Leader/Followers

A Design Pattern for Efficient Multi-threaded
I/O Demultiplexing and Dispatching

Douglas C. Schmidt and Carlos O’'Ryan
{schmidt,coryah@uci.edu
Electrical and Computer Engineering Dept.
University of California, Irvine, CA 92697, USA

Michael Kircher Irfan Pyarali
Michael.Kircher@mchp.siemens.de irfan@cs.wustl.edu
Siemens Corporate Technology Department of Computer Science, Washingt@ndity
Munich, Germany St. Louis, MO 63130, USA
1 Intent The front-end communication servers are actually “hybrid”

client/server applications that perform two primary tasks.
The Leader/Followers design pattern provides a concurremgst, they receive requests arriving simultaneously from hun-
model where multiple threads can efficiently demultiplexreds or thousands of remote clients over wide area commu-
events and dispatch event handlers that process I/O hangigstion links, such as X.25 or the TCP/IP. Second, they vali-
shared by the threads. date the remote client requests and forward valid requests over
TCP/IP connections to back-end database servers. In contrast,
2 Ex ampl e the bacl_<—end database servers are “pure” servers that perform
the designated transactions. After a transaction commits, the
. . - . : database server returns its results to the associated commu-
Consider the design of a multi-tier, high-volume, on-line trans:__ .
action processing (OLTP) system shown in the following ﬁ%lc_:a.non. SEIver, Wh'c.h then forwards the results back to the
ure. In this design, front-end communication servers rou ggmatmg remote client.
FRONT-END BACK-END The servers in this OLTP system spend most of their time
COMM. SERVERS DATABASE SERVERS processing various types of I/O operations in response to re-
o guests. For instance, front-end servers perform network 1/0
to receive transaction requests from remote clients, forward
them to the appropriate database server, wait for the result,
and finally forward the result back to the client. Likewise,
back-end servers receive transaction requests from front-end
servers, read/write the appropriate database records to perform
the transactions, and return the results to the front-end servers.

A common strategy for improving OLTP server perfor-
mance is to use a multi-threaded concurrency model that
processes requests and results simultaneously [1]. In the-
ory, threads can run independently, increasing overall sys-
tem throughput by overlapping network and disk I/O process-
transaction requests from remote clients, such as travel agefgs with OLTP computations, such as validations, indexed
claims processing centers, or point-of-sales terminals, to bag&arches, table merges, triggers, and stored procedure execu-
end database servers that process the requests. This multfi@gg. In practice, however, it is challenging to design a multi-
architecture is used to improve overall system throughput dAgeading model that allows front-end and back-end servers to
reliability via load balancing and redundancy, respectively. perform I/O operations and OLTP processing efficiently.

REMOTE CLIENTS
OVER WAN LINKS

“This work was supported in part by Boeing, NSF grant NCR-2628 One way to multi-thread a OLTP back-end database server
DARPA contract 9701516, SAIC, Siemens, and Sprint. is to create a thread pool based on the “half-sync/half-reactive”

variant of the Half-Sync/Half-Async pattern [2]. In largeeverhead when used for high-volume servers, such as those
scale OLTP systems, the number of 1/O handles may ibeour multi-tier OLTP example. For instance, even with
much larger than the number of threads. In this case, afight workload, the half-sync/half-reactive thread pool de-
event demultiplexer, such asel ect [3], pol | [4], or sign will incur a dynamic memory allocation, multiple syn-
Wi t For Mul ti pl eQhj ect s [5], can be used to wait for chronization operations, and a context switch to pass a com-
events to occur on a socket handle set. Certain typesmand object between the network 1/O thread and a worker
event demultiplexers, most notalslgl ect andpol | ,donot thread, which makes even the best-case latency unnecessar-
work correctly if invoked with the same handle set by multity high [8]. Moreover, if the OLTP server is run on a
ple threads. To overcome this limitation, therefore, the OLTRulti-processor, significant overhead can occur from proces-
servers can be designed with a dedicatetivork I/Othread sor cache coherency protocols required to transfer command
assigned to the event demultiplexer, as shown in the followioljects between threads [9].

figure. When activity occurs on handles in the set, the eventf the OLTP servers run on an operating system platform
that supports asynchronous /O efficiently, the half-sync/half-
reactive thread pool can be replaced with a purely asyn-

LiHyVECR chronous thread pool based on the Proactor pattern [10]. This
alternative will reduce some of the overhead outlined above
QUEUEING by eliminating the network 1/O thread. Many operating sys-
LAYER tems do not support asynchronous 1/0O, however, and those
that do often support it inefficientfy. Yet, it is essential that
RE&%"E high-volume OLTP servers demultiplex requests efficiently to

multiple threads.

3 Context

demultiplexer returns control to the network 1/0 thread and in-

dicates which socket handle(s) in the set have events pendftyapplication where events occurring on set of I/O handles
This thread then reads the transaction request from the dagst be demultiplexed and dispatched efficiently by multiple
ignated socket handle, stores it into a dynamically allocatédeads.

command object [6], and inserts the command object into a

message queue implemented using the Monitor Object pat-

tern [7]. This message queue is serviced by a poatarker Problem

threads When a worker thread in the pool is available, it re-

moves the command object from the queue, performs the déulti-threading is a common technique to implement appli-

ignated transaction, and then returns a response to the frGHONS that process multiple /O events concurrently. Im-

end communication server plementinghigh-performancemulti-threaded applications is

A similar concurrency design can be applied to front-erjﬂ?rd’ however. To address this problem effectively, the fol-

communication servers, where a separate network 1/0 thré%v&mg forcesmust be addressed:

and a pool of worker threads can validate and forward clientEfficient demultiplexing of I/O handles and threads:
requests to the appropriate back-end servers. In this designitigi-performance multi-threaded applications process numer-
front-end communication servers also play the role of “clientstis types of events, such as connection, read, and write events,
to back-end servers. Thus, they wait for the back-end servarscurrently. These events often occur on I/0 handles, such as
to return transaction results. After a front-end server receivigSP/IP sockets [3], that are allocated for each connected client
a result from a back-end server, the result must be dispatcheserver. A key design challenge, therefore, is determining ef-
to the appropriate worker thread. Moreover, in multi-tier syfieient (de)multiplexing associatiortsetween threads and /O
tems, front-end servers may need to respond to requests giandles.

erated by back-ends while they are processing front-end reFor server applications, it is often infeasible to associate a
quests. Therefore, front-end servers must always be ablseparate thread with each 1/0 handle because this design may
process incoming requests and send responses, which impl@sscale efficiently as the number of handles increases. It
that worker threads in front-end servers cannot all block siay be necessary, therefore, to have a small, fixed number of

multaneously. Fr— .

