
ARM Instruction Set
Quick Reference Card

Key to Tables
{cond} Refer to Table Condition Field {cond} <a_mode2> Refer to Table Addressing Mode 2
<Oprnd2> Refer to Table Operand 2 <a_mode2P> Refer to Table Addressing Mode 2 (Post-indexed only)
<fields> Refer to Table PSR fields <a_mode3> Refer to Table Addressing Mode 3
{S} Updates condition flags if S present <a_mode4L> Refer to Table Addressing Mode 4 (Block load or Stack pop)
C*, V* Flag is unpredictable after these instructions in Architecture v4 and earlier <a_mode4S> Refer to Table Addressing Mode 4 (Block store or Stack push)
Q Sticky flag. Always updates on overflow (no S option). Read and reset using MRS and MSR <a_mode5> Refer to Table Addressing Mode 5
x,y B meaning half-register [15:0], or T meaning [31:16] <reglist> A comma-separated list of registers, enclosed in braces ({ and })
<immed_8r> A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits {!} Updates base register after data transfer if ! present
<immed_8*4> A 10-bit constant, formed by left-shifting an 8-bit value by two bits § Refer to Table ARM architecture versions

Operation § Assembler S updates Q Action Notes
Move Move MOV{cond}{S} Rd, <Oprnd2> N Z C Rd := Oprnd2

NOT MVN{cond}{S} Rd, <Oprnd2> N Z C Rd := 0xFFFFFFFF EOR Oprnd2
SPSR to register 3 MRS{cond} Rd, SPSR Rd := SPSR
CPSR to register 3 MRS{cond} Rd, CPSR Rd := CPSR
register to SPSR 3 MSR{cond} SPSR_<fields>, Rm SPSR := Rm (selected bytes only)
register to CPSR 3 MSR{cond} CPSR_<fields>, Rm CPSR := Rm (selected bytes only)
immediate to SPSR 3 MSR{cond} SPSR_<fields>, #<immed_8r> SPSR := immed_8r (selected bytes only)
immediate to CPSR 3 MSR{cond} CPSR_<fields>, #<immed_8r> CPSR := immed_8r (selected bytes only)

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn + Oprnd2
with carry ADC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn + Oprnd2 + Carry
saturating 5E QADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + Rn) No shift/rotate.
double saturating 5E QDADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + SAT(Rn * 2)) No shift/rotate.

Subtract SUB{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn - Oprnd2
with carry SBC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn - Oprnd2 - NOT(Carry)
reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Oprnd2 - Rn
reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Oprnd2 - Rn - NOT(Carry)
saturating 5E QSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm - Rn) No shift/rotate.
double saturating 5E QDSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm - SAT(Rn * 2)) No shift/rotate.

Multiply 2 MUL{cond}{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0]
accumulate 2 MLA{cond}{S} Rd, Rm, Rs, Rn N Z C* Rd := ((Rm * Rs) + Rn)[31:0]
unsigned long M UMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs)
unsigned accumulate long M UMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs)
signed long M SMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs)
signed accumulate long M SMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs)
signed 16 * 16 bit 5E SMULxy{cond} Rd, Rm, Rs Rd := Rm[x] * Rs[y] No shift/rotate.
signed 32 * 16 bit 5E SMULWy{cond} Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16] No shift/rotate.
signed accumulate 16 * 16 5E SMLAxy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + Rm[x] * Rs[y] No shift/rotate.
signed accumulate 32 * 16 5E SMLAWy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + (Rm * Rs[y])[47:16] No shift/rotate.
signed accumulate long 16 * 16 5E SMLALxy{cond} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y] No shift/rotate.

Count leading zeroes 5 CLZ{cond} Rd, Rm Rd := number of leading zeroes in Rm
Logical Test TST{cond} Rn, <Oprnd2> N Z C Update CPSR flags on Rn AND Oprnd2

Test equivalence TEQ{cond} Rn, <Oprnd2> N Z C Update CPSR flags on Rn EOR Oprnd2
AND AND{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn AND Oprnd2
EOR EOR{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn EOR Oprnd2
ORR ORR{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn OR Oprnd2
Bit Clear BIC{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn AND NOT Oprnd2
No operation NOP R0 := R0 Flags not affected.
Shift/Rotate See Table Operand 2.

