S SYBASE

TDS 5.0 Functional Specification
Version 3.4

Sybase Confidential

00000-01-00000-00
August, 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under alicense agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, PowerBuilder, Powersoft, Replication Server, S-Designor, SQL Advantage, SQL Debug, SQL SMART,
Transact-SQL, VisualWriter are registered trademarks of Sybase, Inc. Adaptable Windowing Environment, Adaptive Server, Adaptive
Server Enterprise, Adaptive Server Enterprise Monitor, AnswerBase, Application Manager, AppModeler, Backup Server, Client-
Library, Client Services, CodeBank, Connection Manager, DataArchitect, Database Analyzer, DataExpress, Data Pipeline,
DataWindow, DB-Library, Designor, Developers Workbench, Dimensions Anywhere, Dimensions Enterprise, Dimensions Server,
DirectCONNECT, Easy SQR, Embedded SQL, EMS, Enterprise CONNECT, Enterprise Manager, Enterprise SQL Server Manager,
Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, GeoPoint, InfoMaker,
InformationCONNECT, InternetBuilder, iScript, KnowledgeBase, MainframeCONNECT, Maintenance Express, MAP, MetaWorks,
MethodSet, Movedb, MySupport, Navigation Server Manager, Net-Gateway, Netimpact, Net-Library, Object CONNECT, ObjectCycle,
OmniCONNECT, OmniSQL Access Module, OmniSQL Server, OmniSQL Toolkit, Open Client, Open ClientCONNECT, Open Client/
Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerCONNECT, Open Solutions, Optima++, PB-Gen, PC
DB-Net, PC Net Library, PowerBuilt, PowerBuilt with PowerBuilder, PowerScript, PowerSocket, Powersoft Portfolio, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Replication Agent, Replication Driver, Replication Server Manager, Resource
Manager, RW-Library, SAFE, SDF, Secure SQL Server, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Anywhere, SQL Central, SQL Code Checker, SQL Edit, SQL Edit/TPU, SQL Remote, SQL Server, SQL Server/CFT, SQL Server/
DBM, SQL Server Manager, SQL Server SNMP SubAgent, SQL Station, SQL Toolset, StarDesignor, Sybase Client/Server Interfaces,
Sybase Development Framework, Sybase Dimensions, Sybase Gateways, Sybase 1Q, Sybase MPP, Sybase SQL Desktop, Sybase SQL
Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, SyBooks, System 10, System 11, SystemTools, Visual
Components, VisualSpeller, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, web.sql, WebSights, WebViewer,
WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are trademarks of Sybase, Inc. 1/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

3 Introduction

1. Overview

The Tabular Data Stream (TDS) is an application level protocol used to send requests and
responses between clients and servers. A client’s request may contain multiple commands.
The response from the server may return one or many result sets.

TDS relies on a connection oriented transport service. Session, presentation, and applica-
tion service elements are provided by TDS. TDS does not require any specific transport
provider. It can be implemented over multiple transport protocols if they provide connec-
tion oriented service.

TDS provides support for login capability negotiation, authentication services, and sup-
port for both database specific and generic client commands. Responses to client com-
mands are returned using a self-describing, table oriented protocol. Column name and data
type information is returned to the client before the actual data.

For example, here is a high-level description of the TDS tokens exchanged by a client and
a server to establish a dialog and then execute a simple SQL query. The SQL statement is,
“selectname from sysobjects where id3. This query causes two table rows to be re-
turned to the client.

The client first requests a transport connection to the server and then sends a login record
to establish a dialog. The login record contains capability and authentication information.

Sybase Confidential 3 Version 3.4 |

Introduction Sybase Confidential

The server responds with a acknowledgment token followed by a completion token indicating that
it has accepted the dialog request.

Client Server

login packet —p»
~€— TDS_LOGINACK

~&— TDS_DONE

Now that a dialog has been established between the client and the server, the client sends the SQL
guery to the server and then waits for the server to respond.

Client Server
LANGUAGE: “select name...” —p»

The server executes the query and returns the results to the client. First the data columns are de-
scribed by the server, followed by the actual row data. A completion token follows the row data
indicating that all row data associated with the query has been returned to the client.

Client Server

~€— TDS_ROWFMT row description
-€— TDS_ROW row data

-€— TDS_ROW row data

<€— TDS_DONE

The TDS PDUs are describedTiDS 5.0 Reference Pages

The TDS protocol is mostly a token based protocol where the contents of a Protocol Data Unit
(PDU) are tokenized. The token and its data stream describe a particular command or part of a re-
sult set returned to a client.

