Measures of Central Tendency and Location

Measures of Central Tendency

The Summation Notation

Summation Notation

- Necessary for computing summary statistics
- Sums of numerical values
- Denoted by the capital Greek letter sigma (Σ)

$\sum_{i=1}^{n} X_{i} = X_{1} + X_{2} + X_{3} + \dots + X_{n}$

Properties of Summation

- The summation of the sum (or difference) of two or more terms equals the sum (or difference) of the individual summations
- The summation of a constant, c, times a variable, X, equals the constant times the summation of the variable
- The summation of a constant, c, from i = 1 to n, equals the product of n and c.

Some Notes on Summation

- The subscript may be any letter, but the most common are i, j, and k.
- The lower limit of the summation may start with any number
- The lower limit of the summation is not necessarily a subscript
- The sum of the squared values of X is NOT equal to the square of the sum of X
- The summation of the square of (X+Y) is NOT equal to the summation of the sum of X^2 and the sum of Y^2
- The sum of the product of X and Y is NOT equal to the product of the sum of values of X and the sum of values of Y
- The sum of the quotient of X and Y is NOT equal to the quotient of the sum of X and the sum of Y
- The sum of the square root of X is not equal to the square root of the sum of X

The Mean

The Arithmetic Mean

- Most common average
- Sum of all observed values divided by the number of observations
- For ungrouped and grouped data
 - Population mean (μ)
 - Sample mean ($ar{X}$)
 - Different formulas for grouped and ungrouped data

Some Remarks on the Mean

- Most common measure of central tendency
- Uses all observed values
- May or may not be an actual value in the data set
- May be computed for both grouped and ungrouped data sets
- Extreme observations affect the value of the mean

Two Mathematical Properties

 The sum of the deviations of the observed values from the mean is zero.

$$\sum_{i=1}^n (X_i - \overline{X}) = 0$$

 The sum of the squared deviations of the observed values from the mean is smallest.

Modifications of the Mean

- The Weighted Mean
 - There are weights
 - Values are not of equal importance
 - e.g. GWA
- The Combined Mean
 Mean of several data sets

- The Trimmed Mean
 - Less affected by extreme observations
 - Order data
 - Remove a certain percentage of the lower and upper ends
 - Calculate arithmetic mean

The Median

The Median

- Middle value in an ordered set of observations
- Divides ordered set of observations into two equal parts
- Positional middle of an array
- Grouped and ungrouped data

Characteristics of the Median

- Extreme values affect the median less than the mean
- The median is used when
 - We want the exact middle value of the distribution
 - There are extreme observed values
 - FDT has open-ended intervals

The Mode

The Mode

- Most frequent observed value in the data set
- Small data sets: inspection
- Large data sets: array or FDT
- Less popular

Characteristics of the Mode

- Gives the most typical value of a set of observations
- Few low or high values do not easily affect the mode
- May not be unique and may not exist
- Several modes can exist
- Value of the mode is always in the data set
- May be used for both quantitative and qualitative data sets

Remarks

- Data is symmetric and unimodal ightarrow all three measures may be used
- Data is asymmetric → use median or mode (if unique); trimmed mean
- Describe shape of data ightarrow use all three

FORMULAS: MEAN

Ungrouped

Grouped

FORMULAS: MEDIAN

Ungrouped

• n is odd

 $Md = X_{\left(\frac{n+1}{2}\right)}$

$$Md = LCB_{Md} + C\left(\frac{\frac{n}{2} - \langle CF_{Md} - f_{Md}}{f_{Md}}\right)$$

Grouped

• n is even

$$Md = \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}}{2}$$

FORMULA: MODE

• Grouped

$$Mo = LCB_{Mo} + C\left(\frac{f_{Mo} - f_1}{2f_{Mo} - f_1 - f_2}\right)$$

Examples

Find the MEAN, MEDIAN, and MODE of the ff:

 A sample survey in a certain province showed the number of underweight children under five years of age in each barangay: 3 5 6 4 7 8 6 9 10 4 6 7 5 8 9 8 3 4 5 5

2. Given the frequency distribution table of scores

LCL	UCL	LCB	UCB	Frequency	RF	RF %	<cf< th=""><th>>CF</th></cf<>	>CF
3.5	5.4	3.45	5.45	4	0.057971	5.797101	4	69
5.5	7.4	5.45	7.45	4	0.057971	5.797101	8	65
7.5	9.4	7.45	9.45	15	0.217391	21.73913	23	61
9.5	11.4	9.45	11.45	11	0.15942	15.94203	34	46
11.5	13.4	11.45	13.45	13	0.188406	18.84058	47	35
13.5	15.4	13.45	15.45	8	0.115942	11.5942	55	22
15.5	17.4	15.45	17.45	14	0.202899	20.28986	69	14
				69	1	100		

Measures of Location

RECALL: MEDIAN

- Measure of central tendency
- Measure of location
- Positional middle

Measures of Location

- Percentiles
- Deciles
- Quartiles

Percentiles

- Divide ordered observations into 100 equal parts
- 99 percentiles; roughly 1 percent of observations in each group
- Interpretation:

 P_1 , the first percentile, is the value below which 1 percent of the ordered values fall. (ETC.)

- Ungrouped data
 - Empirical Distribution Number with Averaging
 - Weighted Average Estimate
- Grouped data

Deciles

- Divide the ordered observations into 10 equal parts
- Each part has ten percent of the observations

Quartiles

- Divides observations into 4 equal parts
- Each part has 25 percent of the observations

Relationship Among the Three Measures

Formulas: Percentiles (Ungrouped)

Empirical

nk/100 is an integer

$$P_k = \frac{X_{\left(\frac{nk}{100}\right)} + X_{\left(\frac{nk}{100} + 1\right)}}{2}$$

nk/100 is not an integer

$$P_k = X_{\left[\!\left[\frac{nk}{100} + 1\right]\!\right]}$$

Weighted Average

 $\frac{(n+1)k}{100} = j + g$

 $P_k = (1 - g)X_{(j)} + gX_{(j+1)}$

Formulas: Percentiles (Grouped)

$$P_k = LCB_{P_k} + C\left(\frac{\frac{nk}{100} - \langle CF_{P_k-1}}{f_{P_k}}\right)$$

Example

- The number of incorrect answers on a true-false exam for a random sample of 20 students was recorded as follows: 2
- and 2 find the 90th percentile, 7th decile, and 1st quartile
- Given the frequency distribution of scores of 200 students in an entrance exam in college, find the 95th percentile, 4th decile, and 3rd quartile.

Scores	Freq.	<cfd< th=""><th>LCB</th><th>UCB</th></cfd<>	LCB	UCB
59 – 62	2	2	58.5	62.5
63 – 66	12	14	62.5	66.5
67 – 70	24	38	66.5	70.5
71 – 74	46	84	70.5	74.5
75 – 78	62	146	74.5	78.5
79 – 82	36	182	78.5	82.5
83 – 86	16	198	82.5	86.5
87 – 90	2	200	86.5	90.5