
Contents

1 Declarative Programming 1
1.1 Functional programming . 2

1.1.1 Type polymorphism and higher-order functions 3
1.1.2 Lazy evaluation . 5
1.1.3 Class-based overloading 7

1.2 Functional logic programming 15
1.2.1 Unbound variables 16
1.2.2 Non-determinism . 17
1.2.3 Lazy non-determinism 19
1.2.4 Call-time choice . 21
1.2.5 Search . 24
1.2.6 Constraints . 26

1.3 Chapter notes . 29

A Source Code 32
A.1 ASCII versions of mathematical symbols 32
A.2 Definitions of used library functions 32

B Proofs 34
B.1 Functor laws for (a →) instance 34
B.2 Monad laws for Tree instance 35

iii

Contents

iv

1 Declarative Programming
Programming languages are divided into different paradigms. Programs writ-
ten in traditional languages like Pascal or C are imperative programs that
contain instructions to mutate state. Variables in such languages point to
memory locations and programmers can modify the contents of variables us-
ing assignments. An imperative program contains commands that describe
how to solve a particular class of problems by describing in detail the steps
that are necessary to find a solution.

By contrast, declarative programs describe a particular class of problems
itself. The task to find a solution is left to the language implementation.
Declarative programmers are equipped with tools that allow them to ab-
stract from details of the implementation and concentrate on details of the
problem.

Hiding implementation details can be considered a handicap for program-
mers because access to low-level details provides a high degree of flexibil-
ity. However, a lot of flexibility implies a lot of potential for errors, and,
more importantly, less potential for abstraction. For example, we can write
more flexible programs using assembly language than using C. Yet, writing
large software products solely in assembly language is usually considered
impractical. Programming languages like Pascal or C limit the flexibility of
programmers, e.g., by prescribing specific control structures for loops and
conditional branches. This limitation increases the potential of abstraction.
Structured programs are easier to read and write and, hence, large programs
are easier to maintain if they are written in a structured way. Declarative
programming is another step in this direction.1

The remainder of this chapter describes those features of declarative pro-
gramming that are preliminary for the developments in this thesis, tools it
provides for programmers to structure their code, and concepts that allow
writing programs at a higher level of abstraction. We start in Section 1.1
with important concepts found in functional programming languages, viz.,
polymorphic typing of higher-order functions, demand-driven evaluation,
and type-based overloading. Section 1.2 describes essential features of logic
programming, viz., non-determinism, unknown values and built-in search

1Other steps towards a higher level of abstraction have been modularization and object orien-
tation which we do not discuss here.

1

1 Declarative Programming

and the interaction of these features with those described before. Finally,
we show how so called constraint programming significantly improves the
problem solving capabilities for specific problem domains.

1.1 Functional programming

While running an imperative program means to execute commands, running
a functional program means to evaluate expressions.

Functions in a functional program are functions in a mathematical sense:
the result of a function call depends only on the values of the arguments.
Functions in imperative programming languages may have access to vari-
ables other than their arguments and the result of such a "function" may also
depend on those variables. Moreover, the values of such variables may be
changed after the function call, thus, the meaning of a function call is not
solely determined by the result it returns. Because of such side effects, the
meaning of an imperative program may be different depending on the order
in which function calls are executed.

An important aspect of functional programs is that they do not have side
effects and, hence, the result of evaluating an expression is determined only
by the parts of the expression – not by evaluation order. As a consequence,
functional programs can be evaluated with different evaluation strategies,
e.g., demand-driven evaluation. We discuss how demand-driven, so called
lazy evaluation can increase the potential for abstraction in Subsection 1.1.2.

Beforehand, we discuss another concept found in functional languages
that can increase the potential for abstraction: type polymorphism. It pro-
vides a mechanism for code reuse that is especially powerful in combination
with higher-order functions: in a functional program functions can be argu-
ments and results of other functions and can be manipulated just like data.
We discuss these concepts in detail in Subsection 1.1.1.

Polymorphic typing can be combined with class-based overloading to de-
fine similar operations on different types. Overloading of type constructors
rather than types is another powerful means for abstraction as we discuss in
Subsection 1.1.3.

We can write purely functional programs in an imperative programming
language by simply avoiding the use of side effects. The aspects sketched
above, however, cannot be transferred as easily to imperative programming
languages. In the remainder of this section we discuss each of these aspects
in detail, focusing on the programmers potential to increase the level of
abstraction.

2

1.1 Functional programming

1.1.1 Type polymorphism and higher-order functions
Imagine a function size that computes the size of a string. In Haskell strings
are represented as lists of characters and we could define similar functions
for computing the length of a list of numbers or the length of a list of Boolean
values. The definition of such length functions is independent of the type of
list elements. Instead of repeating the same definition for different types we
can define the function length once with a type that leaves the type of list
elements unspecified:

length :: [a] → Int
length [] = 0
length (: l) = 1 + length l

The type a used as argument to the list type constructor [] represents an
arbitrary type. There are infinitely many types for lists that we can pass to
length, e.g., [Int], String, [[Bool]] to name a few.

Type polymorphism allows us to use type variables that represent arbitrary
types, which helps to make defined functions more generally applicable.
This is especially useful in combination with another feature of functional
programming languages: higher-order functions. Functions in a functional
program can not only map data to data but may also take functions as ar-
guments or return them as result. Probably the simplest example of a high-
er-order function is the infix operator $ for function application:

($) :: (a → b) → a → b
f $ x = f x

At first sight, this operator seems dispensable, because we can always write
f x instead of f $ x. However, it is often useful to avoid parenthesis because
we can write f $ g $ h x instead of f (g (h x)). Another useful operator is
function composition2:

(◦) :: (b → c) → (a → b) → (a → c)
f ◦ g = λx → f (g x)

This definition uses a lambda abstraction that denotes an anonymous func-
tion. The operator for function composition is a function that takes two func-
tions as arguments and yields a function as result. Lambda abstractions have
the form λx → e where x is a variable and e is an arbitrary expression. The
variable x is the argument and the expression e is the body of the anonymous

2ASCII representaitons of mathematical symbols are given in Appendix A.1.

3

1 Declarative Programming

function. The body may itself be a function and the notation λx y z → e
is short hand for λx → λy → λz → e. While the first of these lambda ab-
stractions looks like a function with three arguments, the second looks like a
function that yields a function that yields a function. In Haskell, there is no
difference between the two. A function that takes many arguments is a func-
tion that takes one argument and yields a function that takes the remaining
arguments. Representing functions like this is called currying.3

There are a number of predefined higher-order functions for list process-
ing. In order to get a feeling for the abstraction facilities they provide, we
discuss a few of them here.

The map function applies a given function to every element of a given list:

map :: (a → b) → [a] → [b]
map f [] = []
map f (x : xs) = f x : map f xs

If the given list is empty then the result is also the empty list. If it contains at
least the element x in front of an arbitrary list xs of remaining elements then
the result of calling map is a non-empty list where the first element is com-
puted using the given function f and the remaining elements are processed
recursively. The type signature of map specifies that

• the argument type of the given function and the element type of the
given list and

• the result type of the given function and the element type of the result
list

must be equal. For example, map length ["Haskell", "Curry"] is a valid
application of map because the a in the type signature of map can be instanti-
ated with String which is defined as [Char] and matches the argument type
[a] of length. The type b is instantiated with Int and, therefore, the returned
list has the type [Int]. The application map length [7, 5] would be rejected
by the type checker because the argument type [a] of length does not match
the type Int of the elements of the given list.