. . For instance, many UNIX operating systems support asynclus 1/0
. Although the threadmg. quels described .above are u§9@pawning a thread for each asynchronous operation bineiefeating the
in many concurrent applications, they can incur excessptgential performance benefits of asynchrony.

threadsdemultiplexevents from a larger number of handles. Prevent race conditions: Multiple threads that demulti-

Conversely, a client application may have a large numberpdéx events on a set of I/O handles must coordinate to prevent

threads that are communicating with the same server. In tldise conditionsRace conditions can occur if multiple threads

case, however, allocating a connection-per-thread may ctigto access or modify certain types of /0 handles simultane-

sume excessive operating system resources. Thus, it mapumdy. This problem often can be prevented by protecting the

necessary tmultiplexevents generated by many client threadendles with a synchronizer, such as a mutex, semaphore, or

onto a smaller number of connectioresg, by maintaining condition variable.

a single connection from a client process to each server pro=; For instance, a pool of threads cannot ss¢ ect [3]

cess [11] with which it communicates. to demultiplex a set of socket handles because the operat-
— For example, one possible OLTP server concurrengy system will erroneously notify more than one thread call-

model could allocate a separate thread for each client conrieg-sel ect when 1/O events are pending on the same sub-

tion. However, this thread-per-connection concurrency modet of handles [3]. Thus, the thread pool would need to re-

may not handle hundreds or thousands of simultaneous c&mchronize to avoid having multiple threadsad from the

nections scalably. Therefore, our OLTP servers employ a dame handle. Moreover, for bytestream-oriented protocols,

multiplexing model that uses a thread pool to align the numierch as TCP, having multiple threads invokingad on the

of server threads to the available processing resources, st&ihe socket handle will corrupt or lose data. Likewise, mul-

as the number of CPUs, rather than to the number of actijge simultaneousw i t es to a socket handle can “scramble”

connections. Likewise, to conserve system resources, multiple data in the bytestreaim.

threads in each of our front-end communication servers send

requests to the same back-end server over a singlgplexed

connection as shown in the following figure. Thus, when @5 Solution

FRONT-END BACK-END
COMMUNICATION DATABASE
SERVER SERVER Allow one thread at a time — the leader — to wait for an event
WORKER THREADS WORKER THREADS to occur on a set of I/O handles. MeanWhiIe, other threads
»2A>i4>i4>2 »i»i»i»i — the followers — can queue up waiting their turn to become
< ONETCP the leader. After the current leader thread demultiplexes an

CONNECTION

T

event from the I/O handle set, it promotes a follower thread

front-end server receives a result from a back-end servefoif?€come the new leader and then dispatches the event to a

must demultiplex the result to the corresponding thread thafi@Signated event handler, which processes the event. At this
blocked waiting to process it point, the former leader and the new leader thread can execute

concurrently.

¢ Minimize concurrency-related overhead: To maximize In detail: multiple former leader threads can process events
performance, key sources of concurrency-related overheamhcurrently while the current leader thread waits on the han-
such as context switching, synchronization, and cache die set. After its event processing completes, an idle follower
herency management, must be minimized. In particuldtread waits its turn to become the leader. If requests arrive
a concurrency model that requires memory to be allocafegter than the available threads can service them, the underly-
dynamically for each request and passed between multilg I/O system can queue events internally until a leader thread
threads will incur significant overhead on conventional multbtecomes available. The leader thread may need to handoff an
processor operating systems [12]. eventto a follower thread if the leader does not have the neces-

— For instance, our example OLTP servers employ a thresaty context to process the event. This scenario is particularly
pool concurrency model based on the “half-sync/half-reactivelevant in high-volume, multi-tier distributed systems, where
variant of the Half-Sync/Half-Async pattern [2]. This modefesults often arrive in a different order than requests were ini-
uses a message queue to decoupleniigvork 1/0O threag tiated. For example, if threads use the Thread-Specific Stor-
which receives client request events, from the poakofker age pattern [22] to reduce lock contention, the thread that pro-
threads which process these events and return responsesésses a result must be the same one that invoked the request.
clients. Unfortunately, this design requires memory to be allo-
cated dynamically, from either the heap or a global pool, in the
network I/O thread so that incoming event requests can be jn-
serted into the message queue. In addition, it requires num6e1r— Structure

ous synchronizations and context switches to insert/remove o .)
the request into/from the message quele. The participants in the Leader/Followers pattern include the

following:

3

Handles and handle sets: Handlesidentify I/O resources, or condition variable, or explicitly, using a collection class.

such as socket connections or open files, which are often ifhe choice depends largely on whether the leader thread must

plemented and managed by an operating systelmarfile set notify a specific follower thread explicitly to perform event

is a collection of I/O handles that can be used to wait for evehtndoffs.

to occur on handles in the set. A handle set returns to its callers For example, each OLTP back-end database server has a

when it is possible to initiate an operation on a handle in tpeol of threads waiting to process transaction requests. At any

set without the operation blocking. point in time, multiple threads in the pool can be processing
— For example, OLTP servers are interested in two typansaction requests and sending results back to their front-end

of events —CONNECTION events ancREAD events — which communication servers. Up to one thread in the pool is the cur-

represent incoming connections and transaction requestsyeatleader, which waits on the handle set for nevoNNECT

spectively. Both front-end and back-end servers maintaim@@dREAD events to arrive. Any remaining threads in the pool

separate connection for each client. Each connection is rage thefollowers which wait on thethread setfor their turn

resented in a server by a separate socket handle. Our OtdBe promoted to become the leader thread or to receive event

servers use theel ect [3] event demultiplexer, which iden-handoffs from the current leadén

tifies handles that have events pending, so that application¥he following figure illustrates the structure of participants

can invoke /O operations on handiesthout blocking call- in the Leader/Followers pattern.

ing threads. However, multiple threads cannot s&ll ect

on the same handle set simultaneously because more thanone | Concrete HANDLE SET

thread will be notified erroneously that I/O events are pending. | Event HANDLER

0 wait_for event()
select()

Event handler: An event handler specifies an interface con- o fl‘iﬁfgsrt—;aﬁgﬁgr()
sisting of one or more hook methods [6, 13]. These methods HANDLE c
represent the set of operations available to process application-
or service-specific events that occur on handle(s) associated \&77 v -
with an event handler. o \ %@% THREAD SET

2\ .
Concrete event handler: Concrete event handlers special- Event HaNbLER \ |synchronizer(s)
ize from the event handler and implement a specific service | handle_event() join ()
that the application offers. Each concrete event handler is as- | &-handic0 e el

sociated with a handle that identifies this service within the
application. In addition, concrete event handlers implement
the hook method(s) responsible for processing events received
through their associated handle. .

— For example, concrete event handlers in front-end oL Dynamics
servers receive and validate remote client requests and for-
ward valid requests to back-end database servers. Likewi¥0 types of collaborations can occur between participants in
concrete event handlers in back-end database servers redBféeader/Followers pattern, depending on whether there is a
transaction requests from front-end servers, read/write the B@undor unboundassociation between I/O handles in a handle
propriate database records to perform the transactions, and¢éand threads, as described below.

turn the results to the front-end servers. Unbound handle/thread association: In this use case, there
Leader/followers thread set: Threads play several roles iHS no fixed association between threads and I/0O handles. Thus,

the Leader/Followers pattern. A leader thread waits for @AY thréad can process any eventthat occurs on any I/O handle

event to occur on a handle set, as which point it processes'th@ handle set. Unbound associations are often used when a
event and performs some type of service. After a threadPRO! Of threads take turns sharing a handle set.

finished processing an event it can wait otheead set Zero ~ — For example, our OLTP back-end database server ex-

or more follower threads can queue up waiting to become @pple illustrates an unbound r_:tssomatlon between threads in
leader or to receive event dispatches from the current lealdi§ PoCl and the I/O handles in the handle set managed by
thread. When the current leader receives an event fromSid €Ct . Concrete event handlers that process request events
handle set it promotes fallower thread to become the newn @ database server can run in any thread. Therefore, there is

leader and then processes the event itself. The follower 3@¢€€d 0 maintain a bound association between 1/O handle

can be maintained implicitly, for example, using a semaph&'&d thread. Inthis case, maintaining an unbound thread/handle

association simplifies back-end server programmiing.