For example, there is a token callens_LANGUAGE which is used by a client to send language,
typically SQL, commands to a server. There is also a token catledROWFMT which describes

the column name, status, and data type which is used by a server to return column format informa-
tion to a client.

2. Protocol Data Units

A TDS request or response may span multiple PDUs. The size of the PDU sent over the transport
connection is negotiated at dialog establishment time. Each PDU contains a header, which is usu-
ally followed by data.

Version 3.4 4 TDS 5.0 Functional Specification |

Sybase Confidential Introduction

2.1. Protocol Data Unit Header

A PDU header contains information about the size and contents of the PDU as well as an indica-
tion if it is the last PDU in a request or response. The format of a TDS PDU is described in detalil

in the Protocol Data Unit reference page. The TDS protocol is half-duplex. A client writes a com-
plete request and then reads a complete response from the server. Requests and responses cannot
be intermixed and multiple requests cannot be outstanding.

2.2. Protocol Data Unit Data

In addition to a header, PDUs usually include some data. Control PDUs do not contain any other
data. They consist of a header only. Requests and response PDUs contain TDS tokens that de-
scribe the request or response.

3. Client Protocol Data Units
PDUs sent from a client to a server can contain the following data:
* Dialog establishment information
* Language command
» Cursor command
» Database Remote Procedure Call
* Attentions
* Dynamic SQL command
* Message command
3.1. Dialog Establishment
To establish a dialog with a server a client must:
» Create a transport connection
» Send a login record
» Send a capability data stream
» Perform any required authentication handshaking

* Read the login acknowledgment

TDS 5.0 Functional Specification 5 Version 3.4|

Introduction Sybase Confidential

A client application may have multiple dialogs established with the same or multiple servers, but
this is transparent to the TDS protocol. All of the steps above must be completed for each active
dialog supported by a client application.

3.2. Language Commands

TheTDS_LANGUAGE token is used to send language commands to a server. When a client is com-
municating with a SQL Server, this language is a SQL command. A language command may span
multiple PDUSs, but its total length is limited by the length field in thesS_LANGUAGE token. See
TDS_LANGUAGE on page 169 for details. |

The character set that the language command is sent in is negotiated during dialog establishment.
The server will perform any required character set translations as required.

3.3. Cursor Commands
There are two ways to send cursor commands to a server:

 Language commands

e Cursor TDS tokens

Cursor commands can be sent to a server usinglBeLANGUAGE token and the SQL dialect as
described above. However, this requires the server to parse the language to implement the re-
guested cursor operation.

TDS also provides native token support for @S| specified cursor operations. This provides a
more efficient mechanism for sending cursor commands to a server since it eliminates the parsing
step. It also allows servers built using the Open Server product to implement cursor emulation on
top foreign data sources without implementing a parser.

A complete description of the cursor tokens iSs_CUR* reference pages.
3.4. Database Remote Procedure Calls (RPC)

To execute a remote procedure call on the server, the client serms RPC data stream to the

server. This is a binary stream that contains the RPC name, options, and parameters. Each RPC
must be in a separate message and not intermixed with SQL commands or other RPC commands.
For a detailed description of the RPC request data stream (page 219). |

COMMENTS:Need to rewrite to reflect change in RPC protocol
3.5. Attentions

The client can cancel the current request by sending an attention to the server. Once the client
sends an attention, the client reads until it gets an attention acknowledgment. After sending an at-

Version 3.4 6 TDS 5.0 Functional Specification |

Sybase Confidential Introduction

tention to a server the client will discard any data received until it receives an attention acknowl-
edgment.

TDS 5.0 attentions are sent using the non-expedited data transfer service provided by the transport
provider. Earlier versions of TDS sent attentions using the expedited data transfer service if it was
provided by the transport provider.

Expedited attentions will still be supported by clients and servers that implement 5.0 TDS so that
they can continue to communicate with earlier versions of TDS.

3.6. Dynamic SQL Commands
3.7. Message Commands

4. Server Protocol Data Units

PDUs sent from a server to a client can contain the following data:

* Dialog establishment acknowledgment
* Row results

* Return status

* Return parameters

* Response completion

* Error information

* Attention acknowledgment

 Cursor status

» Message responses

4.1. Dialog Establishment Acknowledgment

The acknowledgment to a dialog establishment request is a token stream consisting of informa-
tion about a server’s characteristics, informational messages and a completion indication. There
are optionally authentication handshake messages.

The TDS_CAPABILITY, TDS_LOGINACK, andTDS_DONE tokens are used to communicate infor-
mation to the client regarding the dialog establishment request.