The type signature is a partial documentation for the function map because
we get an idea of what map does whithout looking at its implementation. If
we do not provide the type signature, then type inference deduces it auto-
matically from the implementation.

Another predefined function on lists is dropWhile that takes a predicate,
i.e., a function with result type Bool, and a list and drops elements from the
list as long as they satisfy the given predicate.

3The term currying is named after the american mathematician and logician Haskell B. Curry.

4

1.1 Functional programming

dropWhile :: (a → Bool) → [a] → [a]
dropWhile p [] = []
dropWhile p (x : xs) = if p x then dropWhile p xs else x : xs

The result of dropWhile is the longest suffix of the given list that is either
empty or starts with an element that does not satisfy the given predicate.
We can instantiate the type variable a in the signature of dropWhile with
many different types. For example, the function dropWhile isSpace uses a
predefined function isSpace :: Char → Bool to remove preceding spaces from
a string, dropWhile (<10) removes a prefix of numbers that are less than
10 from a given list, and dropWhile ((<10) ◦ length) drops short lists from
a given list of lists, e.g., a list of strings. Both functions are defined as so
called partial application of the function dropWhile to a single argument – a
programming style made possible by currying.

Polymorphic higher-order functions allow to implement recurring idioms
independently of concrete types and to reuse such an implementation on
many different concrete types.

1.1.2 Lazy evaluation

With lazy evaluation arguments of functions are only computed as much as
necessary to compute the result of a function call. Parts of the arguments
that are not needed to compute a result are not demanded and may contain
divergent and/or expensive computations. For example, we can compute
the length of a list without demanding the list elements. In a programming
language with lazy evaluation like Haskell we can compute the result of the
following call to the length function:

length [⊥, fibonacci 100]

Neither the diverging computation ⊥ nor the possibly expensive computa-
tion fibonacci 100 are evaluated to compute the result 2.

This example demonstrates that lazy evaluation can be faster than eager
evaluation because unnecessary computations are skipped. Lazy compu-
tations may also use less memory when different functions are composed
sequentially:

do contents ← readFile "in.txt"
writeFile "out.txt" ◦ concat ◦map addSpace $ contents

where addSpace c | c ≡ ’.’ = ". "
| otherwise = [c]

5

1 Declarative Programming

This program reads the contents of a file in.txt, adds an additional space
character after each period, and writes the result to the file out.txt. The
function concat :: [[a]] → [a] concatenates a given list of lists into a single
list4. In an eager language, the functions map addSpace and concat would
both evaluate their arguments completely before returning any result. With
lazy evaluation, these functions produce parts of their output from partially
known input. As a consequence, the above program runs in constant space
and can be applied to gigabytes of input. It does not store the complete file
in.txt in memory at any time.

In a lazy language, we can build complex functions from simple parts that
communicate via intermediate data structures without sacrificing memory ef-
ficiency. The simple parts may be reused to form other combinations which
increases the modularity of our code.

Infinite data structures

With lazy evaluation we can not only handle large data efficiently, we can
even handle unbounded, i.e., potentially infinite data. For example, we can
compute an approximation of the square root of a number x as follows:

sqrt :: Float → Float
sqrt x = head ◦ dropWhile inaccurate ◦ iterate next $ x

where inaccurate y = abs (x− y ∗ y) > 0.00001
next y = (y + x / y) / 2

With lazy evaluation we can split the task of generating an accurate approx-
imation into two sub tasks:

1. generating an unbounded number of increasingly accurate approxima-
tions using Newton’s formula and

2. selecting a sufficiently accurate one.

Approximations that are more accurate than the one we select are not com-
puted by the function sqrt. In this example we use the function iterate to
generate approximations and dropWhile to dismiss inaccurate ones. If we
decide to use a different criterion for selecting an appropriate approxima-
tion, e.g., the difference of subsequent approximations, then we only need
to change the part that selects an approximation. The part of the algorithm
that computes them can be reused without change. Again, lazy evaluation
promotes modularity and code reuse.

4Definitions for library functions that are not defined in the text can be found in Appendix A.2.

6

1.1 Functional programming

In order to see another aspect of lazy evaluation we take a closer look at
the definition of the function iterate:

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

Conceptually, the call iterate f x yields the infinite list

[x, f x, f (f x), f (f (f x)), ...

The elements of this list are only computed if they are demanded by the
surrounding computation because lazy evaluation is non-strict. Although
the argument x is duplicated in the right-hand side of iterate it is evaluated
at most once because lazy evaluation is sharing the values that are bound
to variables once they are computed. If we call sqrt (fibonacci 100) then
the call fibonacci 100 is only evaluated once, although it is duplicated by the
definition of iterate.

Sharing of sub computations ensures that lazy evaluation does not per-
form more steps than a corresponding eager evaluation because computa-
tions bound to duplicated variables are performed only once even if they
are demanded after they are duplicated.

1.1.3 Class-based overloading
Using type polymorphism as described in Subsection 1.1.1 we can define
functions that can be applied to values of many different types. This is often
useful but sometimes insufficient. Polymorphic functions are agnostic about
those values that are represented by type variables in the type signature of
the function. For example, the length function behaves identically for every
instantiation for the element type of the input list. It cannot treat specific
element types different from others.

While this is a valuable information about the length function, we some-
times want to define a function that works for different types but can still
take different instantiations of the polymorphic arguments into account. For
example, it would be useful to have an equality test that works for many
types. However, the type

(≡) :: a → a → Bool

would be a too general type for an equality predicate ≡. It requires that we
can compare arbitrary types for equality, including functional types which
might be difficult or undecidable.

7

1 Declarative Programming

Class-based overloading provides a mechanism to give functions like ≡ a
reasonable type. We can define a type class that represents all types that
support an equality predicate as follows:

class Eq a where
(≡) :: a → a → Bool

This definition defines a type class Eq that can be seen as a predicate on types
in the sense that the class constraint Eq a implies that the type a supports the
equality predicate ≡. After the above declaration, the function ≡ has the
following type:

(≡) :: Eq a ⇒ a → a → Bool

and we can define other functions based on this predicate that inherit the
class constraint:

()≡) :: Eq a ⇒ a → a → Bool
x)≡ y = ¬ (x ≡ y)
elem :: Eq a ⇒ a → [a] → Bool
x ∈ [] = False
x ∈ (y : ys) = x ≡ y ∨ x ∈ ys

Here, the notation x ∈ xs is syntactic sugar for elem x xs, ¬ denotes negation
and ∨ disjunction on Boolean values.

In order to provide implementations of an equality check for specific types
we can instantiate the Eq class for them. For example, an Eq instance for
Booleans can be defined as follows.

instance Eq Bool where
False ≡ False = True
True ≡ True = True

≡ = False

Even polymorphic types can be given an Eq instance, if appropriate instances
are available for the polymorphic components. For example, lists can be
compared if their elements can.

instance Eq a ⇒ Eq [a] where
[] ≡ [] = True
(x : xs) ≡ (y : ys) = x ≡ y ∧ xs ≡ ys

≡ = False

8

1.1 Functional programming

Note the class constraint Eq a in the instance declaration for Eq [a]. The
first occurrence of ≡ in the second rule of the definition of ≡ for lists is
the equality predicate for values of type a while the second occurrence is a
recursive call to the equality predicate for lists.

