
Widget Packaging and XML
Configuration use in PhoneGap Hybrid
Mobile Applications

Filip Maj
Michael Brooks

Nitobi Software Inc.

Vancouver, B.C., Canada

Hybrid applications, or mobile applications that employ a combination of native platform as
well as web-based source code, are becoming a more viable development avenue in an
increasing number of cases. Facebook and The New York Times are two prominent examples
that are available in a few different mobile application stores and are built in this manner.
PhoneGap (a.k.a. Apache Callback as an Apache Incubator project) is a popular cross-platform
development framework that enables developers to write their applications almost solely in
web-standards based code. The framework has different hybrid implementations for seven of
the most popular mobile platforms: iOS, Android, BlackBerry WebWorks, Windows Phone 7,
Samsung Bada, webOS and Symbian.

The W3C Widget specification, and specifically the XML Configuration portion of it, is
extremely relevant to the PhoneGap project. The project is still quite young, but fully utilizing
a config.xml file to specify application metadata and configuration parameters is beginning
to be incorporated. The core PhoneGap project closely follows section 6 (Widget Packages)
of the XML Configuration specification as a guide for the directory structure of a PhoneGap
application’s web assets. Additionally, PhoneGap Build, Nitobi’s cloud-based PhoneGap-
building service that takes hybrid application web assets and compiles them into different native
application binaries, has already been using the config.xml file extensively to handle the brunt
of application data and configuration tasks for the end user. This paper aims to show areas
where our team had to extend the specification, highlight some of the main incompatibilities and
inconsistencies and offer suggestions on how to improve the W3C Widget Packaging and XML
Configuration specification moving forward.

Use in PhoneGap Build

PhoneGap Build boils down to a service where users can upload PhoneGap web assets (the
HTML, CSS and JavaScript making up the majority of their application) which get wrapped up in
the various PhoneGap implementations for each platform, compiled, and sent back to the user.

The service allows for the inclusion of a config.xml file in the root of packages being uploaded
(see https://build.phonegap.com/docs/config-xml for details). Behind the scenes, PhoneGap
Build will use the provided config.xml file and convert it to different files for each platform to
preserve the specified configuration parameters. For details on the process you can check out
Andrew Lunny’s open-source confetti project, which deals with this single problem. The existing
specification does a very good job of covering the majority of use cases, however, there are
some issues.

● <widget id> attribute: Currently on build.phonegap.com we recommend employing a
reverse domain style ID, i.e. com.yourdomain.yourapp. The id will get converted into
whatever format is required for the various target platforms. Most will accept the reverse
domain style, but some (for example Windows Phone 7) require a different format (a
GUID).

● <widget version> attribute: our use of this attribute specifies the version string of
the application, which is likely not the intended use of this attribute. We recommend
employing a Java-style version (major/minor/patch) of the form 1.0.0, as some platforms
require this format (webOS).
Related, PhoneGap Build employs an additional versionCode attribute (specifically for
Android) that would be used as a monotonically-increasing number between application
revisions. This is used by the Android Market to inform the user when new versions of
Android apps are published. Build will simply use the total build count for an application
for this attribute if none is specified.

● <feature> element is an excellent first step and maps very elegantly to the resolution of
APIs that the application will have access to (at run or build time). In PhoneGap’s case,
these are device APIs such as accelerometer, contacts, or file system access (which are
also inspired and guided by the DAP). However, the spec is somewhat incomplete.
Taken from the spec:

“How a user agent makes use of features depends on the user agent's security
policy, hence activation and authorization requirements for features are beyond the
scope of this specification.”

Perhaps this is something worth discussing, as Build employs a combination of
<feature> name URI mapping to the applications-specific permissions that must be
approved on a per-application basis for certain platforms (BlackBerry, Android) by the
user. On the flip side, some platforms such as iOS require permission resolution at run
time. The two approaches are at odds with each other. Can the config.xml file
specification, as an abstraction, be structured differently to facilitate its use as such?

● <preference> element. Currently in use for three purposes on Build:
○ orientation specification. You can set an app to be locked to a specific

orientation.
○ target-device. Can specify handset, tablet or universal.
○ permissions. Can be specified with a value of “none” and this will translate over

to no required permissions for Android applications. This is extremely unwieldy

http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
http://www.google.com/url?q=https%3A%2F%2Fbuild.phonegap.com%2Fdocs%2Fconfig-xml)&sa=D&sntz=1&usg=AFQjCNGwErx1e6CrPx4lY_8iVITJLEOieA
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
https://github.com/alunny/confetti
http://build.phonegap.com
http://build.phonegap.com
http://build.phonegap.com
http://build.phonegap.com
http://build.phonegap.com
http://www.w3.org/2009/dap/
http://www.w3.org/TR/widgets/#feature

as we already do something similar to this through the <feature> element
declarations.

One new element that we added to the config.xml file is <gap:splash>. It defines a splash
screen for the app. Under the hood, there is a parent construct (“image”) which has child
constructs for <icon> and <gap:splash> elements. One idea we had was to use a “type” and/
or “encoding” attribute with a general “image” element to support defining both icons and other
types of images used throughout the application. On the flip side, there is a <content> element
available in the spec that also allows for specifying these various media types. Is there an
opportunity to consolidate these? If not, can we expand on the specification to provide a better
definition for the <content> and <icon> elements to differentiate between the two more easily?

One thing worth mentioning would be how RIM, makers of the BlackBerry, has embraced the
config.xml file and the W3C Widget specification in their WebWorks SDK. WebWorks is a
web-based abstraction that RIM provides on top of their BlackBerry Java SDK to enable web
developers to build applications for the BlackBerry using nothing but web-based code. In short:
it is the same as PhoneGap. RIM uses all of the usual config.xml elements, but also provides a
few extensions of their own, wrapped up in their own XML namespace, to allow the developer
to define application parameters specific to the BlackBerry platform. A few examples of some of
the extensions they employ:

● a rim:hover attribute on <icon> elements, for specifying the hover state on the
application button within the system-wide apps menu.

● a rim:navigation attribute for specifying navigation style.
● a <rim:cache> element to specify application caching behaviours.
● a <rim:connection> element to specify what kind of network to use for data connectivity.
● a rim:backButton attribute for specifying hardware back button behaviour.

Problems That Still Need Solving

One thing that could be useful is better support for targeting specific platforms, with specific
features and preferences. We are not sure of a suitable structure - either having platforms as
child elements of features/preferences, or having a top-level platform element, with feature/
preference elements as children, seem reasonable. Some kind of hierarchy between features
and platforms makes sense as this would elegantly solve the issue of what features are
available on what platforms: the developer simply specifies the relevant features for any target
platform (or vice versa).

