
DREAM: A Data Replication Technique for Real-Time
Mobile Ad-hoc Network Databases*

 Prasanna Pabmanabhan Le Gruenwald

School of Computer Science, The University of Oklahoma
prasannap@ou.edu, ggruenwald@ou.edu

This material is based upon work supported by (while serving at) the National Science Foundation (NSF) and the NSF Grant No. IIS-0312746. Any
opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the
NSF.

Abstract

In a Mobile Ad-hoc Network (MANET), due to the
mobility and energy limitations of nodes, disconnection
and network partitioning occur frequently. In addition,
transactions in many MANET database applications have
time constraints. In this paper, a Data REplication
technique for real-time Ad-hoc Mobile databases
(DREAM) that addresses all these issues is proposed.
DREAM is prototyped on laptops and PDAs and
compared with two existing replication techniques using a
military database application.

1. Introduction
 MANET is a collection of wireless autonomous nodes
that may move unpredictably, forming a temporary
network without any fixed backbone infrastructure. All
the nodes in MANET are mobile, power restricted, and
thus, disconnection may occur frequently, causing a lot of
network partitioning. Moreover many applications in this
environment are time-critical and, hence, their
transactions should be executed not only correctly, but
also within their deadlines.

To improve data availability and system dependability,
data in a client-server MANET system should be
replicated at various servers. However, no single existing
replication technique considers all of the above issues. To
fill this gap, this paper proposes a data replication
technique, called DREAM. The rest of the paper is
organized as follows. Section 2 describes the MANET
database architecture that is used in DREAM. Sections 3
and 4 present DREAM and its prototype results,
respectively. Finally, Section 5 concludes the paper with
future work.

2. Decentralized MANET Architecture
Depending on communication strength, computing power,
and storage size, mobile hosts are classified into clients,
which store only the query processing module of the

Database Management System (DBMS) that allows them
to submit transactions and receive results, and servers,
which store the complete DBMS and provide data
services to clients. In a decentralized architecture, clients
can communicate (single-hop or multi-hop) and submit
their transactions to any of the available servers. This
architecture does not place reliance on any centralized
server, and thus, improves system resilience.

3. Proposed Replication Technique: DREAM
DREAM is composed of three main parts. The first part
determines the data items and the servers in which they
have to be replicated. The second part determines how the
allocated replicas can be accessed for transaction
processing based on their data and transaction types. The
third part identifies the way to synchronize the replicas.

DREAM improves data accessibility while addressing the
issue of power limitation by replicating hot data items
before cold data items at servers that have high remaining
power. Since firm transactions must be aborted if they
missed their deadlines, while soft transactions can still be
executed even after their deadlines have expired, DREAM
offers a higher priority for replicating data items that are
accessed frequently by firm transactions than those
accessed frequently by soft transactions. It addresses
disconnection and network partitioning by introducing
new data and transaction types and by determining the
stability of wireless links connecting servers. DREAM
addresses the replica synchronization issue by
maintaining two timestamps that indicate when a
particular data item is updated in its primary and
secondary copy (replica) servers.

3.1. Data Types
Data items are classified into read-only and read-write
data items. Read-write data items are further classified
into temporal and persistent data items. The values of the
former are valid only for a certain period of time, called
age, while those of the latter are valid throughout their

mailto:prasannap@ou.edu
mailto:ggruenwald@ou.edu

existence. All read-write data items are further classified
into periodic and aperiodic update data items.

3.2. Transaction Types
Transactions, both firm and soft, are classified as read and
write transactions. Read transactions are further classified
into: 1) Most Recent Value (MRV): transactions that need
the most recent values of data items across all database
servers in the network; 2) Outdated transactions (OD):
transactions that can be executed successfully even with
stale data; and 3) Most Recent Value in Partition
(MRVP): transactions that require the most recent values
of data items across all servers in a partition. The result of
a MRVP transaction may or may not be the most recent
value of the requested data across all database servers.

Write transactions are classified further into: 1)
Insert/Delete: transactions that insert or delete records
into the database; 2) Use Current Value (UCV):
transactions that need the current values of data items for
processing; and 3) Overwrite Current Value (OCV):
transactions that overwrite the current values of data
items.