4

Bound handle/thread association: In this use case, eachthe former leader continues to process the event it demulti-
thread is bound to its own I/O handle, which it uses to prplexed or a follower thread processes the event that the leader
cess particular events. Bound associations are often used vihesad handed off to it.

a client application thread waits on a socket handle for a re-

Sponse 1o a two-way request it sent to a sebvier this case 4: Rejoining the leader/followers thread set: To de-
P yreq) " multiplex the 1/0 handles in a handle set, a thread must first

event on this 1/O handle in a specific threae,, the threado(?gﬁom the Ieader/followgrs t.hread set. This action oftgn oc-
that sent the original request. curs when event processing is completed and a thread is avail-
. able to process another event. A thread can become the leader

— For example, threads in our OLTP front-end communj mediately if there is no current leader. Otherwise, the thread

cation server forward incoming client requests to a speci &comes a follower and must wait until it is promoted by a
back-end server chosen to process the request. To re

the consumption of operating system resources in large-scale

multi-tier OLTP systems, worker threads in front-end serverThe following figure illustrates the collaborations among
processes can communicate to back-end servers ouifty participants in the Leader/Followers pattern.

plexed connectiongll]. After a request is sent, the worker

thread waits for a result to return on a multiplexed conng :ceaper : FOLLOWER : THREAD : HANDLE : CONCRETE
tion to the back-end server. In this case, maintaining a bot ““‘IEA" “*“IE"DS S'I‘“ S’I" EVENT HANDLER
thread/handle association simplifies front-end server program- join0 - |
ming and minimizes unnecessary context management over- “f:"fm ”.Ew:g“"“‘ n
H H ‘wait_for_even!
head for transaction processing [14]. T join0 T select)
:'WAIT

Given the two types of associations described above, the fol-
lowing collaborations occur in the Leader/Followers pattern.

EVENT ARRIVES

promote_new_leader()

BECOME NEW LEADER

1: Leader demultiplexing: The leader thread waits for

|
|
|
|
|
|
|
|
|
|
handle_event() [I
|
|
|
|

an event to occur on the handle set. .
wait_for_event(
2: Follower promotion: There are two cases, depending join) : .
on which type of thread/handle associations are used:] | | [« warr |

e For unboundthread/handle associations, after the leader
thread has demultiplexed an event, it chooses a follower thread
to bec_ome_t_he new Ieadgr usir_lg_ one of the promotion protocolit any point in time, a thread participating in the
described inmplementatioractivity 4. Leader/Followers pattern is in one of following three states:

e For boundthread/handle associations, after the leader de-

multiplexes one event, it checks the 1/0 handle associated witlt Leader: A thread in this state is currently the leader,
the event to determine which thread is responsible for proceaiting for an event to occur on the handle set. A thread in
ing it. If the leader thread discovers that it is responsible for tH I€ader state can transition into the processing state when it
event, it promotes a follower thread to become the new leatR§€IvVeS an event.

using the same protocols used for unbound thread/handle a3-Processing: A thread in this state can execute concur-

sociations. Conversely, if the event is intended for anothgf,y with the leader thread and any other threads that are in
thread, the leader must handoff the event to the designajgdnocessing state. A thread in the processing state typically
follower thread. This follower thread then unregisters itsglfynsitions to the follower state, though it can transition to the

from the leader/followers thread set and processes the inCyer state immediately if there is no current leader thread
ing event concurrently. Meanwhile, the current leader thregflap, it finishes its processing.

continues to wait for another event to occur on the handle set.
e Follower: A thread in this state waits in the follow

3: Event processing: For unbound handle/thread assdhread set. A follower thread can transition to the leader state
ciations, the former leader thread concurrently processesien promoted by the current leader or it can move directly
event it demultiplexed after promoting a follower to becomnte the processing state if it receives an event handoff from the
the new leader. For bound handle/thread associations, eitbader.

2Note that multiple threads can be bound to the same /O hahdtm- The figure below illustrates the states and the valid transi-
nections are multiplexed. tions in the Leader/Followers pattern.

o Iterative handle set: This type of handle set returns to

EVENT its caller when it is possible to initiate an operation ame
HANDOFF or morehandles in the set without the operation(s) blocking.
Although an iterative handle set can return multiple handles
in a single call, it cannot be called simultaneously by mul-
tiple threads of control. For example, teel ect [3] and

pol | [4] functions only support iterative handle sets. Thus, a
pool of threads cannot usel ect or pol | to demultiplex
events on the same handle set.

PROCESSING

PROCESSING
COMPLETED;
NO LEADER
AVAILABLE

LEADING

PROCESSING
COMPLETED;
LEADER
AVAILABLE

FOLLOWING

NEW LEADER

1.3. Determine the consequences of selecting certain
I/O handle and handle set mechanisms: In general, the
8 Implementation Leader/Followers pattern is used to prevent multiple threads
from corrupting or losing data erroneously, such as invoking
The following activities can be used to implement tHe€ads on a shared TCP bytestream socket handle concur-
Leader/Followers pattern. rently or invokingsel ect on a shared handle set concur-
rently. However, some applications need not guard against
1. Choose the I/0 handle and handle set mechanismsA these use cases. In particular, if the I/O handle and handle
handle set is a collection of /O handles that can be useds&l mechanisms are both concurrent, many of the remaining
wait for events to occur on handles in the set. Developers fiplementation activities can be skipped.
ten choose the 1/0 handles and handle set mechanisms pr&or instance, certain network programming APIs, such as
vided by an operating system, rather than implementing th&f@P support in Sockets, support concurrent multiple 1/0
from scratch. The following sub-activities can be performegperations on a shared handle. Thus, a complete mes-
to choose the I/O handle and handle set mechanisms. sage is always read by one thread or another, without risk
of partial r eads or interleaved data corruption. Like-
1.1. Determine the type of I/O handle: There are two gen-wise, certain handle set mechanisms, such as the Win32
eral types of I/O handles: Vi t For Mul ti pl ehj ect s function [5], return a single
) handle per call, which allows them to be called concurrently
e Concurrent handles: This type of handle allows mul-,y 5 hool of thread3.In these situations, it may be possible to
tiple threads to access the handle concurrently without i”CHﬁ‘plement the Leader/Followers pattern by simply using the
ring race conditions that can corrupt, loose, or scramble $jgrating system’s thread scheduler to (de)multiplex threads,
data [3]. For instance, the Socket AP for record-oriented pligsnde sets, and handles robustly. Such implementations can
tocols, such as UDP, allows multiple threads to invokad skijp implementatioractivity 2. Moreover, if inimplementa-
orwr i t e operations on the same handle concurrently. tjon activity 3 it is determined that the threads are unbound,
o [terative handles: This type of handle requires multiplethe.re. 1S NO need to implement any subsequent implementation
. . activities.
threads to access the handle iteratively because concurrent ac-
cess will cause race conditions. For instance, the Socket AP}. Encapsulate the lower-level handle set mechanisms
for bytestream-oriented protocols, such as TCP, does not giéh s higher-level patterns (optional): One way to imple-
antee that ead orwr i t e operations are atomic. Thus, if I/Oment the Leader/Followers pattern is to use native operating
operations on the socket are not serialized properly, corrupt¥gtem handle set event demultiplexing mechanisms, such as
or lost data can result. sel ect andWai t For Mul ti pl eoj ects. Conversely,
developers can leverage higher-level patterns, such as Reac-
1.2. Determine the type of handle set: There are two gen- tor [15], Proactor [10], and Wrapper Facade [16]. These pat-
eral types of handle sets: terns simplify the Leader/Followers implementation and re-
duce the effort needed to address the accidental complexities
e Concurrent handle set: This type of handle set can beyf programming to low-level native handle set mechanisms di-
called concurrentlye.g, by a pool of threads. When it isrectly. Moreover, applying higher-level patterns makes it eas-
possible to initiate an operation @mehandle without block- jer to decouple the I/0 and demultiplexing aspects of a system
ing the Operation, a concurrent handle set returns that hﬁam its concurrency modeL thereby reducing code dup”ca_
dle to one of its Calling threads. For example, the Wln:'h%n and maintenance effort.
Vai t For Ml ti p| eOoj ect S function [5] supports Cor-]- SHowever,Wai t For Mul t i pl eObj ect s does not by itself address the
current handle sets by aII_owmg a pOOI of threads to wait Bn)blem of nétifying a particular thread when an event islakte.
the same set of handles simultaneously.