Compare Compare CMP{cond} Rn, <Oprnd2> N Z C V Update CPSR flags on Rn - Oprnd2
negative CMN{cond} Rn, <Oprnd2> N Z C V Update CPSR flags on Rn + Oprnd2

n only on signaling NaNs.

osed in braces ({ and }).

eptions
Invalid operation
Overflow
Underflow
Inexact result
Division by zero

TAT to transfer flags.
TAT to transfer flags.

ddress in Rn.
ing)
g)

ddress in Rn.
ng)
ing)

 FMDHR.
 FMRDH.
 FMDLR.
FMRDL.
M until all VFP ops complete.
M until all VFP ops complete.
t to FMRX R15, FPSCR

umulative exception bits
3 2 1 0

UFC OFC DZC IOC
ouble precision operands.

ank of registers.
Vector Floating Point Instruction Set
Quick Reference Card

Key to Tables
{cond} See Table Condition Field (on ARM side). {E} E : raise exception on any NaN. Without E : raise exceptio
<S/D> S (single precision) or D (double precision). {Z} Round towards zero. Overrides FPSCR rounding mode.
<S/D/X> As above, or X (unspecified precision). <VFPregs> A comma separated list of consecutive VFP registers, encl
Fd, Fn, Fm Sd, Sn, Sm (single precision), or Dd, Dn, Dm (double precision). <VFPsysreg> FPSCR, or FPSID.

Operation Assembler Exceptions Action Notes
Vector arithmetic Multiply FMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fn * Fm

negative FNMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := - (Fn * Fm)
accumulate FMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd + (Fn * Fm)
deduct FNMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd - (Fn * Fm) Exc
negate and accumulate FMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := -Fd + (Fn * Fm) IO
negate and deduct FNMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := -Fd - (Fn * Fm) OF

Add FADD<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn + Fm UF
Subtract FSUB<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn - Fm IX
Divide FDIV<S/D>{cond} Fd, Fn, Fm IO, DZ, OF, UF, IX Fd := Fn / Fm DZ
Copy FCPY<S/D>{cond} Fd, Fm Fd := Fm
Absolute FABS<S/D>{cond} Fd, Fm Fd := abs(Fm)
Negative FNEG<S/D>{cond} Fd, Fm Fd := -Fm
Square root FSQRT<S/D>{cond} Fd, Fm IO, IX Fd := sqrt(Fm)

Scalar compare FCMP{E}<S/D>{cond} Fd, Fm IO Set FPSCR flags on Fd - Fm Use FMS
Compare with zero FCMP{E}Z<S/D>{cond} Fd IO Set FPSCR flags on Fd - 0 Use FMS

Scalar convert Single to double FCVTDS{cond} Dd, Sm IO Dd := convertStoD(Sm)
Double to single FCVTSD{cond} Sd, Dm IO, OF, UF, IX Sd := convertDtoS(Dm)
Unsigned integer to float FUITO<S/D>{cond} Fd, Sm Fd := convertUItoF(Sm)
Signed integer to float FSITO<S/D>{cond} Fd, Sm IX Fd := convertSItoF(Sm)
Float to unsigned integer FTOUI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoUI(Fm)
Float to signed integer FTOSI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoSI(Fm)

Save VFP registers FST<S/D>{cond} Fd, [Rn{, #<immed_8*4>}] [address] := Fd
Multiple, unindexed FSTMIA<S/D/X>{cond} Rn, <VFPregs> Saves list of VFP registers, starting at a

increment after FSTMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMEA (empty ascend
decrement before FSTMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMFD (full descendin

Load VFP registers FLD<S/D>{cond} Fd, [Rn{, #<immed_8*4>}] Fd := [address]
Multiple, unindexed FLDMIA<S/D/X>{cond} Rn, <VFPregs> Loads list of VFP registers, starting at a

increment after FLDMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMFD (full descendi
decrement before FLDMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMEA (empty ascend

Transfer registers ARM to single FMSR{cond} Sn, Rd Sn := Rd
Single to ARM FMRS{cond} Rd, Sn Rd := Sn
ARM to lower half of double FMDLR{cond} Dn, Rd Dn[31:0] := Rd Use with
Lower half of double to ARM FMRDL{cond} Rd, Dn Rd := Dn[31:0] Use with
ARM to upper half of double FMDHR{cond} Dn, Rd Dn[63:32] := Rd Use with
Upper half of double to ARM FMRDH{cond} Rd, Dn Rd := Dn[63:32] Use with
ARM to VFP system register FMXR{cond} <VFPsysreg>, Rd VFPsysreg := Rd Stalls AR
VFP system register to ARM FMRX{cond} Rd, <VFPsysreg> Rd := VFPsysreg Stalls AR
FPSCR flags to CPSR FMSTAT{cond} CPSR flags := FPSCR flags Equivalen