If there are any information messages in the dialog responS®®EED data stream is returned
from the server to the client.

A TDS_DONE token is always sent to terminate the dialog establishment response.

TDS 5.0 Functional Specification 7 Version 3.4|

Introduction Sybase Confidential

4.2. Row Results

If a client request results in data being returned, the data will precede any other data streams re-
turned from the server. Row data is always preceded by a description of the column names and
data types. For a detailed description of the data stream see the reference pages for
TDS_ROWFMT, andTDS_ROW.

4.3. Return Status

A return status can be returned in response to a client command. A return status is returned to a
client using therbS_RETURNSTATUS token.

4.4, Return Parameters

Return parameters can be sent to a client in response to either a language or RPC command. Re-
turn parameters are returned to a client usingnb® PARAMFMT andTDS_PARAM tokens.

When a RPC is invoked, some or all of it's parameters may be designated as output parameters.
This allows RPC parameters to act like variables that are passed by reference. All output parame-
ters will have values returned by the server.

Return parameters can also be returned to a client in response to a language command. This is the
normal case for stored procedures on a SQL Server. If the stored procedure is executed via a lan-
guage command, any parameters designated as output parameters are returned using the TDS
TDS_PARAMFMT andTDS_PARAM tokens.

4.5. Response Completion

The end of a server response can be determined using the TDS PDU header length field. Howev-
er, theDONE token is used to report command completion.

When executing a language command that contains a batch of SQL commands, there will be a
TDS_DONE data stream for each set of results. All but the laes DONE will have the
TDS_DONE_MORE bit set in theStatus field of the TDS_DONE data stream. Therefore, the client

can always tell after reading®™@S_DONE whether or not there are more results associated with
the current command.

For stored procedures, completion of statements in the stored procedure is indicated by a
TDS_DONEINPROC data stream for each statement artba DONEPROC data stream for each
completed stored procedure. For example, if a stored procedure executes two other stored proce-
dures, arbS_DONEPROC data stream will signal the completion of each stored procedure.

Version 3.4 8 TDS 5.0 Functional Specification |

Sybase Confidential Introduction

4.6. Error Information

TDS provides support for returning error numbers, severity, and error message text to a client.
This information is returned to clients using teeD token. In previous versions of TDS the
TDS_ERROR andTDS_INFO tokens were both used. These tokens are now obsolete.

4.7. Attentions Acknowledgments

Once a client has sent an attention to a server, the client must continue to read data until the atten-
tion has been acknowledged. Attentions are acknowledged by servers using the status field of the
TDS header. Please see Cancel Protocol on page 19 for details.

4.8. Cursor Status
4.9. Message Responses

5. Protocol Data Unit Definition

TDS supports two types of PDUSs; token oriented and tokenless. A token oriented PDU contains
TDS tokens in the user data portion of the PDU. Tokenless PDUs contain un-formatted binary
data in the user data portion.

5.1. Tokenless Stream

Tokenless data streams are only used for the client login record and bulk copy operations. The
PDU header is used to determine the type of data being sent in the PDU. The actual length of the
data in the PDU is determined from the length field in the header.

5.2. Token Stream

Tokens are single byte identifiers that are sent in the user data portion of a PDU. They are fol-
lowed by token specific data. Tokens are either fixed length or variable length. Variable length to-
kens are followed by a length field. Fixed length tokens do not have a length field.

The size of the length field following a token is encoded in the token value. There are five possi-
ble classes of token length fields. They are listed here along with their bit pattern encoding:

5.2.1. Zero Length - 110xxxxx
This is a token which is not followed by a length. There is no data associated with the token.
5.2.2. Fixed Length - xx11xxxx

This is a token which is followed by a 1, 2, 4, or 8 bytes of data. No length field follows this token
since the data length is encoded in the token value. Bits 3 and 4 are always on. Bits 5 and 6 indi-
cate the length of the fixed length data.

TDS 5.0 Functional Specification 9 Version 3.4|

Introduction Sybase Confidential

* xx1100xx indicates 1 byte of data.
» xx1101xx indicates 2 bytes of data.
» xx1110xx indicates 4 bytes of data.
» xx1111xx indicates 8 bytes of data.
5.2.3. Variable Length - any other pattern

This token is followed by a length. The size of the length field, in bytes, is also encoded in the to-

ken value.

» 1010xxxx indicates 2 bytes of length. (NOTE: KEY token in this group is a “zero-length

token, there is no length field.)

» 1110xxxx indicates 2 bytes of length. (NOTE: ROW, ALTROW, PARAM tokens are in th
group, but are “zero-length” tokens. The length field is absent.)