— For example, in our OLTP server example, 1/0O eventsactivated in the handle set, which allows the leader thread to
must be demultiplexed to concrete event handlers, which et for events to occur on it and any other activated handles
dispatched according to which 1/0 handle received the eveantthe set.

The Reactor pattern [15] supports this activity, thereby simpli-— In our OLTP example, this handle (de)activation protocol
fying the implementation of the Leader/Followers pattern. ls provided by the reactor implementation, as follows:
the context of the Leader/Followers pattern, however, a reactor
. . . tlass Reactor {
only dispatchesneconcrete event handler during its demupypi j c:
tiplexing phase, regardless of how many handles have eventg Tenporarily renove the <Event_Handl er> fromthe
/1 internal handle set.

pending on them. The following C++ class illustrates the in-; ' suspend_handl er (Event Handl er *,

terface of our Reactor pattern implementation: Event _Type et);
/! Restore a previously suspended <Event _Handl er >
typedef unsigned int Event_Types; /1 to the internal handle set.
enum { int resume_handl er (Event_Handl er *,
/1 Types of indication events handl ed by the Event _Type et);

/'l <Reactor>. These values are powers of two so
/1 their bits can be "or’d" together efficiently.

ACCEPT_EVENT = 01, // ACCEPT_EVENT is an 0
READ_EVENT = 01, // alias for READ_EVENT.
WRI TE_EVENT = 02, TIMEOUT_EVENT = 04, 3. Implement the thread set: To promote a follower thread

. SI GNAL_EVENT = 010, CGLOSE_EVENT = 020 to the leader role, as well as determine which thread is the cur-
' rent leader, an implementation of the Leader/Followers pat-
cl ass Reactor { tern must manage a set of threads. The two general strategies

public: . . N i
/] Register an <Event Handler> of a for_lmplementmg thread setsunboundandbound- are de
/1 particular <Event_Type>. scribed below.

int register_handl er (Event_Handl er *eh,

Event Type et): ¢ Unbound thread set: In this design, all follower threads

/| Renpbve an <Event _Handl er> of a in the set simply wait on a single synchronizer, such as a

Il particular <Event_Type>. semaphore or condition variable. This strategy is designed for

int remove_handl er (Eﬁﬂi —;'3;2' gtr) veh, unbound handle/thread associations, where it does not matter
/1 Entry point into the reactive event |oop. which thread processes an event, as long as multiple threads
_int handle_events (Time_value *timeout = 0); sharing a handle set are serialized.

b In certain applications, the leader thread need not handoff

Developers provide concrete implementations of tRYENS to specific follower threads. For example, a “pure”

Event _Handl er interface below: server that receives requests from the network gnd sends re-
sponses through the same connection can assign any thread
class Event _Handl er { to process each new event. In this case, only threads en-
pulblll E{iook method di spat ched by a <Reactor> to gaged in server processing must participate in the unb_ound
/1 handle events of a particul ar type. leader/followers thread set. These requirements can yield a
virtual int handle_event (HANDLE, smaller, simpler Leader/Followers pattern implementations.
Bvent_Type et) =0 — For example, the unbound thread set class shown below
/1 Hook method returns the |/O <HANDLE>. can be used for the back-end database servers in our OLTP
virtual HANDLE get handl e (void) const = 0; example,

H
cl ass Unbound_Thread_Set {

O publ i c:

2. Implement a protocol for temporarily (de)activating Application threads invoke theoi n method to wait to de-
handles in a handle set: When an event arrives, the leademultiplex and dispatch new 1/O events.

thread deactivates the handle from consideration in the han-, join (Time Value *timeout = 0):

dle set temporarily, promotes a follower thread to become the

new leader, and continues to process the event. Temporartys method blocks until the application terminates or a time-
deactivating the handle from the handle set avoids race comdit occurs. Implementation activityd illustrates how this
tions that could occur between the time when a new leademsthod can be defined.

selected and the event is processed. If the new leader waits orhe pr onot e_new.| eader method is invoked by server
the handle set during this interval, it could falsely dispatch thencrete event handlers before they perform application-
event a second time. After the eventis processed, the handspiscific event processing.

int pronote_new | eader (void); — For example, below we illustrate how a bound handle
set implementation of the Leader/Followers pattern can be

This method promotes one of the follower threads in the Seijgad for the front-end communication servers in our OLTP
become the new Ieadehnplementation activitﬁ illustrates examp|e_ We focus on how a server can demu|tip|ex events
how this method can be defined. on a single iterative handle, which threads in front-end com-

The constructor caches the reactor passed to it. This reagi@hication servers use to wait for responses from back-end
implementation usesel ect , which only supports iterative data servers. This example complements the implementation
handle sets. Thereforenbound_Handl e_Set is responsi- shown in the unbound thread set above, where we illustrated
ble for allowing multiple threads to cadlel ect on the reac- how to use the Leader/Followers pattern to demultiplex an it-
tor’'s handle set serially. erativehandle set

Unbound_Thr ead_Set (Reactor *reactor = We first define aThr ead_Cont ext class that is nested

Reactor::instance ()): within theBound_Thr ead_Set class:

react or react or
- () cl ass Bound_Thread_Set {

. blic:
By default, ourunbound_Thr ead_Set uses the react0r5|n-puc| 'ags Thread_Cont ext {
gleton, though this choice can be overridden easily by an appubl ic

pllcatlon /'l The response we are waiting for.
. int request_id (void) const;

The implementation obinbound_Thr ead_Set uses the

following data members: /1 Returns true when response is received.
bool response_received (void);

private: voi d response_recei ved (bool);

/] Pointer to the event denultipl exer/dispatcher. o _

Reactor *reactor_; /1 The condition the thread waits on.

Thread_Condi ti on *condition (void);
/1 The thread id of the | eader thread, which is

/1 set to NO CURRENT LEADER if there is no |eader. private:
Thread_l d | eader _thread_; /1 ... data nmenmbers omitted for brevity ...