FPSCR format Rounding (Stride - 1)*3 Vector length - 1 Exception trap enable bits C
31 30 29 28 24 23 22 21 20 18 17 16 12 11 10 9 8 4
N Z C V FZ RMODE STRIDE LEN IXE UFE OFE DZE IOE IXC

FZ: 1 = flush to zero mode. Rounding: 0 = round to nearest, 1 = towards +∞, 2 = towards -∞, 3 = towards zero. (Vector length * Stride) must not exceed 4 for d

If Fd is S0-S7 or D0-D3, operation is Scalar (regardless of vector length). If Fd is S8-S31 or D4-D15, and Fm is S0-S7 or D0-D3, operation is Mixed (Fm scalar, others vector).
If Fd is S8-S31 or D4-D15, and Fm is S8-S31 or D4-D15, operation is Vector. S0-S7 (or D0-D3), S8-S15 (D4-D7), S16-S23 (D8-D11), S24-S31 (D12-D15) each form a circulating b

igned).
aligned).
aligned).

igned).

o Lo, or Hi to Hi.

 shifts 0-31.

 shifts 1-32.

 shifts 1-32.

58 bytes of current instruction.
M side). AL not allowed.
 current instruction.
structions.
f current instruction.

[0] = 0.
ructions.
f current instruction.

coded in instruction.
Thumb Instruction Set
Quick Reference Card

All Thumb registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.

Operation § Assembler Update
flags

Action Notes

Move Immediate MOV Rd, #<immed_8> ✓ Rd := immed_8 8-bit immediate value.
Lo to Lo MOV Rd, Rm ✓ Rd := Rm
Hi to Lo, Lo to Hi, Hi to Hi MOV Rd, Rm ✕ Rd := Rm Not Lo to Lo

Arithmetic Add ADD Rd, Rn, #<immed_3> ✓ Rd := Rn + immed_3 3-bit immediate value.
Lo and Lo ADD Rd, Rn, Rm ✓ Rd := Rn + Rm
Hi to Lo, Lo to Hi, Hi to Hi ADD Rd, Rm ✕ Rd := Rd + Rm Not Lo to Lo
immediate ADD Rd, #<immed_8> ✓ Rd := Rd + immed_8 8-bit immediate value.
with carry ADC Rd, Rm ✓ Rd := Rd + Rm + C-bit
value to SP ADD SP, #<immed_7*4> ✕ SP := SP + immed_7 * 4 9-bit immediate value (word-al
form address from SP ADD Rd, SP, #<immed_8*4> ✕ Rd := SP + immed_8 * 4 10-bit immediate value (word-
form address from PC ADD Rd, PC, #<immed_8*4> ✕ Rd := (PC AND 0xFFFFFFFC) + immed_8 * 4 10-bit immediate value (word-

Subtract SUB Rd, Rn, Rm ✓ Rd := Rn - Rm
immediate 3 SUB Rd, Rn, #<immed_3> ✓ Rd := Rn - immed_3 3-bit immediate value.
immediate 8 SUB Rd, #<immed_8> ✓ Rd := Rd - immed_8 8-bit immediate value.
with carry SBC Rd, Rm ✓ Rd := Rd - Rm - NOT C-bit
value from SP SUB SP, #<immed_7*4> ✕ SP := SP - immed_7 * 4 9-bit immediate value (word-al

Negate NEG Rd, Rm ✓ Rd := - Rm
Multiply MUL Rd, Rm ✓ Rd := Rm * Rd
Compare CMP Rn, Rm ✓ update CPSR flags on Rn - Rm Can be Lo to Lo, Lo to Hi, Hi t

negative CMN Rn, Rm ✓ update CPSR flags on Rn + Rm
immediate CMP Rn, #<immed_8> ✓ update CPSR flags on Rn - immed_8 8-bit immediate value.