Although programmers are free to provide whatever instance declarations
they choose, type-class instances are often expected to satisfy certain laws.
For example, every definition of ≡ should be an equivalence relation—re-
flexive, symmetric and transitive—to aid reasoning about programs that use
≡. More specifically, the following properties are usually associated with an
equality predicate.

x ≡ x
x ≡ y ⇒ y ≡ x
x ≡ y ∧ y ≡ z ⇒ x ≡ z

Defining an Eq instance where ≡ is no equivalence relation can result in
highly unintuitive program behaviour. For example, the elem function de-
fined above relies on reflexivity of ≡. Using elem with a non-reflexive Eq
instance is very likely to be confusing. The inclined reader may check that
the definition of ≡ for Booleans given above is an equivalence relation and
that the Eq instance for lists also satisfies the corresponding laws if the in-
stance for the list elements does.

Class-based overloading provides a mechanism to implement functions
that can operate on different types differently. This allows to implement func-
tions like elem that are not fully polymorphic but can still be applied to values
of many different types. This increases the possibility of code reuse because
functions with similar (but not identical) behaviour on different types can
be implemented once and reused for every suitable type instead of being
implemented again for every different type.

Overloading type constructors

An interesting variation on the ideas discussed in this section are so called
type constructor classes. In Haskell, polymorphic type variables can not only
abstract from types but also from type constructors. In combination with
class-based overloading, this provides a powerful mechanism for abstraction.

Reconsider the function map :: (a → b) → [a] → [b] defined in Sub-
section 1.1.1 which takes a polymorphic function and applies it to every
element of a given list. Such functionality is not only useful for lists. A
similar operation can be implemented for other data types too. In order to
abstract from the data type whose elements are modified, we can use a type
variable to represent the corresponding type constructor.

9

1 Declarative Programming

In Haskell, types that support a map operation are called functors. The cor-
responding type class abstracts over the type constructor of such types and
defines an operation fmap that is a generalised version of the map function
for lists.

class Functor f where
fmap :: (a → b) → f a → f b

Like the Eq class, the type class Functor has a set of associated laws that are
usually expected to hold for definitions of fmap:

fmap id ≡ id
fmap (f ◦ g) ≡ fmap f ◦ fmap g

Let us check whether the following Functor instance for lists satisfies them.

instance Functor [] where
fmap = map

We can prove the first law by induction over the list structure. The base case
considers the empty list:

map id []
≡ { definition of map }

[]
≡ { definition of id }

id []

The induction step deals with an arbitrary non-empty list:

map id (x : xs)
≡ { definition of map }

id x : map id xs
≡ { definition of id }

x : map id xs
≡ { induction hypothesis }

x : id xs
≡ { definition of id (twice) }

id (x : xs)

We conclude map id ≡ id, hence, the Functor instance for lists satisfies the
first functor law. The second law can be verified similarly.

10

1.1 Functional programming

As an example for a different data type that also supports a map operation
consider the following definition of binary leaf trees5.

data Tree a = Empty | Leaf a | Fork (Tree a) (Tree a)

A binary leaf tree is either empty, a leaf storing an arbitrary element, or
an inner node with left and right sub trees. We can apply a polymorphic
function to every element stored in a leaf using fmap:

instance Functor Tree where
fmap Empty = Empty
fmap f (Leaf x) = Leaf (f x)
fmap f (Fork l r) = Fork (fmap f l) (fmap f r)

The proof that this definition of fmap satisfies the functor laws is left as an ex-
ercise. More interesting is the observation that we can now define non-trivial
functions that can be applied to both lists and trees. For example, the func-
tion fmap (length ◦ dropWhile isSpace) can be used to map a value of type
[String] to a value of type [Int] and also to map a value of type Tree String
to a value of type Tree Int.

The type class Functor can not only be instantiated by polymorphic data
types. The partially applied type constructor → for function types is also an
instance of Functor:

instance Functor (a →) where
fmap = (◦)

For f ≡ (a →) the function fmap has the following type.

fmap :: (b → c) → (a →) b → (a →) c

If we rewrite this type using the more conventional infix notation for → we
obtain the type (b → c) → (a → b) → (a → c) which is exactly the type
of the function composition operator (◦) defined in Subsection 1.1.1. It
is tempting to make use of this coincidence and define the above Functor
instance without further ado. However, we should check the functor laws
in order to gain confidence in this definition. The proofs can be found in
Appendix B.1.

Type constructor classes provide powerful means to overload functions.
This results in increased potential for code reuse – sometimes to a surpris-
ing extend. For example, we can implement an instance of the Functor type

5Binary leaf trees are binary trees that store values in their leaves.

11

1 Declarative Programming

class for type constructors like (a →) where we would not expect such possi-
bility at first sight. The following subsection presents another type class that
can be instantiated for many different types leading to a variety of different
usage scenarios that can share identical syntax.

Monads

Monads are a very important abstraction mechanism in Haskell – so impor-
tant that Haskell provides special syntax to write monadic code. Besides
syntax, however, monads are nothing special but instances of an ordinary
type class.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

Like functors, monads are unary type constructors. The return function con-
structs a monadic value of type m a from a non-monadic value of type a.
The function >>=, pronounced bind, takes a monadic value of type m a and
a function that maps the wrapped value to another monadic value of type
m b. The result of applying >>= is a combined monadic value of type m b.

The first monad that programmers come across when learning Haskell is
often the IO monad and in fact, a clear separation of pure computations
without side effects and input/output operations was the main reason to add
monads to Haskell. In Haskell, functions that interact with the outside world
return their results in the IO monad, i.e., their result type is wrapped in the
type constructor IO. Such functions are often called IO actions to emphasise
their imperative nature and distinguish them from pure functions. There are
predefined IO actions getChar and putChar that read one character from
standard input and write one to standard output respectively.

getChar :: IO Char
putChar :: Char → IO ()

The IO action putChar has no meaningful result but is only used for its side
effect. Therefore, it returns the value () which is the only value of type ().

We can use these simple IO actions to demonstrate how to write more
complex monadic actions using the functions provided by the type class
Monad. For example, we can use >>= to sequence the actions that read and
write one character:

copyChar :: IO ()
copyChar = getChar >>= λc → putChar c

12

1.1 Functional programming

This combined action will read one character from standard input and di-
rectly write it back to standard output, when it is executed. It can be written
more conveniently using Haskell’s do-notation as follows.

copyChar :: IO ()
copyChar = do c ← getChar

putChar c

In general, do x ← a; f x is syntactic sugar for a >>= λx → f x and arbitrarily
many nested calls to >>= can be chained like this in the lines of a do-block.
The imperative flavour of the special syntax for monadic code highlights
the historical importance of input/output for the development of monads in
Haskell.

It turns out that monads can do much more than just sequence input/output
operations. For example, we can define a Monad instance for lists and use
do-notation to elegantly construct complex lists from simple ones.

instance Monad [] where
return x = [x]
l >>= f = concat (map f l)

The return function for lists yields a singleton list and the >>= function maps
the given function on every element of the given list and concatenates all
lists in the resulting list of lists. We can employ this instance to compute a
list of pairs from all elements in given lists.

pair :: Monad m ⇒ m a → m b → m (a, b)
pair xs ys = do x ← xs

y ← ys
return (x, y)

For example, the call pair [0, 1] [True, False] yields a list of four pairs, viz.,
[(0, True), (0, False), (1, True), (1, False)]. We can write the function pair
without using the monad operations6 but the definition with do-notation
is arguably more readable.

