Measures of Cenfral
Tendency and Locafion

Measures of Cenfral Tendency

The Summation Nofation

Summation Notation

- Necessary for computing summary statistics
- Sums of numerical values
- Denoted by the capital Greek letter sigma (Σ)

$$
\sum^{n} X_{i}=X_{1}+X_{2}+X_{3}+\cdots+X_{n}
$$

Properties of Summation

- The summation of the sum (or difference) of two or more terms equals the sum (or difference) of the individual summations
- The summation of a constant, c, times a variable, X, equals the constant times the summation of the variable
- The summation of a constant, c, from $i=1$ to n, equals the product of n and c.

Some Notes on Summation

- The subscript may be any letter, but the most common are i, i, and k .
- The lower limit of the summation may start with any number
- The lower limit of the summation is not necessarily a subscript
- The sum of the squared values of X is NOT equal to the square of the sum of X
- The summation of the square of $(X+Y)$ is NOT equal to the summation of the sum of X^{2} and the sum of Y^{2}
- The sum of the product of X and Y is NOT equal to the product of the sum of values of X and the sum of values of Y
- The sum of the quotient of X and Y is NOT equal to the quotient of the sum of X and the sum of Y
- The sum of the square root of X is not equal to the square root of the sum of X

The Mean

The Arithmetic Mean

- Most common average
- Sum of all observed values divided by the number of observations
- For ungrouped and grouped data
- Population mean (μ)
- Sample mean (\bar{X})
- Different formulas for grouped and ungrouped data

Some Remarks on the Mean

- Most common measure of central tendency
- Uses all observed values
- May or may not be an actual value in the data set
- May be computed for both grouped and ungrouped data sets
- Extreme observations affect the value of the mean

Two Mathematical Properties

- The sum of the deviations of the observed values from the mean is zero.

$$
\sum^{n}\left(X_{i}-\bar{X}\right)=0
$$

Modifications of the Mean

- The Weighted Mean
- There are weights
- Values are not of equal importance
- e.g. GWA
- The Combined Mean
- Mean of several data sets
- The Trimmed Mean
- Less affected by extreme observations
- Order data
- Remove a certain percentage of the lower and upper ends
- Calculate arithmetic mean

The Median

The Median

- Middle value in an ordered set of observations
- Divides ordered set of observations into two equal parts
- Positional middle of an array
- Grouped and ungrouped data

Characteristics of the Median

- Extreme values affect the median less than the mean
- The median is used when
- We want the exact middle value of the distribution
- There are extreme observed values
- FDT has open-ended intervals

The Mode

The Mode

- Most frequent observed value in the data set
- Small data sets: inspection
- Large data sets: array or FDT
- Less popular

Characteristics of the Mode

- Gives the most typical value of a set of observations
- Few low or high values do not easily affect the mode
- May not be unique and may not exist
- Several modes can exist
- Value of the mode is always in the data set
- May be used for both quantitative and qualitative data sets

Remarks

- Data is symmetric and unimodal \rightarrow all three measures may be used
- Data is asymmetric \rightarrow use median or mode (if unique); trimmed mean
- Describe shape of data \rightarrow use all three

FORMULAS: MEAN

\[

\]

FORMULAS: MEDIAN

Ungrouped

- n is odd

$$
M d=X_{\left(\frac{n+1}{2}\right)}
$$

Grouped

$$
M d=L C B_{M d}+C\left(\frac{\frac{n}{2}-<C F_{M d-1}}{f_{M d}}\right)
$$

- n is even

$$
M d=\frac{X_{\left(\frac{n}{2}\right)}+X_{\left(\frac{n}{2}+1\right)}}{2}
$$

FORMULA: MODE

- Grouped

$$
M o=L C B_{M o}+C\left(\frac{f_{M o}-f_{1}}{2 f_{M o}-f_{1}-f_{2}}\right)
$$

Examples

Find the MEAN, MEDIAN, and MODE of the ff:

1. A sample survey in a certain province showed the number of underweight children under five years of age in each barangay: 35647869104675 8983455
2. Given the frequency distribution table of scores

| LCL | UCL | LCB | UCB | Frequency | RF | RF $\%$ | <CF | >CF |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3.5 | 5.4 | 3.45 | 5.45 | 4 | 0.057971 | 5.797101 | 4 | 69 |
| 5.5 | 7.4 | 5.45 | 7.45 | 4 | 0.057971 | 5.797101 | 8 | 65 |
| 7.5 | 9.4 | 7.45 | 9.45 | 15 | 0.217391 | 21.73913 | 23 | 61 |
| 9.5 | 11.4 | 9.45 | 11.45 | 11 | 0.15942 | 15.94203 | 34 | 46 |
| 11.5 | 13.4 | 11.45 | 13.45 | 13 | 0.188406 | 18.84058 | 47 | 35 |
| 13.5 | 15.4 | 13.45 | 15.45 | 8 | 0.115942 | 11.5942 | 55 | 22 |
| 15.5 | 17.4 | 15.45 | 17.45 | 14 | 0.202899 | 20.28986 | 69 | 14 |
| | | | 69 | 1 | 100 | | | |

Measures of Location

RECALL: MEDIAN

- Measure of central tendency
- Measure of location
- Positional middle

Measures of Location

- Percentiles
- Deciles
- Quartiles

Percentiles

- Divide ordered observations into 100 equal parts
- 99 percentiles; roughly 1 percent of observations in each group
- Interpretation:
P_{1}, the first percentile, is the value below which 1 percent of the ordered values fall. (ETC.)
- Ungrouped data
- Empirical Distribution Number with Averaging
- Weighted Average Estimate
- Grouped data

Deciles

- Divide the ordered observations into 10 equal parts
- Each part has ten percent of the observations

Quartiles

- Divides observations into 4 equal parts
- Each part has 25 percent of the observations

Relationship Among the Three Measures

Formulas: Percentiles (Ungrouped)

Empirical

- nk/ 100 is an integer

$$
P_{k}=\frac{X_{\left(\frac{n k}{100}\right)}+X_{\left(\frac{n k}{100}+1\right)}}{2}
$$

$$
\begin{gathered}
\frac{(n+1) k}{100}=j+g \\
P_{k}=(1-g) X_{(j)}+g X_{(j+1)}
\end{gathered}
$$

- nk/100 is not an integer

$$
P_{k}=X_{\llbracket \frac{n k}{100}+1 \rrbracket}
$$

Formulas: Percentiles (Grouped)

$$
P_{k}=L C B_{P_{k}}+C\left(\frac{\frac{n k}{100}-<C F_{P_{k}-1}}{f_{P_{k}}}\right)
$$

Example

- The number of incorrect answers on a true-false exam for a random sample of 20 students was recorded as follows: 2
- and 2 find the $90^{\text {th }}$ percentile, $7^{\text {th }}$ decile, and $1^{\text {st }}$ quartile
- Given the frequency distribution of scores of 200 students in an entrance exam in college, find the $95^{\text {th }}$ percentile, $4^{\text {th }}$ decile, and $3^{\text {rd }}$ quartile.

Scores	Freq.	<CFD	$L C B$	UCB
$59-62$	2	2	58.5	62.5
$63-66$	12	14	62.5	66.5
$67-70$	24	38	66.5	70.5
$71-74$	46	84	70.5	74.5
$75-78$	62	146	74.5	78.5
$79-82$	36	182	78.5	82.5
$83-86$	16	198	82.5	86.5
$87-90$	2	200	86.5	90.5