No operation NOP ✕ R8 := R8 Flags not affected.
Logical AND AND Rd, Rm ✓ Rd := Rd AND Rm

Exclusive OR EOR Rd, Rm ✓ Rd := Rd EOR Rm
OR ORR Rd, Rm ✓ Rd := Rd OR Rm
Bit clear BIC Rd, Rm ✓ Rd := Rd AND NOT Rm
Move NOT MVN Rd, Rm ✓ Rd := NOT Rm
Test bits TST Rn, Rm ✓ update CPSR flags on Rn AND Rm

Shift/rotate Logical shift left LSL Rd, Rm, #<immed_5> ✓ Rd := Rm << immed_5 5-bit immediate shift. Allowed
LSL Rd, Rs ✓ Rd := Rd << Rs

Logical shift right LSR Rd, Rm, #<immed_5> ✓ Rd := Rm >> immed_5 5-bit immediate shift. Allowed
LSR Rd, Rs ✓ Rd := Rd >> Rs

Arithmetic shift right ASR Rd, Rm, #<immed_5> ✓ Rd := Rm ASR immed_5 5-bit immediate shift. Allowed
ASR Rd, Rs ✓ Rd := Rd ASR Rs

Rotate right ROR Rd, Rs ✓ Rd := Rd ROR Rs
Branch Conditional branch B{cond} label R15 := label label must be within -252 to +2

See Table Condition Field (AR
Unconditional branch B label R15 := label label must be within ±2Kb of
Long branch with link BL label R14 := R15 - 2, R15 := label Encoded as two Thumb in

label must be within ±4Mb o
Branch and exchange BX Rm R15 := Rm AND 0xFFFFFFFE Change to ARM state if Rm
Branch with link and exchange 5TBLX label R14 := R15 - 2, R15 := label

Change to ARM
Encoded as two Thumb inst
label must be within ±4Mb o

Branch with link and exchange 5TBLX Rm R14 := R15 - 2, R15 := Rm AND 0xFFFFFFFE
Change to ARM if Rm[0] = 0

Software
Interrupt

SWI <immed_8> Software interrupt processor exception 8-bit immediate value en

Breakpoint 5T BKPT <immed_8> Prefetch abort or enter debug state

E
A
F
C
C
U

T
F
E

g 4F,
ama, Kohoku-ku,

222-0033

1 45 477 5260
1 45 477 5261

fo@arm.com

KOREA
ARM
Room #1115, Hyundai Building
9-4, Soonae-Dong, Boondang-Ku
Sungnam, Kyunggi-Do
Korea 463-020

Telephone: +82 342 712 8234
Facsimile: +82 342 713 8225
Email: info@arm.com

Notes

_5 * 2][15:0]) Clears bits 31:16
_5][7:0]) Clears bits 31:8

5:0]) Clears bits 31:16
5:0]) Sets bits 31:16 to bit 15
:0]) Clears bits 31:8
:0]) Sets bits 31:8 to bit 7
) + immed_8 * 4]

Always updates base register.

d[15:0] Ignores Rd[31:16]
] Ignores Rd[31:8]

Ignores Rd[31:16]
Ignores Rd[31:8]

Always updates base register.
Full descending stack.

k

 loaded to PC
 state if address[0] = 0

P
A

N
c
c

T
A
H
o

T
l
o

r

By Change
BJH First Release
BJH Second Release
BJH Third Release
CKS Fourth Release
NGLAND
RM Ltd
ulbourn Road
herry Hinton
ambridge CB1 9JN
K

elephone: +44 1223 400400
acsimile: +44 1223 400410
mail: info@arm.com

GERMANY
ARM Ltd
Otto-Hahn Str. 13b
85521 Ottobrun-Riemerling
Munich
Germany

Telephone: +49 89 608 75545
Facsimile: +49 98 608 75599
Email: info@arm.com

USA
ARM Inc
750 Univer
Suite 150,
Los Gatos
USA

Telephone:
Facsimile:
Email:

Thumb Instruction Set
Quick Reference Card

Operation § Assembler
Load with immediate offset, word LDR Rd, [Rn, #<immed_5*4

halfword LDRH Rd, [Rn, #<immed_5*
byte LDRB Rd, [Rn, #<immed_5>

with register offset, word LDR Rd, [Rn, Rm]
halfword LDRH Rd, [Rn, Rm]
signed halfword LDRSH Rd, [Rn, Rm]
byte LDRB Rd, [Rn, Rm]
signed byte LDRSB Rd, [Rn, Rm]

PC-relative LDR Rd, [PC, #<immed_8*4
SP-relative LDR Rd, [SP, #<immed_8*4
Multiple LDMIA Rn!, <reglist>