The story does not end here. The data type for binary leaf trees also has a
natural Monad instance:

instance Monad Tree where
return = Leaf
t >>= f = mergeTrees (fmap f t)

6λxs ys → concat (map (λx → concat (map (λy → [(x, y)]) ys)) xs)

13

1 Declarative Programming

This instance is similar to the Monad instance for lists. It uses fmap instead
of map and relies on a function mergeTrees that computes a single tree from
a tree of trees.

mergeTrees :: Tree (Tree a) → Tree a
mergeTrees Empty = Empty
mergeTrees (Leaf t) = t
mergeTrees (Fork l r) = Fork (mergeTrees l) (mergeTrees r)

Intuitively, this function takes a tree that stores other trees in its leaves and
just removes the Leaf constructors of the outer tree structure. So, the >>=
operation for trees replaces every leaf of a tree with the result of applying
the given function to the stored value.

Now we benefit from our choice to provide such a general type signature
for the function pair. We can apply the same function pair to trees instead
of lists to compute a tree of pairs instead of a list of pairs. For example, the
call pair (Fork (Leaf 0) (Leaf 1)) (Fork (Leaf True) (Leaf False)) yields the
following tree with four pairs.

Fork (Fork (Leaf (0, True))
(Leaf (0, False)))

(Fork (Leaf (1, True))
(Leaf (1, False)))

Like functors, monads allow programmers to define very general functions
that they can use on a variety of different data types. Monads are more
powerful than functors because the result of the >>= operation can have a
different structure than the argument. When using fmap the structure of the
result is always the same as the structure of the argument – at least if fmap
satisfies the functor laws.

The Monad type class also has a set of associated laws. The return function
must be a left- and right-identity for the >>= operator which needs to satisfy
an associative law.

return x >>= f ≡ f x
m >>= return ≡ m
(m >>= f) >>= g ≡ m >>= (λx → f x >>= g)

These laws ensure a consistent semantics of the do-notation and allow equa-
tional reasoning about monadic programs. The verification of the monad
laws for the list instance is left as an exercise for the reader. The proof for
the Tree instance is in Appendix B.2.

14

1.2 Functional logic programming

Summary
In this section we have seen different abstraction mechanisms of functional
programming languages that help programmers to write more modular and
reusable code. Type polymorphism (Section 1.1.1) allows to write functions
that can be applied to a variety of different types because they ignore parts
of their input. This feature is especially useful in combination with high-
er-order functions that allow to abstract from common programming pat-
terns to define custom control structures like, e.g., the map function on lists.
Lazy evaluation (Subsection 1.1.2) increases the modularity of algorithms
because demand driven evaluation often avoids storing intermediate results
which allows to compute with infinite data. With class-based overloading
(Subsection 1.1.3) programmers can implement one function that has differ-
ent behaviour on different data types such that code using these functions
can be applied in many different scenarios. We have seen two examples for
type constructor classes, viz., functors and monads and started to explore
the generality of the code they allow to write. Finally, we have seen that
equational reasoning is a powerful tool to think about functional programs
and their correctness.

1.2 Functional logic programming

Functional programming, discussed in the previous section, is one impor-
tant branch in the field of declarative programming. Logic programming is
another. Despite conceptual differences, research on combining these two
paradigms has shown that their conceptual divide is not as big as one might
expect. The programming language Curry unifies lazy functional program-
ming as in Haskell with essential features of logic programming. We use
Curry to introduce logic programming features for two reasons:

1. its similarity to Haskell allows us to discuss new concepts using famil-
iar syntax, and

2. the remainder of this thesis builds on features of both functional and
logic programming.

Therefore, a multi-paradigm language is a natural and convenient choice.
The main extensions of Curry w.r.t. the pure functional language Haskell are

• unbound variables,

• implicit non-determinism, and

15

1 Declarative Programming

• built-in search.

In the remainder of this section we discuss unbound variables (Section 1.2.1)
and non-determinism (Section 1.2.2) and show how they interact with fea-
tures of functional programming discussed in Section 1.1. We will give a
special account to lazy evaluation which allows to relate the concepts of un-
bound variables and non-determinism in an interesting way (Section 1.2.3)
and which forms an intricate combination with implicit non-determinism
(Section 1.2.4). Built-in search (Section 1.2.5) allows to enumerate different
results of non-deterministic computations and we discuss how programmers
can influence the search order by implementing search strategies in Curry.

1.2.1 Unbound variables

The most important syntactic extension of Curry compared to Haskell are
declarations of unbound variables. Instead of binding variables to expres-
sions, Curry programmers can state that the value of a variable is unknown
by declaring it free. An unbound variable will be instantiated during exe-
cution according to demand: just like patterns in the left-hand side of func-
tions cause unevaluated expressions to be evaluated, they cause unbound
variables to be bound. Such instantiation is called narrowing because the
set of values that the variable denotes is narrowed to a smaller set containing
only values that match the pattern.

Narrowing w.r.t. patterns is not the only way how unbound variables can
be bound in Curry. We can also use constraints to constrain the set of their
possible instantiations. We discuss constraint programming in Section 1.2.6
but Curry provides a specific kind of constraints that is worth mentioning
here: term-equality constraints. The built-in7 function =̈ :: a → a → Success
constrains two data terms, which are allowed to contain unbound variables,
to be equal. The type Success of constraints is similar to the unit type ().
There is only one value success of type Success but we cannot pattern match
on this value. If the arguments of =̈ cannot be instantiated to equal terms
then the corresponding call fails, i.e., does not yield a result. We can use
constraints—i.e., values of type Success—in guards of functions to specify
conditions on unbound variables.

7The fact that =̈ needs to be built into most Curry systems is due to the lack of type classes in
Curry. This is also the reason for the too general type which does not prevent programmers
to constrain functions to be equal on the type level. There is an experimental implementa-
tion of the Münster Curry Compiler with type classes which, however, (at the time of this
writing) also does not restrict the type of =̈.

16

1.2 Functional logic programming

We demonstrate both narrowing and equality constraints by means of a
simple example. The function last which computes the last element of a
non-empty list can be defined in Curry as follows.

last :: [a] → a
last l | xs ++ [x] =̈ l

= x
where x, xs free

Instead of having to write a recursive definition explicitly, we use the prop-
erty that last l equals x iff there is a list xs such that xs ++ [x] equals l. The
possibility to use predicates that involve previously defined operations to
define new ones improves the possibility of code reuse in functional logic
programs. Unbound Curry variables are considered existentially quantified
and the evaluation mechanism of Curry includes a search for possible instan-
tiations. During the evaluation of a call to last the unbound variable xs is
narrowed by the function ++ to a list that is one element shorter than the list
l given to last. The result of ++ is a list of unbound variables that matches
the length of l and whose elements are constrained to equal the elements
of l. As a consequence, the variable x is bound to the last element of l and
then returned by the function last.

1.2.2 Non-determinism
The built-in search for instantiations of unbound variables can lead to differ-
ent possible instantiations and, hence, non-deterministic results of computa-
tions. Consider, for example, the following definition of insert:

insert :: a → [a] → [a]
insert x l | xs ++ ys =̈ l

= xs ++ x : ys
where xs, ys free

If the argument l of insert is non-empty then there are different possible bind-
ings for xs and ys such that xs ++ ys =̈ l. Consequently, the result of insert
may contain x at different positions, i.e., there is more than one possible
result when applying insert to a non-empty list. Mathematically, insert does
not denote a function that maps arguments to deterministic results but a
relation that specifies a correspondence of arguments to possibly non-deter-
ministic results. To avoid the contradictory term non-deterministic function
we call insert (and other defined operations that may have more than one
result) non-deterministic operation.

