destination_context
= (*i).second;

follower_threads_.erase (i);

// Leave monitor temporarily to allow other
// follower threads to join the set.
guard.release ();
// Read response into pre-allocated buffers.
destination_context->read_response_body (handle);
// Reenter monitor.
guard.acquire ();

// Notify the condition variable to
// wake up the waiting thread.
destination_context->response_received (true);
destination_context->condition ()->notify ();

}
// ... more below ...

}

6. Implement the follower promotion protocol: Immedi-
ately after a leader thread demultiplexes an event, but before it
processes the event, it must promote a follower thread to be-
come the new leader. The following protocols can be used to
determine which follower thread to promote.� FIFO order: A straightforward protocol is to promote
the follower threads infirst-in, first-out(FIFO) order. This pro-
tocol can be implemented using a native operating system syn-
chronization object, such as a semaphore, if it queues waiting
threads in FIFO order. The benefits of the FIFO protocol for
bound thread/handle associations are most apparent when the
order of client requests matches the order of server responses.
In this case, no unnecessary event handoffs need be performed
because the response will be handled by the leader, thereby
minimizing context switching and synchronization overhead.

One drawback with the FIFO promotion protocol, however,
is that the thread that is promoted next is the thread that has
been waiting thelongest, thereby minimizing CPU cache affin-
ity [9, 19]. Thus, it is likely that state information, such as
translation lookaside buffers, register windows, instructions,
and data, residing within the CPU cache for this thread will
have been flushed.� LIFO order: In many applications, it does not matter
which of the follower threads is promoted next because all
threads are “equivalent peers.” In this case, the leader thread
can promote follower threads inlast-in, first-out(LIFO) order.
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The LIFO protocol maximizes CPU cache affinity by ensuring
that the thread waiting theshortesttime is promoted first [5],
which is an example of the “Fresh Work Before Stale” pat-
tern [20]. Implementing a LIFO promotion protocol requires a
more complex data structure, however, such as a stack of wait-
ing threads, rather than just using a native operating system
synchronization object, such as a semaphore.� Priority order: In some applications, particularly real-
time applications [11], threads may run at different priorities.
In this case, therefore, it may be necessary to promote fol-
lower threads according to their priority. This protocol can
be implemented using some type of priority queue, such as a
heap [21]. Although this protocol is more complex than the
FIFO and LIFO protocols, it may be necessary to promote fol-
lower threads according to their priorities to minimize priority
inversion [11].� Implementation-defined order: This ordering is most
common when implementing unbound handle sets using op-
erating system synchronizers, such as semaphores or con-
dition variables, which often dispatch waiting threads in an
implementation-defined order. The advantage of this protocol
is that it maps onto native operating system synchronizers ef-
ficiently.! For example, back-end database servers could use the
following simple protocol to promote follower thread in what-
ever order they are queued by an operating system condition
variable:

int Unbound_Thread_Set::promote_new_leader (void)
{
// Use Scoped Locking idiom to acquire mutex
// automatically in the constructor
Guard<Thread_Mutex> guard (mutex_);

if (leader_thread_ != Thread::self ())
return -1; // Only leader thread can invoke this.

leader_thread_ = NO_CURRENT_LEADER;
followers_condition_.notify ();
// Release mutex automatically in destructor.

}

Thepromote new leader method is invoked by concrete
event handlers before they start processing a request.� Specific order: This ordering is common when imple-
menting a bound thread set, where it is necessary to handoff
events to a particular thread. In this case, the protocol imple-
mentation more complex because it must maintain a collection
of synchronizers.! For example, this protocol can be implemented as part of
theBound Thread Set’s wait method to promote a new
leader, as follows:

int Bound_Thread_Set::wait (Thread_Context *context)
{

// ... details omitted ...

// Step (c): Promote a new leader.
Follower_Threads::iterator i =
follower_threads_.begin ();

if (i == follower_threads_.end ())
return 0; // No followers, just return.

Thread_Context *new_leader_context
= (*i).second;

leader_thread_ = NO_CURRENT_LEADER;
// Remove this follower...
follower_threads_.erase (i);
// ... and wake it up as newly promoted leader.
new_leader_context->condition ()->notify ();

}

9 Example Resolved

Our OLTP system can apply the Leader/Followers pattern
for front-end communication servers and back-end database
servers. Below, we illustrate how this pattern can be applied
for both use cases.

OLTP back-end database servers: These servers can use
the unbound handle set version of the Leader/Followers pat-
tern to implement a thread pool that demultiplexes I/O events
efficiently. As illustrated in the following figure, there is no
designated network I/O thread. Instead, a pool of threads
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is pre-allocated during database server initialization. These
threads are not bound to any particular I/O handle. Thus, all
threads in this pool take turns playing the role of the network
I/O thread by having the current leader threadselect on
a shared handle set of sockets connected to OLTP front-end
servers.