Store with immediate offset, word STR Rd, [Rn, #<immed_5*4
halfword STRH Rd, [Rn, #<immed_5*
byte STRB Rd, [Rn, #<immed_5>

with register offset, word STR Rd, [Rn, Rm]
halfword STRH Rd, [Rn, Rm]
byte STRB Rd, [Rn, Rm]

SP-relative, word STR Rd, [SP, #<immed_8*4
Multiple STMIA Rn!, <reglist>

Push/
Pop

Push PUSH <reglist>
Push with link PUSH <reglist, LR>
Pop POP <reglist>
Pop and return POP <reglist, PC>
Pop and return with exchange 5T POP <reglist, PC>

roprietary Notice
RM is the trademark of ARM Ltd.

either the whole nor any part of the information contained in, or the product described in, this ref
ard may be adapted or reproduced in any material form except with the prior written permission
opyright holder.

he product described in this reference card is subject to continuous developments and improvem
ll particulars of the product and its use contained in this reference card are given by ARM in good
owever, all warranties implied or expressed, including but not limited to implied warranties
f merchantability, or fitness for purpose, are excluded.

his reference card is intended only to assist the reader in the use of the product. ARM Ltd shall
iable for any loss or damage arising from the use of any information in this reference card, or an
r omission in such information, or any incorrect use of the product.
sity Avenue

CA 95032

+1 408 579 2207
+1 408 579 1205
info@arm.com

JAPAN
ARM KK
Plustaria Buildin
3-1-4 Shinyokoh
Yokohama-shi,
Japan

Telephone: +8
Facsimile: +8
Email: in

Action
>] Rd := [Rn + immed_5 * 4]
2>] Rd := ZeroExtend([Rn + immed
] Rd := ZeroExtend([Rn + immed

Rd := [Rn + Rm]
Rd := ZeroExtend([Rn + Rm][1
Rd := SignExtend([Rn + Rm][1
Rd := ZeroExtend([Rn + Rm][7
Rd := SignExtend([Rn + Rm][7

>] Rd := [(PC AND 0xFFFFFFFC
>] Rd := [SP + immed_8 * 4]

Loads list of registers
>] [Rn + immed_5 * 4] := Rd
2>] [Rn + immed_5 * 2][15:0] := R
] [Rn + immed_5][7:0] := Rd[7:0

[Rn + Rm] := Rd
[Rn + Rm][15:0] := Rd[15:0]
[Rn + Rm][7:0] := Rd[7:0]

>] [SP + immed_8 * 4] := Rd
Stores list of registers
Push registers onto stack
Push LR and registers onto stac
Pop registers from stack
Pop registers, branch to address
Pop, branch, and change to ARM

erence
 of the

ents.
 faith.

not be
y error

Document Numbe
ARM QRC 0001D

Change Log
Issue Date
A June 1995
B Sept 1996
C Nov 1998
D Oct 1999

ARM Instruction Set
Quick Reference Card

Operation § Assembler Action Notes
Branch Branch B{cond} label R15 := label label must be within ±32Mb of

current instruction.
with link BL{cond} label R14 := R15-4, R15 := label label must be within ±32Mb of

current instruction.
and exchange 4TBX{cond} Rm R15 := Rm, Change to Thumb if Rm[0] is 1
with link and exchange (1) 5TBLX label R14 := R15 - 4, R15 := label, Change to Thumb Cannot be conditional.

label must be within ±32Mb of
current instruction.

with link and exchange (2) 5TBLX{cond} Rm R14 := R15 - 4, R15 := Rm[31:1]
Change to Thumb if Rm[0] is 1

Load Word LDR{cond} Rd, <a_mode2> Rd := [address]
User mode privilege LDR{cond}T Rd, <a_mode2P>
branch (and exchange) LDR{cond} R15, <a_mode2> R15 := [address][31:1]

(§ 5T: Change to Thumb if [address][0] is 1)
Byte LDR{cond}B Rd, <a_mode2> Rd := ZeroExtend[byte from address]

User mode privilege LDR{cond}BT Rd, <a_mode2P>
signed 4 LDR{cond}SB Rd, <a_mode3> Rd := SignExtend[byte from address]

Halfword 4 LDR{cond}H Rd, <a_mode3> Rd := ZeroExtent[halfword from address]
signed 4 LDR{cond}SH Rd, <a_mode3> Rd := SignExtend[halfword from address]

Load multiple Pop, or Block data load LDM{cond}<a_mode4L> Rd{!}, <reglist-pc> Load list of registers from [Rd]
return (and exchange) LDM{cond}<a_mode4L> Rd{!}, <reglist+pc> Load registers, R15 := [address][31:1]

(§ 5T: Change to Thumb if [address][0] is 1)
and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>^ Load registers, branch (§ 5T: and exchange),

CPSR := SPSR
Use from exception modes only.