3.3. What and Where to Replicate?
The first step of the algorithm is to calculate the weighted
access frequencies of data items based on their data and
transaction types. The next step is to replicate data items
with higher weighted access frequencies in servers that
have the maximum remaining power. After storing the
data items at appropriate servers, if there are any
redundant data items among neighboring servers, they are
eliminated depending upon the stability of the links
connecting them and the access frequencies of the next
available hot data items. Such a decision to replicate data
items is taken every time during a certain period of time
called the relocation period [2].

3.3.1. Computing Weighted Access Frequencies
Access frequency of a data item d at a particular server s,
Access_Frequencyd

s, is the number of times that d is
accessed at s. From the access logs, the access frequency
of each data item at each server is computed [2]. In
addition, in DREAM, the numbers of times a data item is
accessed by Firm, Soft, MRV and Non-UCV transactions
are computed. These access frequencies are further
calculated using a weight factor based on the data and
transaction types as follows.

a) Firm and Soft Transactions: if a data item is accessed
more often by firm transactions than another data item,
then the former is given a higher priority for replication.
This is to reduce the number of firm transaction aborts
due to deadline expiry.
b) Temporal Data Item: If the age of a temporal data item
is higher than the relocation period, the probability for
successfully accessing that data item until the next

relocation period is high. The ratio between the remaining
valid time interval and the relocation period is called the
Age Relocation Ratio (ARR). Data items with higher ARR
are replicated before the ones with lower ARR.
c) Read-Write Data Item: Data items that are accessed
frequently by UCV transactions are given a lower priority
to be replicated than the ones that are accessed frequently
by Non-UCV transactions.

3.3.2. Replica Allocation and Redundancy Elimination
In DREAM, the link stability connecting two servers until
the next relocation period is given by the formula:

Reliability Ratio (RR) = Percentage of Server Power
Remaining * (disconnection time / relocation period)

A higher RR between two servers means that the link
connecting them is more stable. After determining the
access frequencies and the RR of all servers, data items in
the descending order of their access frequencies are
assigned to servers until the max capacity of data items in
those servers has been reached. If the access frequencies
are similar, the same data items will be replicated [2].
Replica duplication among neighboring servers can be
eliminated by replacing a duplicate data item with the
next highest accessed data item as presented in [2].
However, if those neighboring servers get disconnected,
data accessibility would even decrease because of such a
replacement. Hence, the decision to eliminate redundancy
is taken only if it improves data accessibility. Assume
there is a replica duplication of a data item dx between
two neighboring servers, si and sj. The decision to remove
this redundancy is based on the following conditions:

a) One of the servers (say si) is the primary copy server of
dx: in this case, the next highest accessed data item in sj,
dy, is computed. This data item dy can replace dx in sj only
if the link connecting si and sj is stable so that all requests
for dx in sj can be successfully executed in si. There is,
however, no use in replacing dx by dy if the difference
between their access frequencies in sj is very high or if the
link connecting si and sj is unreliable. It is beneficial to
replace dx by dy in sj only if the sum of the number of
times that dy can be accessed from sj and the number of
times that dx can be accessed from si is greater than the
number of times that dx can be accessed from sj.
b) Both of the servers are secondary copy servers of dx: in
this case, the next frequently accessed data items, du and
dv, for si and sj, respectively, are computed. As in case (a),
DREAM first determines if it is beneficial to replace dx by
du in si, and dx by dv in sj. If either one of them is
beneficial, then dx is replaced by the appropriate data item
at the server in which it is beneficial. If none of them is
beneficial, then the redundancy is not eliminated. If both

of them are beneficial, the redundancy is eliminated in the
server in which more benefit is obtained.

3.4. How to Access Replicas?
When there is a request for a data item d to its primary
copy server p, it can be accessed directly. If the initiated
transaction is a write transaction, p broadcasts its update
timestamp to indicate to the secondary copy servers that
their replicas are out of synchronization. In contrast, if the
coordinating server is not the primary copy server, the
data item is accessed based on the following criteria:

Read Transactions: if the requested data item is a read-
only data item or if the initiated transaction is an OD
transaction, it can be accessed from any server. If the
requested data item is available at more than one server,
the decision to choose an appropriate server is based on
the real time transaction type. A firm transaction is sent to
the nearest server with the least workload, while a soft
transaction is sent to the highest energy server with the
least workload. The objective is to reduce the number of
transaction aborts and, at the same time, balance the
energy consumption distribution among servers.