17

1 Declarative Programming

Traditionally, Curry systems use backtracking to enumerate all possible
results of non-deterministic operations. For example, if we issue the call
insert 1 [2, 3] in a Curry system, we can query one solution after the other
interactively.

> insert 1 [2,3]
[1,2,3]
More solutions? [Y(es)/n(o)/a(ll)] yes
[2,1,3]
More solutions? [Y(es)/n(o)/a(ll)] all
[2,3,1]

If we are not interested in all results of a computation, we can just answer
no to the interactive query, which is especially useful for computations with
infinitely many results.

Variable instantiations are not the only source of non-determinism in Curry
programs. As the run-time system needs to handle non-determinism anyway,
Curry also provides a direct way to define non-deterministic operations. Un-
like in Haskell, the meaning of defined Curry operations does not depend
on the order of their defining rules. While in Haskell the rules of a function
are tried from top to bottom committing to the first matching rule, in Curry
the rules of an operation are tried non-deterministically. As a consequence,
overlapping rules lead to possibly non-deterministic results.

We can use overlapping rules to give an alternative implementation of the
insert operation.

insert :: a → [a] → [a]
insert x l = x : l
insert x (y : ys) = y : insert x ys

This definition either inserts the given element x in front of the given list l
or—if l is non-empty—inserts x in the tail ys of l, leaving the head y in its
original position.

The advantage of such implicit non-determinism (as opposed to explicitly
using, e.g., lists to represent multiple results) is that the source code does
not contain additional combinators to handle non-determinism which eases
the composition of more complex non-deterministic operations from simpler
ones. For example, we can compute permutations of a given list non-deter-
ministically by recursively inserting all its elements in an empty list.

permute :: [a] → [a]
permute [] = []
permute (x : xs) = insert x (permute xs)

18

1.2 Functional logic programming

With an explicit representation of non-determinism, we would need to use a
separate data structure that models non-deterministic results or use monadic
syntax to hide the actual structure used (cf. the definition of the pair function
in Subsection 1.1.3). Implicit non-determinism helps to focus on algorithmic
details because no book-keeping syntax interferes with a non-deterministic
algorithm.

1.2.3 Lazy non-determinism
In the previous subsection we have seen that the instantiation of unbound
variables can lead to non-deterministic computations. We can stress this
observation and define an operation ? for non-deterministic choice based
on unbound variables:

(?) :: a → a → a
x ? y = ifThenElse b x y

where b free
ifThenElse :: Bool → a → a → a
ifThenElse True x = x
ifThenElse False x = x

It is well-known for a long time that every Curry program with overlapping
rules can be translated into an equivalent Curry program without overlap-
ping rules by using ? for non-deterministic choice. Therefore, one could
drop support for direct non-determinism via overlapping rules without re-
stricting the class of programs that can be written.

A more recent discovery is that one can do the opposite too: overlapping
rules suffice to model narrowing of unbound variables. This observation
essentially relies on laziness and the remainder of this subsection explains
the details of combining laziness and non-determinism to model narrowing.

Suppose our language would support non-determinism via overlapping
rules but no declarations of unbound variables. We could redefined the
operation ? using overlapping rules instead of an unbound variable.

(?) :: a → a → a
x ? = x

? x = x

As there is no pattern matching, both rules are trivially overlapping and,
therefore, executed non-deterministically when ? is called. If the first rule is
chosen ? returns the first argument, if the second rule is chosen it returns the
second argument.

19

1 Declarative Programming

Narrowing an unbound variable means to bind it to a pattern when it is
demanded by the evaluation of a defined operation. We can model this pro-
cess of binding a variable by using a non-deterministic operation that can be
evaluated to every possible binding of the variable. If such an operation—we
call it non-deterministic generator—is matched with a pattern then a match-
ing binding will be chosen non-deterministically. An unbound variable is
represented by an unevaluated generator and evaluating a generator to a
constructor corresponds to the process of binding the represented variable
to this constructor.

An unbound variable of type Bool can be represented by the non-deter-
ministic generator bool.

bool :: Bool
bool = True ? False

Every definition that uses free variables of type Bool can use bool instead.
For example, the call ¬ b where b free narrows the variable b to True or
False non-deterministically and yields either False or True. Similarly, the call
¬ b where b = bool evaluates b to True or False non-deterministically and
yields either False or True.

This idea generalises to recursive data, where we see the importance of
laziness. For example, we can define an operation blist that represents un-
bound variables of type [Bool].

blist :: [Bool]
blist = [] ? (bool : blist)

The blist generator can evaluate to every possible list of Booleans non-deter-
ministically. Without laziness its evaluation would not terminate, because
there are infinitely many such lists. With lazy evaluation, however, it is only
evaluated as much as demanded – just like an unbound variable of the same
type is only narrowed as much as demanded.

If we apply the head function to the blist generator then we obtain two
non-deterministic results, viz., True or False, and the tail of blist is not eval-
uated – just like the tail of an unbound variable of type [Bool] is not bound
by the head function. Besides pointing out the similarity of lazy evaluation
and narrowing of unbound variables, this example also demonstrates a dif-
ference: unbound variables can be results of computations in Curry. In
fact, the result of applying the head function to an unbound variable of type
[Bool] is an unbound variable of type Bool. Unevaluated generators that are
part of the result of a computation are evaluated by the eval-print loop of a

20

1.2 Functional logic programming

Curry system whereas unbound variables can be shown to the user without
instantiating them with all possible bindings.

Another difference of unbound variables to non-deterministic generators
is that the latter cannot be constrained deterministically using constraint pro-
gramming. For example, the constraint x =̈ x where x free can be solved
deterministically but x =̈ x where x = bool is solved non-deterministically
with two successful derivations. The call x =̈ x where x = blist even de-
scribes infinitely many non-deterministic successful derivations.

1.2.4 Call-time choice

When comparing unbound variables and non-deterministic generators we
have made an implicit assumption on the meaning of variable bindings. To
illustrate this assumption, consider the call ¬ x ≡ x where x free. What are
the possible results of this call? From a mathematical point of view, ¬ x ≡ x
should clearly be False regardless of the instantiation of x. And indeed, the
intuition behind unbound variables is that they denote unknown values as
pointed out in Section 1.2.1. There is no possible instantiation of x to a
value such that the call ¬ x ≡ x yields True.

For the modeling of narrowing via generators to be correct, it is required
that ¬ x ≡ x where x = bool also cannot yield True. But now, x is not an
unbound variable but bound to an expression that can evaluate to True or
False non-deterministically. While bool ≡ bool can evaluate to True or False
non-deterministically because the two occurrences of bool denote indepen-
dent generators, binding the result of a single generator to a variable causes
this variable to denote the same value wherever it occurs.

This behaviour is called call-time choice and corresponds to an eager eval-
uation of variable bindings. If we first evaluate the binding of x to True
or False non-deterministically and then evaluate either ¬ True ≡ True or
¬ False ≡ False we obtain the result False in every non-deterministic branch
of the computation. In Curry, variable bindings are evaluated on demand
but still the computed results are as if they were evaluated eagerly. This
behaviour corresponds to sharing of variable bindings in Haskell (cf. Sec-
tion 1.1.2). If a duplicated variable is bound to an expression, the expression
is evaluated at most once and also corresponding non-deterministic choices
are performed at most once.

Due to call-time choice, not only unbound variables denote values but
every variable—even if duplicated and bound to a non-deterministic expres-
sion—denotes one deterministic value in each non-deterministic branch of
the computation.