User mode registers LDM{cond}<a_mode4L> Rd, <reglist-pc>^ Load list of User mode registers from [Rd] Use from privileged modes only.
Store Word STR{cond} Rd, <a_mode2> [address] := Rd

User mode privilege STR{cond}T Rd, <a_mode2P> [address] := Rd
Byte STR{cond}B Rd, <a_mode2> [address][7:0] := Rd[7:0]

User mode privilege STR{cond}BT Rd, <a_mode2P> [address][7:0] := Rd[7:0]
Halfword 4 STR{cond}H Rd, <a_mode3> [address][15:0] := Rd[15:0]

Store multiple Push, or Block data store STM{cond}<a_mode4S> Rd{!}, <reglist> Store list of registers to [Rd]
User mode registers STM{cond}<a_mode4S> Rd{!}, <reglist>^ Store list of User mode registers to [Rd] Use from privileged modes only.

Swap Word 3 SWP{cond} Rd, Rm, [Rn] temp := [Rn], [Rn] := Rm, Rd := temp
Byte 3 SWP{cond}B Rd, Rm, [Rn] temp := ZeroExtend([Rn][7:0]),

[Rn][7:0] := Rm[7:0], Rd := temp
Coprocessors Data operations 2CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2> Coprocessor defined

5 CDP2 p<cpnum>, <op1>, CRd, CRn, CRm, <op2> Cannot be conditional.
Move to ARM reg from coproc 2MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

5 MRC2 p<cpnum>, <op1>, Rd, CRn, CRm, <op2> Cannot be conditional.
Move to coproc from ARM reg 2MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

5 MCR2 p<cpnum>, <op1>, Rd, CRn, CRm, <op2> Cannot be conditional.
Load 2 LDC{cond} p<cpnum>, CRd, <a_mode5>

5 LDC2 p<cpnum>, CRd, <a_mode5> Cannot be conditional.
Store 2 STC{cond} p<cpnum>, CRd, <a_mode5>

5 STC2 p<cpnum>, CRd, <a_mode5> Cannot be conditional.
Software
interrupt

SWI{cond} <immed_24> Software interrupt processor exception 24-bit value encoded in instruction.

Breakpoint 5 BKPT <immed_16> Prefetch abort or enter debug state Cannot be conditional.

ARM Addressing Modes
Quick Reference Card

Addressing Mode 2 - Word and Unsigned Byte Data Transfer ARM architecture versions
Pre-indexed Immediate offset [Rn, #+/-<immed_12>]{!} n ARM architecture version n and above.

Zero offset [Rn] Equivalent to [Rn,#0] nT T variants of ARM architecture version n and above.
Register offset [Rn, +/-Rm]{!} M ARM architecture version 3M, and 4 and above excluding xM variants
Scaled register offset [Rn, +/-Rm, LSL #<immed_5>]{!} Allowed shifts 0-31 nE E variants of ARM architecture version n and above.

[Rn, +/-Rm, LSR #<immed_5>]{!} Allowed shifts 1-32
[Rn, +/-Rm, ASR #<immed_5>]{!} Allowed shifts 1-32
[Rn, +/-Rm, ROR #<immed_5>]{!} Allowed shifts 1-31 Operand 2
[Rn, +/-Rm, RRX]{!} Immediate value #<immed_8r>

Post-indexed Immediate offset [Rn], #+/-<immed_12> Logical shift left immediate Rm, LSL #<immed_5> Allowed shifts 0-31
Register offset [Rn], +/-Rm Logical shift right immediate Rm, LSR #<immed_5> Allowed shifts 1-32
Scaled register offset [Rn], +/-Rm, LSL #<immed_5> Allowed shifts 0-31 Arithmetic shift right immediate Rm, ASR #<immed_5> Allowed shifts 1-32