If the transaction is a MRV transaction, the requested data
item should be accessed from the server that has its most
recent value. If the requested transaction is a MRVP
transaction, the requested data item should be accessed
from the server that has its most recent value among all
the servers in its network partition that hold it. Based on
the Local_Update_Timestampd

s of all servers s, the most
recent value of data item d can be determined.

A periodic update data item is updated once every certain
period of time. Hence, a MRV/MRVP transaction
accessing such a data item can read it from any server that
has updated it during its last known update time interval.

Write Transactions: if the transaction is an update
transaction and if the coordinating server is connected to
the primary copy server of the requested data item, the
update transaction is forwarded to the primary copy
server. If the coordinating server holds a replica of the
requested data item, and if the transaction is not an UCV
transaction, the local replica is also updated as further
read requests for that data item can be directly accessed.

However, if the coordinating server is not connected to
the primary copy server, and if the transaction is not an
UCV transaction, the update transaction is forwarded to
the server that holds the requested data item. If the
transaction is an UCV transaction, and if the coordinating
server is not connected to the primary copy server, the
transaction cannot be executed successfully. Hence, the
coordinating server will try to connect to the primary
copy server unless the deadline of this transaction has
expired, in which case the transaction is aborted.

3.5. How to Synchronize Replicas?
 Every time during the relocation period, the primary copy
server of a data item tries to synchronize with other
secondary copy servers. The primary copy server requests
the last updated timestamps from all replicas. Based on
the update timestamp of the primary copy and the update
timestamps of the replicas, the primary copy server
determines if there is any other server that has a more
recent value of its data item. If such a server exists, the
new value of the data item is synchronized with all other
servers [5]. However, a server that is disconnected from
the network during the relocation period cannot
synchronize its data item. Even if the disconnected server
has the most recent value of the data item, the primary
copy server cannot determine it since the former is
disconnected. Hence, it will only try to synchronize the
data item during the next relocation period.

4. Prototype Model
After considering the various open source database
servers and clients based on our application requirements,
we have chosen MySQL [4] server on Linux as the
framework for our server database and DALP (Database
Access Libraries for PDA) [1] on Windows CE as the
framework for our client database system. We have
modified the OLSR routing protocol in Linux to route
packets and broadcast additional information like the
energy and position of each mobile host. We have used a
Global Positioning System (GPS) to track the locations of
mobile hosts.

Clients generate real time transactions and associate
deadlines to them. A server after receiving a transaction
determines if it is a global transaction using its global
schema. Distributed transaction processor functionality
has been added to the MySQL server, which divides
transactions into sub-transactions and forwards them to
appropriate participating server(s). The local transaction
processor then forwards these transactions to the real time
scheduler that we have built into the MySQL server. It
schedules transactions with shorter deadlines for
execution before those with longer deadlines. A commit
protocol that decides to abort or commit the global
transaction was also added to the MySQL server.

We have obtained the data and transaction requirements
for a military database application from the Reserve
Officers Training Corps (ROTC) at the University of
Oklahoma. We have created relational database tables for
this application, populated each table with one million
rows of data, and generated transactions to retrieve and
update the data in the tables.

We have used this prototype to compare DREAM with
the “No Replication” model and Hara’s replication
technique proposed in [2, 3]. The former is selected as it

illustrates the impact of having no replication in MANET
databases. The latter is chosen as DREAM is built on
some of its ideas. In Hara’s technique, data items with
higher access frequencies are replicated before cold data
items. It also detects network partitioning and replicate
hot data items before such a partitioning occurs to
improve data accessibility. However in this technique,
when there is a replica duplication between any two
connected mobile nodes, one of the duplicate replicas is
replaced by another hot data item, irrespective of how
high the access frequency of the replaced data item is or
how low the access frequency of the new data item is.

The impact of the firm/soft transaction ratio on the
percentage of successfully executed transactions and the
average energy consumption distribution among servers is
shown in Figure 1. More transactions miss their deadlines
as the ratio of firm to soft transactions increases.
Transactions with longer deadlines have more time to be
processed and, hence, the probability of successfully
executing such transactions is high. DREAM gives more
priority for data items that are accessed frequently by firm
transactions than those data items that are accessed
frequently by soft transactions. Hence, DREAM has more
successfully executed transactions than the other models.
Consequently, the power consumption of servers in
DREAM is the highest. However, the difference in server
energy consumption between DREAM and the other two
models is considerably lower compared to the difference
in the number of successfully executed transactions
between DREAM and the other two models. This means
that with the same number of transactions successfully
executed, DREAM would require less server energy than
the other two models. It can also be seen in the 2nd part
of Figure 1 that DREAM is the most balanced model in
terms of energy consumption distribution among servers.
This is because DREAM replicates hot data items at
servers that have the most remaining available energy.