When a request event arrives, the leader thread temporarily
deactivates the socket handle from consideration inselect’s
handle set, promotes a follower thread to become the new
leader, and continues to process the request event. The former
leader thread then reads the request into a buffer that resides
in the run-time stack or is allocated using the Thread-Specific
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Storage pattern [22].4 All processing of the data occurs in the
former leader thread; thus, no further context switching, syn-
chronization, or data movement is necessary. After processing
completes, the former leader thread becomes a follower and
returns to the thread pool. Moreover, the socket handle it was
processing is reactivated in the handle set so thatselect can
wait for I/O events to occur on it, along with other sockets in
the handle set.

In our OLTP back-end database server example, the current
leader thread promotes a follower thread to become the new
leader after it demultiplexes a request event. The new leader
waits on the synchronous event demultiplexer, while all for-
mer leader threads process their request events concurrently.
All remaining follower threads queue up on the synchronizer,
waiting their turn to be promoted to the leader. If requests ar-
rive when all threads are busy, they will be queued in socket
handles until a thread in the pool is available to execute the re-
quests. When the former leader finishes processing its request,
it sends the result to the front-end and re-queues itself into the
follower thread set.

OLTP front-end communication servers: Front-end com-
munication servers can use the bound handle set version of the
Leader/Follower pattern to wait for both requests from remote
clients and responses from back-end servers. This design can
be structured much like the back-end servers described above.
The main difference is that the front-end server threads are
“bound” to particular I/O handles once they forward a request
to a back-end server. For example, they can wait on a condi-
tion variable until the response is received. After the response
is received, the front-end server uses the request id to handoff
the response by locating the correct condition variable and no-
tifying the designated waiting thread. This thread then wakes
up and processes the response.

Using the Leader/Followers pattern is more scalable than
simply blocking in aread on the socket handle because the
same socket handle can be shared between multiple front-
end threads. This connection multiplexing conserves limited
socket handle resources in the server. Moreover, if all threads
are waiting for responses, the server will not dead-lock be-
cause it can use one of the waiting threads to process new
incoming requests from remote clients. Avoiding deadlock
is particularly important in multi-tier systems where servers
callback to clients to obtain additional information, such as
security certificates.

4In contrast, the half-sync/half-reactive thread pool mustallocate each re-
quest dynamically from a shared heap because the request is passed between
threads.

10 Variants

Relaxing serialization constraints: There are platforms
where multiple leader threads can wait simultaneously on a
handle set. For example, a thread pool can take advantage
of multi-processor hardware to perform useful computations
while other threads wait for I/O events. In such cases, the con-
ventional Leader/Followers pattern implementation serializes
thread access to handle sets, which can overly restrict applica-
tion concurrency. To relax this constrain, the following vari-
ants of the Leader/Followers pattern can allow multiple leader
threads to be active simultaneously:� Leader/followers per multiple handle sets: This vari-
ant applies the conventional Leader/Followers implementation
to multiple handle sets separately. For instance, each thread is
assigned a designated handle set. This variant is particularly
useful in applications where multiple handle sets are available.
However, this approach limits a thread to use a specific handle
set.� Multiple leaders and multiple followers: In this vari-
ant, the pattern is extended to support multiple simultaneous
leader threads, where any of the leader threads can wait on any
handle set. When a thread re-joins the leaders/followers thread
set it checks if a leader is associated with every handle set al-
ready. If there is a handle set without a leader, the re-joining
thread can become the leader of that handle set immediately.

Hybrid thread associations: Some applications use hy-
brid designs that implement both bound and unbound han-
dle/thread associations simultaneously. Likewise, some I/O
handles in an application may have dedicated threads to han-
dle certain events, whereas other I/O handles can be processed
by any thread. Thus, one variant of the Leader/Follower pat-
tern uses its event handoff mechanism to notify certain subsets
of threads, according to the I/O handle on which event activity
occurs.

For example, the OLTP front-end communication server
may have multiple threads using the Leader/Followers pattern
to wait for new request events from clients. Likewise, it will
also have threads waiting for responses to requests they in-
voked on back-end servers. In fact, threads play both roles
over their lifetime, starting as threads to dispatch new incom-
ing requests, issuing requests to the back-end servers to satisfy
the client application requirements and then waiting for the re-
sponses from the back-end server.

Hybrid client/servers: In complex systems, where peer ap-
plications play both client and server roles, it is important that
the communication infrastructure process incoming requests
while waiting for one or more replies. Otherwise the system
can dead-lock because one client has all its threads blocked
waiting for responses.
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In this variant, the binding of threads and handles changes
dynamically, for example, initially a thread may be unbound,
during processing of an incoming request the application re-
quires services provided by other peers in the distributed sys-
tem. In that case the unbound thread dispatches new requests
while executing application code, effectively binding itself to
the handle used to send the request. Later when the response
arrives and the thread completes the original request it be-
comes unbound again.

In such an implementation theBound Thread Set can-
not simply demultiplex events for a single handle. As with the
Unbound Thread Set class, the unbound version must be
extended to support a full handle set. In particular thewait()
method in Step 4 cannot perform the I/O directly. Instead
theEvent Handler performs all the I/O, and it informs the
Bound Thread Set to dispatch the message to the correct
thread.