» 1000xxxx indicates 2 bytes of length.
» 001000xx or 011000xx indicates 4 bytes of length.
* 001001xx, 001010xx, 011001xx, or 011010xx indicates 1 byte of length.

Version 3.4 10 TDS 5.0 Functional Specification

o New Features for 5.0

This chapter describes the additions and changes made in TDS 5.0. The follow products
will implement support for 5.0 TDS:

* 10.0 DB-Library
* 10.0 Client-Library
» 10.0 Server-Library
* 10.0 SQL Server
The 5.0 TDS features fall into the following general areas:
» Cursor support
* Dynamic SQL support
» Extended Error Data
» Additional data types

* Internal changes to improve layering, support, and migration to future releases.

A general description of each of these areas is at the beginning of this chapter followed by
examples on how the features are used. Details on the various new features in 5.0 TDS are
in the appropriate reference pages in this document.

6. Cursors Support

5.0 TDS provides full protocol support for alNsI specified cursor commands. This pro-
tocol support allows the System 10 Client-Library to provide a call level interface to cur-
sor functionality implemented in the System 10 SQL Server. It also allows System 10

Sybase Confidential 11 Version 3.4 |

New Features for 5.0 Sybase Confidential

Server-Library applications to provide support for foreign cursors via an@&bems or other
data source.

This section includes a general discussion and outline of the TDS data stream that supports cursor
operations through both language and a non-language call-level interface. Following the outline
are some examples which illustrate the relationship of the cursor data streams and a client applica-
tion. Detailed reference pages for the new cursor tokens are tuRereference pages.

6.1. SQL Server Cursor Support

The System 10 release of SQL Server supports cursors as defineddRgh8QL 89 specifica-

tion. Client-Library provides applications access to the SQL Server’s cursor functionality or a
Server-Library application’s via a set of APIs. Client-Library applications can access the cursor
functionality in Sybase Server products either through the Client-Library cursor APIs or using
SQL language commands.

6.2. Support of Foreign Cursors (Open Server)

System 10 Open Server provides support for all TDS cursor commands. A set of APIs and a new
cursor event provide an Open Server application access to all cursor requests made by a Client-Li-
brary application via the call-level interface. This eliminates the requirement for an Open Server
application to parse T-SQL commands to implement cursor support.

6.3. Cursors and TDS
6.3.1. Client Cursor Requests
Both language and call-level interface cursor requests are supported by System 10 Client-Library.

If a Client-Library application is using language based cursor commands, the cursor command is
sent to the server using theNGUAGE token. The disadvantage of this technique is that it re-
quires the server to parse the language command to implement the cursor request. It also makes it
more difficult to build an Open Server application to support foreign cursors since a parse would
be required to parse the T-SQL cursor command.

If a Client-Library application uses the call-level interface the following TDS tokens are sent to
the server instead of a language string:

CURDECLARE Declare a cursor.

CUROPEN Open a cursor.

CURFETCH Fetch “fetch count” number of rows through a cursor.
CURUPDATE Update the current cursor row.

CURDELETE Delete the current cursor row.

Version 3.4 12 TDS 5.0 Functional Specification |

Sybase Confidential New Features for 5.0

CURCLOSE Close, and optionally deallocate, a cursor.
Cursor tokens can be batched together in the same PDU with some restrictions.

The advantage of using the call-level interface, and cursor tokens, is that it eliminates the parsing
required by the server. This improves cursor performance and also makes it easier to provide sup-
port for foreign cursors in an Open Server application.

6.3.2. Cursor results

Cursor results are returned to a client using the sem&FMT and ROW tokens used to return
non-cursor results to a client. The number of rows returned by a cursor fetch is controlled by the
current cursor fetch count.

6.3.2.1. Setting “current” cursor row

One complication with cursors is that cursor rows are not passed between the server and client a
single row-at-time if the cursor fetch count is greater than one. This means that when the client
does an update or delete based on the “current cursor row”, the client’s idea of the cursor row may
not be the same as the server’s. This is handled by the client identifying the current row to the
server by sending the key for the current row to the server before performing the update or delete.

Key column information is returned to the client in tRewrFmT token.
For example, consider the following cursor:

DECLARE CURSOR csr AS
SELECT a, b FROM mytable

FOR UPDATE

In this example, the unique key for “mytable” is columns “a” and “c”. Although the column “c” is
not part of the select list, the server will send it back with ®@av token as a “hidden” field. The
ROWFMT token will identify column “a” as a “key” field and column “c” as a “key” and “hidden”
field. This tells Client-Library that column “c” is not a column as far as the client application is
concerned, but it is part of the key for the row. Then if any updates or deletes are performed on
this cursor, Client-Library will send the key for the current row back to the servekas &oken

along with the update or delete request.