}s

/1 Follower threads wait on this condition

/1 variable until they are pronoted to | eader. Thr ead_Cont ext provides a separate condition variable
Thread_Condi tion fol I owers_condition_; synchronizer for each waiting thread, which allows a leader
/] Serialize access to our internal state. thread to notify the appropriate follower thread when its re-
Thread_Mitex nutex_; sponse is received. Thus, a thread that wants to send a re-
b guest uses the following method to register its associated

N h inal dit bl hroni is sh Thr ead_Cont ext with the bound thread set to inform the
ote that a single condition variable synchronizer is shar that it expects a response.

by all threads in this set. Moreover, the implementation o
the Unbound_Handl e_Set is designed using the Monitor int expecting_response (Thread_Context *context);

Object pattern [2]0] This registration must be performéeforethe thread sends

¢ Bound thread set: In this design, each follower threache request. Otherwise, the response could arrive before the
waits on its own synchronizer. This strategy is well-suited fbbund thread set is informed which threads are waiting for it.
bound handle/thread associations, where a leader thread mafter the request is sent, the client thread invokesnhiet
need to handoff 1/O events to specific follower threads. Farethod defined in thBound_Thr ead_Set class to wait for
example, a reply received over a multiplexed connection the response:
the leader thread in a front-end OLTP communication server

nt wait (Thread_Context *context) {

may belong to one of the follower threads. /1 step (a): wait as a follower or becone a | eader

In addition, a bound thread set may be necessary if an appli- // step (b): dispatch event to bound thread
cation multiplexes connections among two or more threads, in // step (¢): elect new | eader
which case the bound thread set can serialize access to the mul-
tiplexed connection. This multiplexed design minimizes thehe definition of steps (a), (b) and (c) in thai t method of
number of network connections used by the front-end ser®sund_Thr ead_Set are illustrated inmplementation activ-
However, front-end server threads must now serialize accgig$ 4, 5, and 6, respectively.
to the connection when sending and receiving over a multl-
plexed connection to avoid corrupting the request and reBF)éound Thread_Set (HANDLE nutex_stream handl e)
data, respectively. : muxed_stream (nuxed_stream handle) {}

The implementation oBound_Thr ead_Set uses the fol-
lowing data members:

private:
/'l Wapper facade for the the nultipl exed
/] connection stream
SOCK_St r eam nuxed_stream ;

/1 The thread id of the | eader thread.
/1l Set to NO CURRENT_LEADER if there
/1 is no current |eader.

Thread_I d | eader _t hread_;

/1 The set of follower threads indexed by

/'l the response id.

typedef std::nmap<int, Thread_Context *>
Fol | ower _Thr eads;

Fol | ower _Threads fol | ower_t hreads;

/'l Serialize access to our internal state.

Thread_Mut ex nmutex_;

b

By comparing the data membersBfund_Thr ead_Set and

Unbound_Thr ead_Set , it is clear that the primary differ-

ences are thdthbound_Thr ead_Set contains arexplicit
collection of threads, represented by ffier ead_Cont ext

objects, and a multiplexedSOCK_St r eam wrapper fa-
cade object.

followers_condition_.wait (timeout);

/1 Become | eader.
| eader _thread_ = Thread::self ();

/'l Leave nonitor tenporarily to allow other
/'l follower threads to join the set.
guard. rel ease ();

/1 Run the reactor to dispatch the <handl e_event>
/1 hook method associated with the next event.
if (reactor_->handl e_events () -1)
return;
/1 Reenter nmonitor to serialize the test
/'l for <leader_thread_> in the while | oop.
guard. acquire ();

}

}

Note how the thread alternates between its role as a leader and
a follower. In the first part of the loop, the thread waits until
it becomes a leader. After becoming the leader, it waits for
I/O events. After dispatching an I/O event via its reactor, it
re-assumes a follower role. This process continues until the
application terminates or a timeout occurs.

Before the thread can process the event it must promote a
new leader to handle any other incoming I/O events. The fol-

In Contrast, the collection of threads in t"fé/\”ng concrete event hand|el’ iS reSponSible for |n|t|at|ng th|S

Unbound_Thr ead_Set is implicit, namely, the queue oftask, as follows:

waiting threads blocked on its condition variable. Thus, eagh.cc | r gvent Handl er :

public Event _Handl er {

follower thread can wait on a separate condition variable unili vat e:
they are promoted to become the leader thread or receive dri ! nstance of an <Unbound_Thr ead_Set >.

event handoff from the current leadgt.

4. Implement a protocol to allow threads to initially join
(and rejoin) the leader/followers thread set: This protocol

Unbounded_Thr ead_Set unbound_t hread_set _;
...
public:
Hook met hod di spatched by a <Reactor> to
/1 handl e events of a particular type.

is used when event processing is completed and a thread igrtual int handl e_event

available to process another event. If no leader thread is avail-
able, a follower thread can become the leader immediately. ynpound_t hread _set - >pr onot e_new_| eader ():

(HANDLE, Event_Type et) {

unbound_t hread_set _->suspend_handl er (this, et);

If a leader thread is already available, a thread can become a

follower by waiting on the thread set. The protocol implemen-
tation depends on which strategy — unbound or bound —is used ynpound_t hread_set - >resume_handl er (this, et):

to implement thread sets, as described below.

/1 ...application-specific event processing code...

}

¢ Unbound thread set: For unbound thread/handle asso}—;
ciations, the join protocol can be implemented by simply call-

ingwai t on the condition variable used by the thread set.

— For example, our back-end database servers can im%Ie—

ment thej oi n method of theUnbound_Thr ead_Set as
follows:

int Unbound_Thread_Set::join (Tinme_Value *tinmeout)
{

/1 Use Scoped Locking idiomto acquire nutex

/1 autonatically in the constructor.

Quar d<Thr ead_Mut ex> guard (nutex_);

for (;;) {
while (leader_thread_ != NO CURRENT_ LEADER)
/1 Sleep and rel ease <nmutex> atomically.

For bound thread/handle associa-

ons, the follower must first add its condition variable to the
map in the thread set and then cadli t on it. This allows
the leader to use the Specific Notification pattern [17, 18] if it
must handoff an event to a specific follower thread.

— For example, our front-end communication servers must

maintain a bound set of follower threads. This set is updated
when a new leader is promoted, as follows:

e Bound thread set:

int
Bound_Thread_Set::wait (Thread_Context *context)
{

/]l Step (a): wait as a follower or becone a | eader. /Il ... Leader code onmitted ...

/1 Use Scoped Locking idiomto acquire nutex /1 Parse the response header and
/1 autonmatically in the constructor. /'l get the response id.
Guar d<Thr ead_Mit ex> guard (rutex_); int response_id = parse_header (buffer);
while (|l eader_thread_ != NO CURRENT_LEADER /1l Find the correct thread.
&& ! cont ext->response_received ()) { Fol lower::iterator i =
[/l There is a leader, wait as a follower... follower_threads_.find (response_id);
I/ Insert the context into the thread set. /1 W are only interested in the val ue of
int id = context->response_id (); /'l the <key, value> pair of the STL map.
follower_threads_[id] = context; Thr ead_Cont ext *desti nati on_cont ext
= (*i).second;
/1l Go to sleep and rel ease <nutex> atomically. follower_threads_.erase (i);

context->condition ()->wait ();
/1 Leave nonitor tenporarily to allow other

/1 The response has been received, so return. /1 follower threads to join the set.
i f (context->response_received ()) guard. rel ease ();
return O; /! Read response into pre-allocated buffers.
desti nati on_cont ext - >r ead_r esponse_body (handl e);
/'l No | eader, becomne the |eader. /'l Reenter nonitor.
for (leader_thread = Thread::self (); guard. acquire ();
I cont ext - >response_recei ved ();
) { /1 Notify the condition variable to
char buff er [HEADER_SI ZE] ; /1 wake up the waiting thread.
desti nati on_cont ext - >r esponse_recei ved (true);
/'l Leave nonitor tenporarily to allow other destination_context->condition ()->notify ();
/1 follower threads to join the set. }
guard.rel ease (); /1l ... nore below ...
if (nuxed_stream.recv (handle, buffer, }
HEADER SI ZE) == -1)
return -1; 0
// Reenter nonitor.
/gfard' acquire (); 6. Implement the follower promotion protocol: Immedi-
... nmore below ...

ately after a leader thread demultiplexes an event, but before it
After the thread is promoted to the leader role, the thread mpgacesses the event, it must promote a follower thread to be-

perform all its 1/O operations, waiting until its own event isome the new leader. The following protocols can be used to
received determine which follower thread to promote.