[Rn], +/-Rm, LSR #<immed_5> Allowed shifts 1-32 Rotate right immediate Rm, ROR #<immed_5> Allowed shifts 1-31
[Rn], +/-Rm, ASR #<immed_5> Allowed shifts 1-32 Register Rm
[Rn], +/-Rm, ROR #<immed_5> Allowed shifts 1-31 Rotate right extended Rm, RRX
[Rn], +/-Rm, RRX Logical shift left register Rm, LSL Rs

Logical shift right register Rm, LSR Rs
Addressing Mode 2 (Post-indexed only) Arithmetic shift right register Rm, ASR Rs
Post-indexed Immediate offset [Rn], #+/-<immed_12> Rotate right register Rm, ROR Rs

Zero offset [Rn] Equivalent to [Rn],#0
Register offset [Rn], +/-Rm
Scaled register offset [Rn], +/-Rm, LSL #<immed_5> Allowed shifts 0-31 PSR fields (use at least one suffix)

[Rn], +/-Rm, LSR #<immed_5> Allowed shifts 1-32 Suffix Meaning
[Rn], +/-Rm, ASR #<immed_5> Allowed shifts 1-32 c Control field mask byte PSR[7:0]
[Rn], +/-Rm, ROR #<immed_5> Allowed shifts 1-31 f Flags field mask byte PSR[31:24]
[Rn], +/-Rm, RRX s Status field mask byte PSR[23:16]

x Extension field mask byte PSR[15:8]
Addressing Mode 3 - Halfword and Signed Byte Data Transfer
Pre-indexed Immediate offset [Rn, #+/-<immed_8>]{!}

Zero offset [Rn] Equivalent to [Rn,#0] Condition Field {cond}
Register [Rn, +/-Rm]{!} Mnemonic Description Description (VFP)

Post-indexed Immediate offset [Rn], #+/-<immed_8> EQ Equal Equal
Register [Rn], +/-Rm NE Not equal Not equal, or unordered

CS / HS Carry Set / Unsigned higher or same Greater than or equal, or unordered
Addressing Mode 4 - Multiple Data Transfer CC / LO Carry Clear / Unsigned lower Less than

Block load Stack pop MI Negative Less than
IA Increment After FD Full Descending PL Positive or zero Greater than or equal, or unordered
IB Increment Before ED Empty Descending VS Overflow Unordered (at least one NaN operand)
DA Decrement After FA Full Ascending VC No overflow Not unordered
DB Decrement Before EA Empty Ascending HI Unsigned higher Greater than, or unordered

LS Unsigned lower or same Less than or equal
Block store Stack push GE Signed greater than or equal Greater than or equal
IA Increment After EA Empty Ascending LT Signed less than Less than, or unordered
IB Increment Before FA Full Ascending GT Signed greater than Greater than
DA Decrement After ED Empty Descending LE Signed less than or equal Less than or equal, or unordered
DB Decrement Before FD Full Descending AL Always (normally omitted) Always (normally omitted)

Addressing Mode 5 - Coprocessor Data Transfer
Pre-indexed Immediate offset [Rn, #+/-<immed_8*4>]{!} Key to tables

Zero offset [Rn] Equivalent to [Rn,#0] {!} Updates base register after data transfer if ! present. (Post-indexed always updates.)
Post-indexed Immediate offset [Rn], #+/-<immed_8*4> <immed_8r> A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.
Unindexed No offset [Rn], {8-bit copro. option} +/- + or -. (+ may be omitted.)

	qrc_thumbside.pdf
	Exceptions
	Rounding
	(Stride - 1)*3
	Vector length - 1
	Exception trap enable bits
	Cumulative exception bits
	31
	30
	29
	28
	24
	23
	22
	21
	20
	18
	17
	16
	12
	11
	10
	9
	8
	4
	3
	2
	1
	0
	N
	Z
	C
	V
	FZ
	RMODE
	STRIDE
	LEN
	IXE
	UFE
	OFE
	DZE
	IOE
	IXC
	UFC
	OFC
	DZC
	IOC
	FZ: 1 = flush to zero mode.
	Rounding: 0 = round to nearest, 1 = towards +•, 2 = towards -•, 3 = towards zero.
	(Vector length * Stride) must not exceed 4 for double precision operands.

	Update flags
	3
	3
	5
	3
	3
	5
	3
	3
	5
	5
	5
	3
	3
	3
	3
	5
	3
	3
	3
	3
	3
	5
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	3
	5T
	5T
	5T
	5T

	Proprietary Notice
	Document Number
	Change Log