The server doesot send back a new key value if an update changes a key value. The client must
remember that this row has been updated, and if the application attempts to update this row again,
it should set th@DS_CUR_CONSEC_UPDS bit in any future update to this row.

6.3.2.2. Matching cursor results to a particular cursor.

5.0 TDS supports multiple open cursors over the same dialog. However, only one cursor can be
the current cursor at any given time. TBBRINFO token is used to indicate the current cursor on

TDS 5.0 Functional Specification 13 Version 3.4}

New Features for 5.0 Sybase Confidential

a dialog. TheCURINFO token is also used by a server to assign a cursor ID when a cursor is first
opened, and by a client to set the current cursor fetch count.

Whenever a client or server wants to change the current cursor it s@uieNFO token with the
cursor ID set to the new current cursor. A cursor remains current until it is explictly changed by
anothercUrRINFO. See TDS_CURINFO on page 97 for complete details. |

7. Dynamic SQL Support
8. Extended Error Data

9. Additional Data Types

TDS 5.0 provides support f’WUMERIC, DECIMAL, LONGVARCHAR , andLONGVARBINARY data

types. A new TDS token was added for each of these new data types. The new data types are sup-
ported in theROWFMT, PARAMFMT, ALTFMT, RETURNVALUE , ROW, ALTROW, KEY, PARAMS, Or

RPC data streams.

Also introduced (version 3.1 of this specification) is ties_BLOB datatype. It is a chunked or
streaming datatype useful for moving larger data. Neither the sender nor the receiver needs to
know how large the total data will be when it begins sending it.

See TDS Datatypes on page 109 for details on the new data type tokens.

10. Wide Result support

Version 3.4 of this specification adds TDS support to remove the 255 byte limit on columns and
the 250 column limit per table. TDS_WIDETABLE Request and TDS_NOWIDETABLE Rg
sponse capability bits were added to indicate that clients can make requests using new bigger to-
kens and can handle response streams with these wider result sets.

TDS_CURDECLARE2, TDS DYNAMIC2, TDS_ORDERBY2, TDS_ROWFMT2, and
TDS_PARAMFMT?2 tokens were added to address size limitations in the existing CURQE-
CLARE, DYNAMIC, ORDERBY, PARAMFMT, and ROWFMT tokens respectively.

10.1. TDS Header File

All TDS tokens, defines, and typedefs are now defined in one headetdfildn, tds.h is the sole
definition for TDS values. It should be used by all Sybase products to ensure product consistency
for all TDS values.

Version 3.4 14 TDS 5.0 Functional Specification |

Sybase Confidential New Features for 5.0

10.2. Options and Capabilities

TDS 5.0 adds support for tokenized option commands. The token added to support opbiens is
TIONCMD. Support is provided for setting, clearing, and inquiring about server options.

Previous versions of TDS had no support for options requiring all products that provided option
support to use hard coded T-SQL option strings, “set option”.

TDS 5.0 also adds support for clients and servers to exchange capabilities during dialog establish-
ment. Clients send a list of requested capabilities to a server for both request and response. The
capability list includes both commands that a client can send and a list of data types that can be
supported. A server returns the complete list of capabilities that it is willing to support on this dia-
log. This list may by different than the original list sent by a client. If the list of capabilities is dif-
ferent than the original one requested by the client it can chose to continue using the server’s
capabilities or to terminate the dialog.

The token added in 5.0 to support this featureA®ABILITY.

Previous versions of TDS required the client and server to use the TDS version to determine the
capabilities that are supported on a dialog. This made it very difficult to migrate to future releases
of TDS. Capabilities solves this problem by providing a finer level of control over the actual func-
tions supported on a dialog.

10.3. TDS Protocol Data Unit Changes

TDS 5.0 eliminates the use of the packet header type to determine the command contained in the
PDU. In previous versions of TDS, both language and RPC commands used the packet header.
This made it impossible in previous versions of the protocol to send more than one command at a
time since only one packet header exists in a PDU. Now it is possible to mix command and re-
sponse types in the same PDU.

For example, an option command could be bundled with a language commmand in the same
PDU.

Removing the use of the packet header to indicate the command type also more clearly defines the
layering of the TDS protocol. The packet header provides PDU deliniation only. This functional-
ity is session level functionality in the OSI Reference Model. The command type indicated by the
token is an application level function.