5. Implement the event handoff mechanism: Unbound e FIFO order: A straightforward protocol is to promote
handle/thread associations do not require event handoffs the-follower threads ifirst-in, first-out(FIFO) order. This pro-
tween leader and follower threads. For bound handle/thréadol can be implemented using a native operating system syn-
associations, however, the leader thread must be preparethtonization object, such as a semaphore, if it queues waiting
handoff an event to a designated follower thread. The Splereads in FIFO order. The benefits of the FIFO protocol for
cific Notification pattern [17, 18] can be used to implemehbund thread/handle associations are most apparent when the
this handoff scheme. Each follower thread has its own syorder of client requests matches the order of server responses.
chronizer, such as a semaphore or condition variable, and drs#tis case, no unnecessary event handoffs need be performed
of these synchronizers is maintained by the thread set. Whewcause the response will be handled by the leader, thereby
an event occurs, the leader thread can locate and use therapimizing context switching and synchronization overhead.
propriate synchronizer to notify a specific follower thread. =~ One drawback with the FIFO promotion protocol, however,

— In our OLTP example, front-end communication serveis that the thread that is promoted next is the thread that has
can use the following protocol to handoff an event to the threlaglen waiting théongest thereby minimizing CPU cache affin-

designated to process the event: ity [9, 19]. Thus, it is likely that state information, such as
i nt translation lookaside buffers, register windows, instructions,
Bound_Thread_Set::wait (Thread Context *context) and data, residing within the CPU cache for this thread will
{ have been flushed.

/1 ... Follower code onmtted ... L .

_ e LIFO order: In many applications, it does not matter
/1 Step (b): dispatch event to bound thread. which of the follower threads is promoted next because all
for (leader_thread_ = Thread::self (); « . " .
!context - >response_received (); threads are “equivalent peers.” In this case, the leader thread
) { can promote follower threads last-in, first-out(LIFO) order.

10

The LIFO protocol maximizes CPU cache affinity by ensuring// ... details onmitted ...
that the thread waiting thehortesttime is promoted first [5],
. . « . /1 Step (c): Pronpte a new | eader.
which is an example of the “Fresh Work Before Stale” pat- o, | ower Threads::iterator i =
tern [20]. Implementing a LIFO promotion protocol requiresa fol | ower _threads_. begin ();
more complex data structure, however, such as a stack of wait{ (i == follower_threads_.end ())
. return 0; // No followers, just return.
ing threads, rather than just using a native operating system

synchronization object, such as a semaphore. Thr ead_Cont ext *new_| eader _cont ext
¢ Priority order: In some applications, particularly real- | e;dgrl_% hfigﬁfd; NO_CURRENT _LEADER:
time applications [11], threads may run at different priorities.// Renove this followver...
In this case, therefore, it may be necessary to promote fol;f" ' _c"_"'e;ﬁghc\gsgsi—{ eLSsgs('n)ew y promoted | eader.
lower threads according to their priority. This protocol can new | eader cont ext - >condi tion ()->notify ();
be implemented using some type of priority queue, such as a
heap [21]. Although this protocol is more complex than the
FIFO and LIFO protocols, it may be necessary to promote fol-{]
lower threads according to their priorities to minimize priority
inversion [11].

« Implementation-defined order: This orderingis most 9 Example Resolved
common when implementing unbound handle sets using op-
erating system synchronizers, such as semaphores or @un- OLTP system can apply the Leader/Followers pattern
dition variables, which often dispatch waiting threads in dor front-end communication servers and back-end database
implementation-defined order. The advantage of this protogelvers. Below, we illustrate how this pattern can be applied
is that it maps onto native operating system synchronizersfef-both use cases.
ficiently.

— For example, back-end database servers could use@dP back-end database servers: These servers can use
following simple protocol to promote follower thread in whatthe unbound handle set version of the Leader/Followers pat-
ever order they are queued by an operating system conditiem to implement a thread pool that demultiplexes 1/O events
variable: efficiently. As illustrated in the following figure, there is no

designated network I/O thread. Instead, a pool of threads
int Unbound_Thread_Set: : pronpte_new | eader (void)
{
/'l Use Scoped Locking idiomto acquire nutex
/1 automatically in the constructor
Quar d<Thr ead_Mut ex> guard (nutex_);

if (leader_thread_ != Thread::self ())
return -1; // Only | eader thread can invoke this.

| eader _thread_ = NO_CURRENT_LEADER,
followers_condition_.notify ();
/! Release nmutex automatically in destructor.

}

Thepr onot e_new.| eader method is invoked by concrete) L
event handlers before they start processing a request. is pre-allocated during database server initialization. These
-) o] threads are not bound to any particular 1/0 handle. Thus, all
« Specific order: This ordering is common when implehreads in this pool take turns playing the role of the network
menting a bound thread set, where it is necessary to hangeif thread by having the current leader thresel ect on
events to a particular thread. In this case, the protocol impjeshared handle set of sockets connected to OLTP front-end
mentation more complex because it must maintain a collectigfyyers.

of synchronizers. _ When a request event arrives, the leader thread temporarily
— For example, this protocol can be implemented as partf, -tjyates the socket handle from consideratiareinect 's

the Bound._Thr ea&d-Set s wai t method to promote a NeWpangle set, promotes a follower thread to become the new
leader, as follows: leader, and continues to process the request event. The former
int Bound_Thread_Set::wait (Thread_Context *context) |eader thread then reads the requestinto a buffer that resides
{ in the run-time stack or is allocated using the Thread-Specific

11

Storage pattern [22].All processing of the data occurs in theL O Variants
former leader thread; thus, no further context switching, syn-
chronization, or data movement is necessary. After procesdi®jaxing serialization constraints: There are platforms
completes, the former leader thread becomes a follower avitere multiple leader threads can wait simultaneously on a
returns to the thread pool. Moreover, the socket handle it wendle set. For example, a thread pool can take advantage
processing is reactivated in the handle set sogkatect can of multi-processor hardware to perform useful computations
wait for 1/0 events to occur on it, along with other sockets Mhile other threads wait for I/O events. In such cases, the con-
the handle set. ventional Leader/Followers pattern implementation serializes

In our OLTP back-end database server example, the currtgrﬁ?ad access to handle sets,_wh|ch can overly restn_ct apph_ca—
tion concurrency. To relax this constrain, the following vari-
leader thread promotes a follower thread to become the ne .