21

1 Declarative Programming

This property of variables allows to elegantly express search problems us-
ing Curry. Because of lazy evaluation with call-time choice, Curry program-
mers can express search problems in the intuitive generate-and-test style
whereas they are solved using the more efficient test-of-generate pattern.
In the generate-and-test approach, programmers implement a non-determin-
istic generator for candidate solutions and a test predicate to filter admissible
results independently. Due to lazy evaluation, however, candidate solutions
are not computed in advance but only as demanded by the test predicate
which can lead to a sophisticated interleaving of candidate generation and
testing. Being able to compose search programs in this way without loosing
the efficiency of an intricate interleaved approach is a major benefit of lazi-
ness. In later chapters, we will use this approach to generate test cases on
demand but let us first discuss it using a simpler example.

The n-queens problem poses the question how to place n queens on an
n × n chessboard such that no queen can capture another. We can solve
this problem elegantly by generating placements of queens non-determinis-
tically and check whether all placed queens are safe. In order to choose a
suitable representation of a placement of queens we observe that it is imme-
diately clear that no two queens are allowed to be in the same row or in the
same column of the chess board. Hence, we can represent a placement as
permutation of [1 . . n] where the number qi at position i of the permutation
denotes that a queen should be placed at row qi in column i. With such
a representation we only need to check whether queens can capture each
other diagonally. Two queens are on the same diagonal iff

∃ 1 ! i < j ! n : j− i = |qj − qi|

We can solve the n-queens problem in Curry by using this formula to check
if placements of queens are safe. We generate candidate placements by
reusing the permute operation defined in Section 1.2.2 to compute an ar-
bitrary permutation of [1 . . n] and return it if all represented queens are
placed safely. Clearly, all occurrences of qs in the definition of queens
must denote the same placement of queens. Therefore, this definition is
only sensible because of call-time choice semantics. We use the function
zip :: [a] → [b] → [(a, b)] to pair every queen—i.e., the row in which it
should be placed—with its corresponding column.

queens :: Int → [Int]
queens n | safe (zip [1 . . n] qs) = qs

where qs = permute [1 . . n]

22

1.2 Functional logic programming

Figure 1.1: Safe placement of 8 queens on an 8× 8 chessboard

The predicate safe now checks the negation of the above formula: the dif-
ference of all columns i < j must not equal the absolute difference of the
corresponding rows.

safe :: [(Int, Int)] → Bool
safe qs = and [j− i)≡ abs (qj − qi) | (i, qi) ← qs, (j, qj) ← qs, i < j]

The function and :: [Bool] → Bool implements conjunction on lists and we
use a list comprehension to describe the list of all conditions that need to
be checked. List comprehensions are similar to monadic do-notation (see
Section 1.1.3) and simplify the construction of complex lists.

If we execute queens 8 in a Curry interpreter it prints a solution—depicted
graphically in Figure 1.1—almost instantly:

> queens 8
[8,4,1,3,6,2,7,5]
More solutions? [Y(es)/n(o)/a(ll)] no

The call queens 10 also has acceptable run time but queens 15 does not finish
within 60 seconds. We will see how to improve the efficiency of this solu-
tion (without sacrificing its concise specification) using constraint program-
ming (see Section 1.2.6) but first we investigate the given generate-and-test
program.

Although the algorithm reads as if it would generate every permutation of
[1 . . n], lazy evaluation helps to save at least some of the necessary work to
compute them. To see why, we observe that the safe predicate is lazy, i.e.,
it does not necessarily demand the whole placement to decide whether it

23

1 Declarative Programming

is valid. We can apply safe to (some) partial lists and still detect that they
represent invalid placements. For example, the call safe ((1, 1) : (2, 2) :⊥)
yields False. As a consequence, all permutations of [1 . . n] that start with 1
and 2 are rejected simultaneously and not computed any further which saves
the work to generate and test (n− 2)! invalid placements.

In order to make this possible, the permute operation needs to produce
permutations lazily. Thoroughly investigating its source code shown in Sec-
tion 1.2.2 can convince us that it does generate permutations lazily because
the recursive call to insert is underneath a (:) constructor and only executed
on demand. But we can also check the laziness of permute experimentally. If
we demand a complete permutation of the list [1, 2, 3] by calling the length
function on it then we can observe the result 3 six times, once for each
permutation. If we use the head function, which does not demand the com-
putation of the tail of a permutation, instead of length then we can observe
that permutations are not computed completely: we only obtain three re-
sults, viz., 1, 2, and 3, without duplicates. As a consequence, laziness helps
to prune the search space when solving the n-queens problem because the
permute operation generates placements lazily and the safe predicate checks
them lazily.

Depending on the exact laziness properties of the generate and test op-
erations, laziness often helps to prune significant parts of the search space
when solving generate-and-test problems. This has sometimes noticeable
consequences for the efficiency of a search algorithm although it usually
does not improve its theoretical complexity.

1.2.5 Search
Implicit non-determinism is convenient to implement non-deterministic algo-
rithms that do not care about the non-deterministic choices they make, i.e., if
programmers are indifferent about which specific solution is computed. But
what if we want to answer the following questions by reusing the operations
defined previously:

• How many permutations of [1 . . n] are there?

• Is there a placement of 3 queens on a 3× 3 chessboard?

With the tools presented up to now, we cannot compute all solutions of
a non-deterministic operation inside a Curry program or even determine if
there are any. Without further language support we would need to resort to
model non-determinism explicitly like in a purely functional language, e.g.,
by computing lists of results.

24

1.2 Functional logic programming

Therefore Curry supports an operation getAllValues :: a → IO [a] that
converts a possibly non-deterministic computation into a list of all its results.
The list is returned in the IO monad (see Section 1.1.3) because the order of
the elements in the computed list is unspecified and may depend on external
information, e.g., which compiler optimisations are enabled.

We can use getAllValues to answer both of the above questions using
Curry programs. The following program prints the number 6 as there are six
permutations of [1 . . 3].

do ps ← getAllValues (permute [1 . . 3])
print (length ps)

In order to verify that there is no placement of 3 queens on a 3× 3 chess-
board we can use the following code which prints True.

do qs ← getAllValues (queens 3)
print (null qs)

The function getAllValues uses the default backtracking mechanism to enu-
merate results. Backtracking corresponds to depth-first search and can be
trapped in infinite branches of the search space. For example, the following
program will print [[], [True], [True, True], [True, True, True]].

do ls ← getAllValues blist
print (take 4 ls)

Indeed, backtracking will never find a list that contains False when searching
for results of the blist generator (see Section 1.2.3).

To overcome this limitation, some Curry implementations provide another
search function getSearchTree :: a → IO (SearchTree a) which is similar to
getAllValues but returns a tree representation of the search space instead of
a list of results. The search space is modeled as value of type SearchTree a
which can be defined as follows8.

data SearchTree a = Failure | Value a | Choice [SearchTree a]

The constructor Failure represents a computation without results, Value a de-
notes a single result, and Choice ts represents a non-deterministic choice be-
tween the solutions in the sub trees ts. For example, the call getSearchTree bool
returns the search tree Choice [Value True, Value False].

As getSearchTree returns the search tree lazily we can define Curry func-
tions to traverse a value of type SearchTree a to guide the search and steer

8The definition of the SearchTree type varies among different Curry implementations.