The new packet type added to support this@RMAL. This will be used for all packets that con-
tain completely tokenized data.

New TDS Tokens |

TDS 5.0 Functional Specification 15 Version 3.4}

New Features for 5.0 Sybase Confidential

* CAPABILITY — OxE2
Dialog capability negotiation.
* CURDECLARE — 0xA3
Declare a cursor.
* CURDECLARE2 — 0x23
Declare a cursor.
* CUROPEN — 0x31
Open a cursor.
* CURFETCH — Ox2E
Fetch through a cursor.
* CURUPDATE — OxEA
Update through a cursor.
* CURDELETE — 0x2C
Delete through a cursor.
* CURCLOSE — 0x33
Close a cursor.
* CURINFO — Ox2A
Report and set cursor characteristics.
* DYNAMIC — OXE7
Describes a statement to be “prepared” or a prepared statement to be “executed”.
* DYNAMIC2 — OxA3
Describes a statement to be “prepared” or a prepared statement to be “executed”.
s EED
* KEY —OxCA
Cursor key data.
* MSG — OxE5
Peer-to-peer message.
* ORDERBY2 — 0x22
Describes the sorting order of the result set to follow based on ORDER BY clauses of thg
lect statement.
* ROWFMT — OXEE
Describes format of row or key columns.
* LANGUAGE — 0x21
Client language command.

Version 3.4 16 TDS 5.0 Functional Specification |

Sybase Confidential

New Features for 5.0

LOGOUT — 0x71
Dialog termination.

OPTIONCMD — OxA6

Setting, clearing, and checking options.
PARAMFMT — OXEC

Parameter format.

PARAMS — 0xD7

Parameter data.

RPC — OxEO
Database Remote Procedure Call command.

New TDS Packet Types

normal packet type —20
Tokenized request/response packet type.

urgent packet type —21

Tokenized packet type containing attention or event notification.

New TDS Datatypes

DECN — Ox6A
The decimal data type.
NUMN — 0x6C

The numeric data type.

LONGBINARY — OxE1

The long binary data type.

LONGCHAR — OxAF

The long character data type.

SENSITIVITY —

The sensitivty data type for secure user authentication

BOUNDARY —
The boundary data type for secure user authentication

TDS 5.0 Functional Specification 17

Version 3.4}

New Features for 5.0 Sybase Confidential

Changed TDS Datastreams

Language Requests

Now tokenized — SEEANGUAGE .

LOGINACK — OxAD

Droppedinterfaceargument and addestatusto facilitate handshake login sequence. The in
terface information is now handled by capabilities.

Remote Procedure Call Requests
Now tokenized — seBPC.

TDS Datastreams No Longer Supported

ALTCONTROL — OxAF
Was never implemented.
COLNAME — 0xAQ
Replaced byROWFMT.
COLFMT — OxA1
Replaced byROWFMT.

PROCID — 0x7C
Dropped. Never used.

Version 3.4 18 TDS 5.0 Functional Specification

S Canceling Operations

Clients require the ability to cancel an outstanding request. For example, the client may
submit a query to a server which returns several hundred rows. While the rows are being
returned to the client, the client decides that it is no longer interested and wishes to tell the
server. This is done by cancelling the request. The operation is typically used to stop the
processing of a client request to the server and is known as a cancel.

This chapter describes the 5.0 TDS behavior for handling cancels in terms of the TDS pro-
tocol. It also describes how cancels work with new 5.0 TDS features, such as cursors.

A major change to cancels in 5.0 is that cancels are sent as “normal” data instead of “expe-
dited” data. The elimination of expedited data solves a lot of race conditions caused by us-
ing expedited data. Also, not all transport protocols support expedited data. However, the
switch to using normal data delivery for cancels is not without cost. Because the cancel is
delivered in the normal data stream, cancels can come to the attention of the recipient
more slowly than expedited data. This is because any data in front of the cancel must be
read first.

11. Cancel Protocol

A cancel request is sent using a non-expedited TDS packet with the header type set to
TDS_BUF_URGENT and the packet header status bit setibs_BUFSTAT_ATTN. The cli-

ent will then read packets from the server until the cancel is acknowledged with a packet
of header type TDS_BUF NORMAL and the packet header status bit set to
TDS_BUFSTAT_ATTNACK. The data, if any, in the packet with the
TDS_BUFSTAT_ATTNACK bit set is discard. Once the client receives a packet with the
header status bitDS_BUFSTAT_ATTNACK set, the dialog state is returned to an idle state.
The client may now issue another request.