) . nts of the Leader/Followers pattern can allow multiple leader

leader after it demultiplexes a request event. The new Ieaﬁ]er . . .

. A . reads to be active simultaneously:
waits on the synchronous event demultiplexer, while all for-
mer leader threads process their request events concurrently.Leader/followers per multiple handle sets: This vari-
All remaining follower threads queue up on the synchronizent applies the conventional Leader/Followers implementation
waiting their turn to be promoted to the leader. If requests &-multiple handle sets separately. For instance, each thread is
rive when all threads are busy, they will be queued in soclessigned a designated handle set. This variant is particularly
handles until a thread in the pool is available to execute the ugeful in applications where multiple handle sets are available.
quests. When the former leader finishes processing its requdstyever, this approach limits a thread to use a specific handle
it sends the result to the front-end and re-queues itself into ga.

follower thread set.
¢ Multiple leaders and multiple followers: In this vari-

ant, the pattern is extended to support multiple simultaneous

leader threads, where any of the leader threads can wait on any
OLTP front-end communication servers: Front-end com- handle set. When a thread re-joins the leaders/followers thread
munication servers can use the bound handle set version ofsibigit checks if a leader is associated with every handle set al-
Leader/Follower pattern to wait for both requests from remateady. If there is a handle set without a leader, the re-joining
clients and responses from back-end servers. This designtbasad can become the leader of that handle set immediately.
be structured much like the back-end servers described ab?—?’%rid thread associations: Some applications use hy-
The main difference is that the front-end server threads %réd desians that im Iemen.t both bouﬁz and unbound zan-
“bound” to particular I/O handles once they forward a request 9 - Implem: o
to a back-end server. For examole. thev can wait on a co ogﬁ/thread associations simultaneously. Likewise, some 1/O
) : : ' ple, hey "Nandles in an application may have dedicated threads to han-
tion variable until the response is received. After the response certain events, whereas other /O handles can be processed
is received, the front-end server uses the request id to han g%any thread Th’us one variant of the Leader/Follower pat
the response by locating the correct condition variable and no- NN ' : . . i
tifying the designated waiting thread. This thread then wakPem uses its event handoff mechanism to notify certain subsets

ofthreads, according to the 1/0 handle on which event activity

up and processes the response. OCCUrS

Using the Leader/Followers pattern is more scalable tharfFor example, the OLTP front-end communication server
simply blocking in ar ead on the socket handle because th@ay have multiple threads using the Leader/Followers pattern
same socket handle can be shared between multiple fregtwait for new request events from clients. Likewise, it will
end threads. This connection multiplexing conserves limitgo have threads waiting for responses to requests they in-
socket handle resources in the server. Moreover, if all thregd&ed on back-end servers. In fact, threads play both roles
are waiting for responses, the server will not dead-lock hgver their lifetime, starting as threads to dispatch new incom-
cause it can use one of the waiting threads to process nei/requests, issuing requests to the back-end servers to satisfy
incoming requests from remote clients. Avoiding deadlogke client application requirements and then waiting for the re-
is particularly important in multi-tier systems where servegponses from the back-end server.

callback to clients to obtain additional information, such as . _
security certificates. Hybrid client/servers: In complex systems, where peer ap-

plications play both client and server roles, it is important that
the communication infrastructure process incoming requests
4In contrast, the half-sync/half-reactive thread pool nalisicate each re- while waiting for one or more r.eP“eS' OthpfrWISe the system
quest dynamically from a shared heap because the requesisecbbetween Can _dead—lock because one client has all its threads blocked
threads. waiting for responses.

12

In this variant, the binding of threads and handles chandasi cabs are the threads, with the first taxi cab in line being
dynamically, for example, initially a thread may be unbounthe leader and the remaining taxi cabs being the followers.
during processing of an incoming request the application tékewise, passengers arriving at the taxi stand constitute the
quires services provided by other peers in the distributed s¥srents’ that must be demultiplexed to the cabs.
tem. In that case the unbound thread dispatches new requests
while executing application code, effectively binding itself to
the handle used to send the request. Later when the respdnide See Also
arrives and the thread completes the original request it be-
comes unbound again. The Proactor pattern [10] can be used as an alternative to the

In such an implementation tigound_Thr ead_Set can- Leader/Followers pattern when an operating system supports
not simply demultiplex events for a single handle. As with tr&synchronous I/O efficiently.

Unbound_Thr ead_Set class, the unbound version must be The Half-Sync/Half-Async pattern [2] is an alternative to
extended to support a full handle set. In particulamiet () the Leader/Followers pattern when there are additional syn-
method in Step 4 cannot perform the I/O directly. Insteatironization or ordering constraints that must be addressed
theEvent _Handl er performs all the I/O, and it informs thebefore requests can be processed by threads in the pool.
Bound_Thr ead_Set to dispatch the message to the correct
thread.

13 Consequences

11 Known Uses The Leader/Followers pattern provides the followbemnefits

ACE Thread Pool Reactor framework [23]. The ACE Performance (_enhancements: Compared With the_ half-
framework provides an object-oriented framework implemeRync/half-reactive thread pool approach described irBhe
tation of the Leader/Followers pattern called the “thread pcjadpplesectlon, the Leader/Followers pattern can improve per-
reactor” (ACE_TP_React or) to demultiplex events among d°rmance as follows:
pool of threads. When using a thread pool reactor, an applica-
tion pre-spawns fixednumber of threads. When these threads ®
invoke ACE_TP_React or's handl e_event s method, one
thread will become the leader and wait for an event. Threads
are considered unbound by the ACE thread pool reactor frame-
work. Thus, once an eventis received the leader thread handles
the event and promotes an arbitrary thread to become the next It minimizes locking overhead by not exchanging data be-
leader. tween threads, thereby reducing thread synchronization.
CORBA ORBs. Many CORBA implementations, includ- In bound handle/thread associations, the leader thread
ing Chorus COOL ORB [11] and TAO [24] use the Lead- dispatches the event based on the I/O handle. The request
ers/Followers pattern for both their client-side connection eventis then read from the handle by the follower thread

It enhances CPU cache affinity and eliminates unbound
allocation and data buffer sharing between threads by
reading the request into buffer space allocated on the
stack of the leader or by using the Thread-Specific Stor-
age pattern [22] to allocate memory.

model and the server-side concurrency model. processing the event. In unbound associations, the leader
Web servers The JAWS Web server [1] uses the thread itself reads the request event from the handle and
Leader/Followers thread pool model... processes it.

Transaction monitors. Popular transaction monitors, such § |+ can minimize priority inversion because no extra
as Tuxedo, have traditionally operated on a per-process basis, queueing is introduced in the server. When combined
i.e, transactions are always associated with a process. Con- \ it real-time 1/O subsystems [25], the Leader/Followers
temporary OLTP systems demand high-performance and scal- 54 pool model can significantly reduce sources of

ab|I|'ty, howeyer, and performing tra'nsactlons On a per-process non_determinism in server request processing.
basis may fail to meet these requirements. Therefore, next-

generation transaction services, such as the CORBA Transa¢- It does not require a context switch to handle each event,
tion Service [14], employ bound associations between threads réducing the event dispatching latency. Note that pro-
and transactions. The Leader/Followers pattern supports this Moting a follower thread to fulfill the leader role requires
architecture with bound associations between threads and 1/0 & context switch. If two events arrive simultaneously this
handles. increases the dispatching latency for the second event, but

Taxi stands The Leader/Followers pattern is used in ev- itiS noworse than half-sync/half-reactive thread poolim-
eryday life to organize many airport taxi stands. In this case, Plementations.