25

1 Declarative Programming

the computation. If we want to use breadth-first search to compute a fair
enumeration of an infinite search space instead of backtracking, we can use
the following traversal function.

bfs :: SearchTree a → [a]
bfs t = [x | Value x ← queue]

where queue = t : runBFS 1 queue
runBFS :: Int → [SearchTree a] → [SearchTree a]
runBFS n ts

| n ≡ 0 = []
| n > 0 = case ts of

Choice us : vs → us ++ runBFS (n− 1 + length us) vs
: vs → runBFS (n− 1) vs

The bfs function produces a lazy queue9 containing all nodes of the search
tree in level order and selects the Value nodes from this list. We can use it
to compute a fair enumeration of the results of blist. The following program
prints the list [[], [True], [False], [True, True], [True, False]].

do t ← getSearchTree blist
print (take 5 (bfs t))

Every list of Booleans will be eventually enumerated when searching for
results of blist using breadth-first search.

Curry’s built-in search provides means to reify the results of implicitly
non-deterministic computations into a deterministic data structure and pro-
cess them as a whole. With access to a lazy tree representation of the search
space, programmers can define their own search strategies and steer the
computation towards the parts of the search space that are explored by their
traversal function. Especially, they can implement fair search strategies like
breadth-first search.

1.2.6 Constraints
A key feature of logic programming is the ability to compute with unbound
variables that are bound according to conditions. In Subsection 1.2.1 we
have seen two ways to bind variables, viz,. narrowing w.r.t. patterns and
term-equality constraints. Narrowing can refine the possible values of an
unbound variable incrementally while an equality constraint determines a
unique binding.

9which is terminated by itself to enqueue new elements at the end

26

1.2 Functional logic programming

For specific types, the idea of restricting the possible values of a variable
using constraints can be generalised to arbitrary domain specific predicates.
In order to solve such domain specific constraints, sophisticated solver im-
plementations can be supplied transparently, i.e., invisible to programmers.
For example, an efficient solver for the Boolean satisfiability problem could
be incorporated into Curry together with a type to represent Boolean for-
mula where unknown Boolean variables are just represented as unbound
variables of this type. Or complex algorithms to solve non-linear equations
over real numbers could be integrated to support unbound variables in arith-
metic computations.

Finite-domain constraints express equations and in-equations over natural
numbers with a bounded domain. They can be used to solve many kinds
of combinatorial problems efficiently. The key to efficiency is to restrict the
size of the search space by incorporating as much as possible information
about unbound variables deterministically before instantiating them to their
remaining possible values.

As an example for constraint programming, we improve the n-queens
solver shown in Section 1.2.4 using finite-domain constraints. Instead of
generating a huge search space by computing placements of queens and
checking them afterwards, we define a placement as list of unbound vari-
ables, constrain them such that all placed queens are safe, and search for
possible solutions afterwards.

The following queens operation implements this idea in Curry.

queens :: Int → [Int]
queens n | domain qs 1 n

& all_different qs
& safe (zip [1 . . n] qs)
& labeling [FirstFailConstrained] qs
= qs

where qs = [unknown | ← [1 . . n]]

This definition uses the predefined operation unknown—which yields an un-
bound variable—to build a list of unbound variables of length n. The func-
tion & denotes constraint conjunction and is used to specify

• that the variables should have values between 1 and n using the con-
straint domain qs 1 n,

• that all variables should have different values using a predefined con-
straint all_different, and

• that all queens should be placed safely.

27

1 Declarative Programming

Figure 1.2: Safe placement of 15 queens on an 15× 15 chessboard

Finally, the labeling constraint instantiates the variables with their possible
values non-deterministically. The list given as first argument to labeling spec-
ifies a strategy to use during instantiation, i.e., the order in which variables
are bound. The strategy FirstFailConstrained specifies that a variable with the
least number of possible values and the most attached constraints should be
instantiated first to detect possible failures early.

The predicate safe that checks whether queens are placed safely is similar
to the version presented in Section 1.2.4.

safe :: [(Int, Int)] → Success
safe qs = andC [(j− i))≡# (qj −# qi) & (j− i))≡# (qi −# qj)

| (i, qi) ← qs, (j, qj) ← qs, i < j]

We use Success as result type because the condition is specified as a finite-
domain constraint. The function andC implements conjunction on lists of
constraints. As there is no predefined function to compute the absolute

28

1.3 Chapter notes

value of finite-domain variables, we express the condition as two dis-equali-
ties. The operations with an attached # work on finite-domain variables and
otherwise resemble their counterparts.

This definition of queens is only slightly more verbose than the one given
previously. It uses essentially the same condition to specify which place-
ments of queens are safe. The algorithm that uses this specification to com-
pute safe placements of queens is hidden in the run-time system.

Unlike the generate-and-test implementation, the constraint-based imple-
mentation of the n-queens solver yields a solution of the 15-queens problem
instantly. Evaluating the call queens 15 in the Curry system PAKCS yields
the placement [1, 3, 5, 2, 10, 12, 14, 4, 13, 9, 6, 15, 7, 11, 8] which is depicted
graphically in Figure 1.2.

Constraint programming increases the performance of search algorithms
significantly, at least in specific problem domains. It is especially useful
for arithmetic computations with unknown information because arithmetic
operations usually do not support narrowing of unbound variables.

Summary
Logic programming complements functional programming in the declarative
programming field. It provides programmers with the ability to compute with
unknown information represented as unbound variables. Such variables are
bound during execution by narrowing them w.r.t. patterns or by term-equal-
ity or other domain specific constraints.

Defining operations by conditions on unknown data increases the amount
of code reuse in software. Combining features like polymorphic functions
from functional languages with logic features like unbound variables and
non-determinism allows for a very concise definition of search algorithms.

In this section we have discussed the essential features of logic program-
ming in the context of the multi-paradigm declarative programming language
Curry. Like Haskell, Curry uses lazy evaluation and we have discussed the
intricacies of combining laziness with non-determinism that lead to the stan-
dard call-time choice semantics of functional logic programs.

1.3 Chapter notes

Hughes has argued previously why functional programming matters for de-
veloping modular and reusable software (1989). The benefits of combining
functional and logic programming for program design have been investigated
by Antoy and Hanus (2002). They have also shown the correspondence of

29

1 Declarative Programming

narrowing and lazy non-determinism emphasised in Section 1.2.3 (Antoy
and Hanus 2006).

30

Bibliography
Antoy, Sergio, and Michael Hanus. 2002. Functional logic design patterns.

In Proc. of the 6th International Symposium on Functional and Logic Pro-
gramming (FLOPS 2002), 67–87. Springer LNCS 2441.

———. 2006. Overlapping rules and logic variables in functional logic pro-
grams. In Proceedings of the International Conference on Logic Program-
ming (ICLP 2006), 87–101. Springer LNCS 4079.

Hughes, John. 1989. Why functional programming matters. Computer Jour-
nal 32(2):98–107.

31

A Source Code
A.1 ASCII versions of mathematical symbols

The source code in this thesis is typeset using mathematical notation. The
following table shows how to type the non-standard symbols.

⊥ undefined f ◦ g f . g
λx → e \x -> e do x ← a; b do x <- a; b

x ≡ y x == y x)≡ y x /= y
x ! y x <= y x " y x >= y
x =̈ y x =:= y xs ++ ys xs ++ ys
¬ x not x x ∧ y x && y

x ∨ y x || y x ∈ xs x ‘elem‘ xs
a >>= f a >>= f () ()
x)≡# y x /=# y x−# y x -# y

A.2 Definitions of used library functions

Here we list definitions of library functions that are used but not defined in
the text.

The function ⊥ denotes a non-terminating computation.