Sybase Confidential 19 Version 3.4

Canceling Operations Sybase Confidential

When aTDS_BUFSTAT_ATTN is sent by a client thebs_BUFSTAT_EOM bit must also be set in
the header status field. THEDS_BUFSTAT_ATTNACK returned by a server in response to a
TDS_BUFSTAT_ATTN must have theDS_BUFSTAT_EOM bit set at the end of the response. How-
ever, theTDS_BUFSTAT_ATTNACK can have a data length of O or greater. All data in the
TDS_BUFSTAT_ATTNACK response can be safely discard by the client.

Any dialog state information required by the sender ofbes_ BUFSTAT_ATTN is explictly re-
guested by the sender after theS_BUFSTAT_ATTNACK has been received. The only state infor-
mation currently required by a client is the state of all open cursors on the dialog. This state
information is requested by the client by sendintps_CURINFO token with acmd argument of
TDS_CUR_CMD_INQUIRE and a cursor id of 0.

Client Server

— In-band packet of
type TDS_BUF_URGENT, »

status — Stop current processing,
TDS_BUFSTAT_ATTN | TDS_BUFSTAT_EOM not necessarily on a TDS token
boundary.

— If packet not TDS_BUFSTAT_EOM,
continue readinguntil
TDS_BUFSTAT_EOM.

-«—— — Returnin-band packet of
type TDS_BUF_NORMAL with

— Read and discard all packets status of TDS_BUFSTAT_ATTNACK .
between sending of cancel Set TDS BUFSTAT EOM bit
and receipt of TDS_BUFSTAT_ATTNACK in last packet.

packet. At this point both
ends are re-synchronized.

— Server now in idle state.
— If TDS_BUFSTAT_ATTNACK not also

TDS_BUFSTAT_EOM, continue reading
packetsuntil TDS_BUFSTAT_EOM.

— Dialog now in idle state.

Version 3.4 20 TDS 5.0 Functional Specification

Sybase Confidential Canceling Operations

12. Cancels and Cursors

Because cursors, unlike other commands, may have a life that spans multiple requests, the rela-
tionship of cancels and cursors needs to be discussed separately. Unlike a regular request, a cursor
may, and usually does, have a life beyond a single request. Therefore a cancel does not necessari-
ly cause a cursor to disappear. There is also the problem of row context with cursor. Unless the
cursor row count is 1, the server’s and client’s notion of the current row is usually different. If a
cancel is received during a cursor fetch, there is really no way of re-synchronizing the server’s
and client’s row context.

Canceling a batch that includes cursor commands really means that the condition of the cursor or
cursors in the request is unknown. The cancel may cause a cursor to be closed or it may have no
effect at all if the server has already completed the cursor-related commands in a request. The
problem is further compounded by the fact that the server may have finished a cursor operation,
e.g., fetch, before it received the cancel and the client doesn't see the data because it comes be-
tween the time the cancel was sent andthe_BUFSTAT_ATTNACK packet was received from

the server. There is also the problem that cursor may be either language or function based. A lan-
guage-based cursor is one that was opened and operated using T-SQL commands. These com-
mands are sent to the server usintps_LANGUAGE TDS token. A function-based cursor is one

that was opened and operated using Client-Library cursor APIs. These commands are sent to the
server using TDSDS_CUR* tokens.

These problems are solved in the following way.
— When the client sends a cancel, the client will request the cursor state (open or closed) for
all cursors on the dialog. This information is requested usingitise CURINFO token.
— The client will update its notion of the cursor state, if needed, for every function-based cur-
sor referenced in the request that was canceled.

— The server will enforce the rule that cursors opened via language may be manipulated only
with language commands and cursors opened via TDS cursor functions may be manipulat-
ed only with TDS cursor tokens. In other words, a cursor may not be manipulated using
both language and cursor tokens.

TDS 5.0 Functional Specification 21 Version 3.4

Canceling Operations Sybase Confidential

Version 3.4 22 TDS 5.0 Functional Specification

» Event Notifications

In pre-5.0 TDS, event notifications were sent usingthe_EVENTNOTICE data stream in

a TDS_BUF_RESPONSE message. The only token in this response message was
TDS_EVENTNOTICE. Event notifications are always sent at the end of a complete TDS to-
ken stream.

The old way of sending event notifications causes problems when attentions are sent as
non-expedited or normal data. A client would miss an event notification that is sent by a
server after a client has sent an attention. If event notifications were sent to 5.0 clients us-
ing the pre-5.0 protocol, a client could not discard received message data after sending an
attention because it would have to parse the token stream looking for event notifications.
This defeats the purpose of attentions.