13

Programming simplicity: The Leader/Follower pattern [6] E. Gamma, R. Helm, R. Johnson, and J. Viissid&ssign Patterns: El-

simplifies the programming of concurrency models where gments Cigggusab'e Object-Oriented Softwieading, MA: Addison-
. . esley, .

multiple threads can receive requests, process responses, and es'ey

demultinlex connections usina a shared handle set [7] D.C. Schmidt, “Mc_)nitor Object — an Object Behavior Pattéor Con-
p g ’ current Programming C++ Report, vol. 12, May 2000.

However, the Leader/Followers pattern has the following (s8] 1. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroand
abilities: A. Gokhale, “Applying Optimization Patterns to the DesighReal-

. . . time ORBs,” inProceedings of th§!” Conference on Object-Oriented
Implementation complexity: The advanced variants of the Technologies and SystenfSan Diego, CA), USENIX, May 1999.

Leader/Followers pattern are harder to implement than hafbj J. D. Salehi, J. F. Kurose, and D. Towsley, “The Effeatiess of
sync/half-reactive thread pools. In particular, when used as a Affinity-Based Scheduling in Multiprocessor Networkingy IEEE IN-
multi-threaded connection multiplexer, the Leader/Followers TSQ%OM (San Francisco, USA), IEEE Computer Society Press, Mar.
pattern must main_tain a set of follower threads waiting to prﬁb] |. Pyarali, T. H. Harrison, D. C. Schmidt, and T. D. JardProactor —
cess requests. This set must be updated when a follower threadan Architectural Pattern for Demultiplexing and DispatuiHandlers

is promoted to a leader and when a thread rejoins the set of fol- for Asynchronous Events,” ifPattern Languages of Program Design
lower threads. All those operations can happen concurrently, (& Foote. N. Harrison, and H. Rohnert, eds.), Reading, Médison-

i dictable order. thus. the impl tati " Wesley, 1999.
in an unpredictable order, thus, the implementation muSt be "< i s \ineee o brores.Gaitan, and A, GliklfSoftware

efficient, while ensuring operation atomicity. Architectures for Reducing Priority Inversion and Nonetatinism in

hilityg - « Real-time Object Request Brokerdgurnal of Real-time Systems, spe-
Lack of flexibility: ~ Thread pool models based on the “half- cial issue on Real-time Computing in the Age of the Web anthtee

sync/half-reactive” variant of the Half-Sync/Half-Async pat- net To appear 2000.
tern [2] allow events in the queueing layer to be discard@d] p. c. Schmidt and T. Suda, “Measuring the PerformancePafal-
or re-prioritized. Similarly, the system can maintain multi- lel Message-based Process Architectures Plioceedings of the Con-

. ference on Computer Communications (INFOCQNBoston, MA),
ple s((japarate queues se:jwc&_ed _by _threa(_js att) different priorities bp. 624633, IEEE, April 1995.
tc_) reduce C_on,t?ntlon and priority inversion between event 1%5 W. Pree,Design Patterns for Object-Oriented Software Development
different priorities. In the Leader/Followers model, however, * Reading, MA: Addison-Wesley, 1994.
itis harder to discard or reorder events because there is NO£- object Management Groufiransaction Services SpecificatioBMG
plicit queue. One way to provide this functionality is to offer ~ Document formal/97-12-17 ed., December 1997.
different levels of service by using multiple Leader/Followe{$5] D. C. Schmidt, “Reactor: An Object Behavioral Pattean Concur-

; it ; i¢_ rent Event Demultiplexing and Event Handler Dispatchirig,Pattern
groups in the application, each one serviced by threads at dif Languages of Program Desigd. O. Coplien and D. C. Schmidt, eds.),

ferent priorities. pp. 529-545, Reading, MA: Addison-Wesley, 1995.

Network 1/O bottlenecks: The Leader/Followers patterr16] D.C.Schmidt, “Wrapper Facade: A Structural PatterrEiocapsulating
described in the Implementation section serializes processing TUnctions within ClassesC++ Report vol. 11, February 1999,

by allowing only a single thread at a time to wait on the haHJ T. Cargill, “Specific Notification for Java Thread Symohization,”

- . . in Pattern Languages of Programming Conference (PlL.&&ptember
dle set. In some environments, this design could become a 19gg.

bottleneck because only one thread at a time is demultipleXifj p. Lea, Concurrent Java: Design Principles and Patterns, Second Ed
I/O events. In practice, however, this may not be a problem tion. Reading, MA: Addison-Wesley, 1999.

because most of I/O-intensive processing is performed by & J. C. Mogul and A. Borg, “The Effects of Context Switches Cache
operating system kernel. Performance,” inProceedings of thé!" International Conference on

Architectural Support for Programming Languages and OfintaSys-
tems (ASPLOS)Santa Clara, CA), ACM, Apr. 1991.

References [20] G. Meszaros, “A Pattern Language for Improving the Q@itgaf Reac-
tive Systems,” irfPattern Languages of Program Desi¢h O. Coplien,
[1] J. Hu, I. Pyarali, and D. C. Schmidt, “The Object-Orieh®esign and J. Vlissides, and N. Kerth, eds.), Reading, MA: Addison-l&s1996.

Performance of JAWS: A High-performance Web Server Op&ahior [21] R. E. Barkley and T. P. Lee, “A Heap-Based Callout Impienation to
High-speed Networks,Parallel and Distributed Computing Practices Meet Real-Time Needs,” iRroceedings of the USENIX Summer Con-

Journal, special issue on Distributed Object-Orientedt&ys to ap- ference pp. 213-222, USENIX Association, June 1988.
pear. . [22] T. Harrison and D. C. Schmidt, “Thread-Specific StoragePattern
[2] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmarattern- for Reducing Locking Overhead in Concurrent Programs@@PSLA
Oriented Software Architecture: Patterns for Concurrerayd Dis- Workshop on Design Patterns for Concurrent, Parallel, anstiibuted
tributed Objects, Volume. New York, NY: Wiley & Sons, 2000. SystemsACM, October 1995.
[3] W. R. StevensUNIX Network Programming, Second EditiofEngle- [23] D. C. Schmidt, “Applying Design Patterns and Framevsott Develop
wood Cliffs, NJ: Prentice Hall, 1997. Object-Oriented Communication Software,” itandbook of Program-
[4] S. Rago, UNIX System V Network Programming Reading, MA: ming Language$P. Salus, ed.), MacMillan Computer Publishing, 1997.
Addison-Wesley, 1993. [24] P.Jainand D. C. Schmidt, “Service Configurator: A Ratfer Dynamic
[5] D. A. Solomon,Inside Windows NT, 2nd EdRedmond, Washington: Configuration of Services,” ifProceedings of th&”¢ Conference on
Microsoft Press, 2nd ed., 1998. Object-Oriented Technologies and SystedSENIX, June 1997.

14

[25] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design d@Peffor-
mance of RIO — A Real-time 1/0O Subsystem for ORB Endsysteims,”
Proceedings of the International Symposium on Distrib@égects and
Applications (DOA’99) (Edinburgh, Scotland), OMG, Sept. 1999.

15