⊥ :: a
⊥ = ⊥

The concat function merges a list of lists into a single list.

concat :: [[a]] → [a]
concat [] = []
concat (l : ls) = l ++ concat ls

The absolute value of an integer can be computed using abs.

abs :: Int → Int
abs n = if n " 0 then n else (−n)

There are Boolean functions for negation, conjunction, and disjunction.

32

A.2 Definitions of used library functions

¬ :: Bool → Bool
¬ True = False
¬ False = True
(∧), (∨) :: Bool → Bool → Bool
True ∧ x = x
False ∧ = False
True ∨ = True
False ∨ x = x

The zip function pairs the elements of given lists.

zip :: [a] → [b] → [(a, b)]
zip [] = []
zip (:) [] = []
zip (x : xs) (y : ys) = (x, y) : zip xs ys

The function take selects a prefix of given length from a given list.

take :: Int → [a] → [a]
take [] = []
take n (x : xs) = if n ! 0 then [] else x : take (n− 1) xs

The operation unknown returns an unbound variable.

unknown :: a
unknown = x where x free

Thre predicates and and andC implement conjunction on lists of Boolean
and constraints respectively.

and :: [Bool] → Bool
and [] = True
and (b : bs) = b ∧ and bs
andC :: [Success] → Success
andC [] = success
andC (c : cs) = c & andC cs

33

B Proofs
B.1 Functor laws for (a →) instance

This is a proof of the functor laws

fmap id ≡ id
fmap (f ◦ g) ≡ fmap f ◦ fmap g

for the Functor instance

instance Functor (a →) where
fmap = (◦)

The laws are a consequence of the fact that functions form a monoid under
composition with the identity element id.

fmap id h
≡ { definition of fmap }

id ◦ h
≡ { definition of (◦) }

λx → id (h x)
≡ { definition of id }

λx → h x
≡ { expansion }

h
≡ { definition of id }

id h

This proof makes use of the identity (λx → f x) ≡ f for every function f .
The second law is a bit more involved as it relies on associativity for function
composition.

fmap (f ◦ g) h
≡ { definition of fmap }

(f ◦ g) ◦ h
≡ { associativity of (◦) }

f ◦ (g ◦ h)

34

B.2 Monad laws for Tree instance

≡ { definition of fmap (twice) }
fmap f (fmap g h)

≡ { reduction }
(λx → fmap f (fmap g x)) h

≡ { definition of (◦) }
(fmap f ◦ fmap g) h

Now it is only left to verify that function composition is indeed associative:

(f ◦ g) ◦ h
≡ { definition of (◦) (twice) }

λx → (λy → f (g y)) (h x)
≡ { reduction }

λx → f (g (h x))
≡ { reduction }

λx → f ((λy → g (h y)) x)
≡ { definition of (◦) (twice) }

f ◦ (g ◦ h)

B.2 Monad laws for Tree instance

This is a proof of the monad laws

return x >>= f ≡ f x
m >>= return ≡ m
(m >>= f) >>= g ≡ m >>= (λx → f x >>= g)

for the Monad instance

instance Monad Tree where
return = Leaf
t >>= f = mergeTrees (fmap f t)

mergeTrees :: Tree (Tree a) → Tree a
mergeTrees Empty = Empty
mergeTrees (Leaf t) = t
mergeTrees (Fork l r) = Fork (mergeTrees l) (mergeTrees r)

for the data type

data Tree a = Empty | Leaf a | Fork (Tree a) (Tree a)

35

B Proofs

The left-identity law follows from the definitions of the functions return,
>>=, fmap, and mergeTrees.

return x >>= f
≡ { definitions of return and >>= }

mergeTrees (fmap f (Leaf x))
≡ { definition of fmap }

mergeTrees (Leaf (f x))
≡ { definition of mergeTrees }

f x

We prove the right-identity law by induction over the structure of m. The
Empty case follows from the observation that Empty >>= f ≡ Empty for every
function f , i.e., also for f ≡ return.

Empty >>= f
≡ { definition of >>= }

mergeTrees (fmap f Empty)
≡ { definition of fmap }

mergeTrees Empty
≡ { definition of mergeTrees }

Empty

The Leaf case follows from the left-identity law because return ≡ Leaf .

Leaf x >>= return
≡ { definition of return }

return x >>= return
≡ { first monad law }

return x
≡ { definition of return }

Leaf x

The Fork case makes use of the induction hypothesis and the observation
that Fork l r >>= f ≡ Fork (l >>= f) (r >>= f)

Fork l r >>= f
≡ { definition of >>= }

mergeTrees (fmap f (Fork l r))
≡ { definition of fmap }

mergeTrees (Fork (fmap f l) (fmap f r))
≡ { definition of mergeTrees }

36

B.2 Monad laws for Tree instance

Fork (mergeTrees (fmap f l)) (mergeTrees (fmap f r))
≡ { definition of >>= (twice) }

Fork (l >>= f) (r >>= f)

Now we can apply the induction hypothesis.

Fork l r >>= return
≡ { previous derivation }

Fork (l >>= return) (r >>= return)
≡ { induction hypothesis (twice) }

Fork l r

Finally we prove assiciativity of >>= by structural induction. The Empty case
follows from the above observation that Empty >>= f ≡ Empty for every
function f .

(Empty >>= f) >>= g
≡ { above observation for Empty (twice) }

Empty
≡ { above observation for Empty }

Empty >>= (λx → f x >>= g)

The Leaf case follows again from the first monad law.

(Leaf y >>= f) >>= g
≡ { definition of return }

(return y >>= f) >>= g
≡ { first monad law }

f y >>= g
≡ { first monad law }

return y >>= (λx → f x >>= g)
≡ { definition of return }

Leaf y >>= (λx → f x >>= g)

The Fork case uses the identity Fork l r >>= f ≡ Fork (l >>= f) (r >>= f) that
we proved above and the induction hypothesis.

(Fork l r >>= f) >>= g
≡ { property of >>= }

Fork (l >>= f) (r >>= f) >>= g
≡ { property pf >>= }

Fork ((l >>= f) >>= g) ((r >>= f) >>= g)
≡ { induction hypothesis }

37

B Proofs

Fork (l >>= (λx → f x >>= g)) (r >>= (λx → f x >>= g))
≡ { property of >>= }

Fork l r >>= (λx → f x >>= g)

This finishes the proof of the three monad laws for the Tree instance.

38

Index
backtracking, 18
binary leaf tree, 11
breadth-first search, 26

call-time choice, 21
class constraint, 8
constraint

equality, 16
constraints, 26

finite domain, 27
currying, 4

declarative programming, 1
do-notation, 13

equational reasoning, 10
evaluation order, 2

failure, 16
free variable, see unbound variable
functional logic programming, 15
functional programming, 2
functor, 10

generate-and-test, 22

higher-order function, 3

infinite data structure, 6
input/output, 12
IO monad, 12

lambda abstraction, 3
lazy evaluation, 5
list comprehension, 23
list monad, 13

logic variable, see unbound vari-
able

monad, 12
laws, 14

multi-paradigm language, 15

narrowing, 16
non-determinism, 17

generator, 20
laziness, 19

non-deterministic operation, 17

overloading, 7

partial application, 5
polymorphism, 3
programing paradigm, 1

search, 24
sharing, 7
side effect, 2
square root, 6
structural induction, 10

tree monad, 13
type class, 8

constructor class, 9
instance, 8

type inference, 4
type variable, 3

unbound variable, 16

39