11 Known Uses

ACE Thread Pool Reactor framework [23]. The ACE
framework provides an object-oriented framework implemen-
tation of the Leader/Followers pattern called the “thread pool
reactor” (ACE TP Reactor) to demultiplex events among a
pool of threads. When using a thread pool reactor, an applica-
tion pre-spawns afixednumber of threads. When these threads
invokeACE TP Reactor’s handle events method, one
thread will become the leader and wait for an event. Threads
are considered unbound by the ACE thread pool reactor frame-
work. Thus, once an event is received the leader thread handles
the event and promotes an arbitrary thread to become the next
leader.

CORBA ORBs. Many CORBA implementations, includ-
ing Chorus COOL ORB [11] and TAO [24] use the Lead-
ers/Followers pattern for both their client-side connection
model and the server-side concurrency model.

Web servers. The JAWS Web server [1] uses the
Leader/Followers thread pool model...

Transaction monitors. Popular transaction monitors, such
as Tuxedo, have traditionally operated on a per-process basis,
i.e., transactions are always associated with a process. Con-
temporary OLTP systems demand high-performance and scal-
ability, however, and performing transactions on a per-process
basis may fail to meet these requirements. Therefore, next-
generation transaction services, such as the CORBA Transac-
tion Service [14], employ bound associations between threads
and transactions. The Leader/Followers pattern supports this
architecture with bound associations between threads and I/O
handles.

Taxi stands. The Leader/Followers pattern is used in ev-
eryday life to organize many airport taxi stands. In this case,

taxi cabs are the threads, with the first taxi cab in line being
the leader and the remaining taxi cabs being the followers.
Likewise, passengers arriving at the taxi stand constitute the
‘events’ that must be demultiplexed to the cabs.

12 See Also

The Proactor pattern [10] can be used as an alternative to the
Leader/Followers pattern when an operating system supports
asynchronous I/O efficiently.

The Half-Sync/Half-Async pattern [2] is an alternative to
the Leader/Followers pattern when there are additional syn-
chronization or ordering constraints that must be addressed
before requests can be processed by threads in the pool.

13 Consequences

The Leader/Followers pattern provides the followingbenefits:

Performance enhancements: Compared with the half-
sync/half-reactive thread pool approach described in theEx-
amplesection, the Leader/Followers pattern can improve per-
formance as follows:� It enhances CPU cache affinity and eliminates unbound

allocation and data buffer sharing between threads by
reading the request into buffer space allocated on the
stack of the leader or by using the Thread-Specific Stor-
age pattern [22] to allocate memory.� It minimizes locking overhead by not exchanging data be-
tween threads, thereby reducing thread synchronization.
In bound handle/thread associations, the leader thread
dispatches the event based on the I/O handle. The request
event is then read from the handle by the follower thread
processing the event. In unbound associations, the leader
thread itself reads the request event from the handle and
processes it.� It can minimize priority inversion because no extra
queueing is introduced in the server. When combined
with real-time I/O subsystems [25], the Leader/Followers
thread pool model can significantly reduce sources of
non-determinism in server request processing.� It does not require a context switch to handle each event,
reducing the event dispatching latency. Note that pro-
moting a follower thread to fulfill the leader role requires
a context switch. If two events arrive simultaneously this
increases the dispatching latency for the second event, but
it is no worse than half-sync/half-reactive thread pool im-
plementations.
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Programming simplicity: The Leader/Follower pattern
simplifies the programming of concurrency models where
multiple threads can receive requests, process responses, and
demultiplex connections using a shared handle set.

However, the Leader/Followers pattern has the followingli-
abilities:

Implementation complexity: The advanced variants of the
Leader/Followers pattern are harder to implement than half-
sync/half-reactive thread pools. In particular, when used as a
multi-threaded connection multiplexer, the Leader/Followers
pattern must maintain a set of follower threads waiting to pro-
cess requests. This set must be updated when a follower thread
is promoted to a leader and when a thread rejoins the set of fol-
lower threads. All those operations can happen concurrently,
in an unpredictable order, thus, the implementation must be
efficient, while ensuring operation atomicity.

Lack of flexibility: Thread pool models based on the “half-
sync/half-reactive” variant of the Half-Sync/Half-Async pat-
tern [2] allow events in the queueing layer to be discarded
or re-prioritized. Similarly, the system can maintain multi-
ple separate queues serviced by threads at different priorities
to reduce contention and priority inversion between events at
different priorities. In the Leader/Followers model, however,
it is harder to discard or reorder events because there is no ex-
plicit queue. One way to provide this functionality is to offer
different levels of service by using multiple Leader/Followers
groups in the application, each one serviced by threads at dif-
ferent priorities.

Network I/O bottlenecks: The Leader/Followers pattern
described in the Implementation section serializes processing
by allowing only a single thread at a time to wait on the han-
dle set. In some environments, this design could become a
bottleneck because only one thread at a time is demultiplexing
I/O events. In practice, however, this may not be a problem
because most of I/O-intensive processing is performed by the
operating system kernel.
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