The impact of mobile hosts’ disconnection on the
performances of the data replication algorithms when the
mobile hosts’ disconnection probability is varied from 0.1
to 0.9 is shown in Figure 2. When the disconnection
probability is 0.5, the servers are kept out of each other’s
transmission ranges for 50% of the entire experimental
run. When the probability for disconnection increases, the
probability for mobile hosts to be in different network
partitions also increases. Since some servers might not be
able to provide data services to clients that are in a
different network partition, the number of successfully
executed transactions decreases with the increase in the
probability of mobile hosts’ disconnection. As expected,
the power consumption of clients is the highest in
DREAM as it successfully executes the most transactions
among all the three models. But DREAM yields the most

balance in energy consumption distribution among
servers.

0

10

20

30

40

50

60

70

80

90

0 0.25 0.5 0.75 1

Percentage of Firm Transactions

P
e
rc

e
n

ta
g

e
 o

f
S

u
c
c
e
s
s
fu

ll
y

E
x
e
c
u

te
d

 T
ra

n
s
a
c
ti

o
n

s

No Replication
Hara
DREAM

0

5

10

15

20

25

0 0.25 0.5 0.75 1

Percentage of Firm Transactions

A
v
e
ra

g
e
 D

if
fe

re
n

c
e
 i

n
 E

n
e
rg

y

C
o

n
s
u

m
p

ti
o

n
 o

f
tw

o
 S

e
rv

e
rs

No Replication
Hara
DREAM

Figure 1: Impact of Firm/Soft Transaction Ratio

0

10

20

30

40

50

60

70

80

90

0.1 0.3 0.5 0.7 0.9

Mobile Host Disconnection Probability

P
e
rc

e
n

ta
g

e
 o

f
S

u
c
c
e
s
s
fu

ll
y

E
x
e
c
u

te
d

 T
ra

n
s
a
c
ti

o
n

s

No Replication
Hara
DREAM

0
10
20
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9

Mobile Host Disconnection Probability

A
v
e
ra

g
e
 C

li
e
n

t
E

n
e
rg

y

C
o

n
s
u

m
p

ti
o

n

P
e
rc

e
n

ta
g

e

No Replication
Hara
DREAM

Figure 2: Impact of Disconnection Probability

5. Conclusions and Future Work

A data replication technique called DREAM for real-
time mobile ad-hoc network database systems was
proposed in this paper. By replicating hot data items at
appropriate servers based on the data model, transaction
model, current network topology, stability of wireless
links, data access frequencies, and servers’ remaining
power, DREAM was demonstrated to perform the best in
terms of percentage of successfully executed transactions
and balance of energy consumption distribution among
servers. As part of our future research, we plan to
combine data caching with DREAM and extend it for
group-based MANET architectures.

References
[1] DALP, http://www.kalpadrum.com/dalp, Nov 2004
[2] T. Hara, “Replica Allocation Methods in Ad Hoc
Networks with Data Update”, ACM-Kluwer Journal on
Mobile Networks and Applications, Vol. 8, No. 4, Aug.
2003, pp. 343-354.
[3] T. Hara, Y.H.Loh, S.Nishio, “Data Replication
Methods Based on the Stability of Radio Links in Ad Hoc
Networks”, Journal of the Information Processing Society
of Japan, Vol.44, No.9, Sept. 2003, pp.2308-2319.
[4] MySQL Open Source Database Server,
http://www.mysql.com, Nov 2004.
[5] P. Padmanabhan, “DREAM: Data Replication in Ad-
Hoc Mobile Network Databases”, Master’s Thesis,
University of Oklahoma, Dec. 2004.

http://www.kalpadrum.com/dalp
http://www.mysql.com/

	2. Decentralized MANET Architecture
	3. Proposed Replication Technique: DREAM
	3.1. Data Types
	3.2. Transaction Types
	3.3. What and Where to Replicate?
	3.3.2. Replica Allocation and Redundancy Elimination
	3.4. How to Access Replicas?
	3.5. How to Synchronize Replicas?

	4. Prototype Model
	References