To solve this problem, event notifications in 5.0 are sentid& BUF_URGENT message

with the Status field set toTDS_BUFSTAT_EVENT. This allows 5.0 clients’s to discard re-
ceived data following an attention based on the message header only. The event notifica-
tion parameters will also be sent using tBss_PARAMFMT/PARAMS data stream, instead

of TDS_RETURNVALUE.

13. Event Notification Capabilities

The type of event notification protocol to use will be controlled using a new request capa-
bility value called TDS _REQ_URGEVT. If this capability is requested by a client, the
new event notification protocol will be used. If this capability is not requested, the old
event notification protocol will be used. This will allow DB-Library to only support the
old event notification protocol.

Sybase Confidential 23 Version 3.4

Event Notifications Sybase Confidential

14. Pre-5.0 Event Notification Protocol

This is a summary of the pre-5.0 event notification protocol.

Event Notification Protocol

Message TyperDS_BUF_RESPONSE
Message Status: Undefined

Token Stream
TDS_EVENTNOTICE
TDS_RETURNVALUE
TDS_DONE(TDS_DONE_EVENT|TDS_DONE_FINAL)

NOTE: These are the only tokens in this response message.

Dropped Procedure Protocol

Message TyperDS_BUF_RESPONSE
Message Status: Undefined

Token Stream
TDS_ERROR (MsgNo = 16500)
“Procedure %s no longer exists in the server”
TDS_DONE(TDS_DONE_EVENT|TDS_DONE_FINAL)

NOTE: These are the only tokens in this response message.

15. 5.0 Event Notification Protocol

This is a summary of the 5.0 event notification protocol.

Version 3.4 24 TDS 5.0 Functional Specification

Sybase Confidential Event Notifications

5.0 Event Notification Protocol

Message TyperDS_BUF_URGENT
Message StatusSDS_BUFSTAT_EVENT|TDS_BUFSTAT_EOM

Token Stream
TDS_EVENTNOTICE
TDS_PARAMFMT

TDS_PARAMS
TDS_DONE(TDS_DONE_EVENT)

NOTE: These are the only tokens in this response message.

5.0 Dropped Procedure Protocol

Message TyperDS_BUF_URGENT
Message StatusDS_BUFSTAT_EVENT|TDS_BUFSTAT_EOM

Token Stream
TDS_EED (MsgNo = 16500)
“Procedure %s no longer exists in the server”
TDS_DONE(TDS_DONE_EVENT|TDS_DONE_FINAL)

NOTE: These are the only tokens in this response message.

TDS 5.0 Functional Specification 25 Version 3.4

Event Notifications Sybase Confidential

Version 3.4 26 TDS 5.0 Functional Specification

Sybase Confidential Examples

Examples

Command-Based Cursor Operations

Here is an example of a simple cursor client application. This program opens a connection to a
server, and obtains a command handle for that connection. The application then declares and
opens a cursor, setting cursor rows to 10. The rows of the cursor result set are then fetched one at
a time, and an update of a particular row is made.

The TDS tokens that are sent and received are identified in the diagrams below.

/*

** Open a connection to a server.

*/

login = dblogin();

dbproc = dbopen(login, SERVER_NAME);

Client Server

‘ Login

| LOGINACK

SEND =——

| DONE

< SEND

/*

** Now get a command handle.
*/

cmd = dbinitcmd(dbproc);

/*

** | et's declare the cursor.

*/

strcpy(charbuf “select * from A _Table”);

dbinitop(cmd, DB_CURSOR_DECLARE, “my_cursor”, charbuf, DBFORUPDATE);

Client

| CURDECLARE

/*
** Set the cursor rows to 10.
*/

TDS 5.0 Functional Specification 27 Version 3.4

Examples Sybase Confidential

dbcmdoptions(cmd, DBCURROWS, 10);
Client

| CURDECLARE

| OPTIONCMD
(CURSOR ROWS)

/*

** | et's open the cursor in the same operation.
*/
dbinitop(cmd, DB_CURSOR_OPEN, NULL, NULL, FETCH_ON_OPEN);

Client

| CURDECLARE

| OPTIONCMD
(CURSOR ROWS)

| CUROPEN

fetch_on_open

/*
** Now send the open to the server.

Version 3.4 28 TDS 5.0 Functional Specification

Sybase Confidential Examples

*/

dbcmdsend(cmd);
Client Server
| CURDECLARE
| OPTIONCMD
(CURSOR ROWS)
| CUROPEN
fetch_on_open
SEND =——>
_CURINFO updatable
| DONE for declare
ROWFMT |
CoNTROL |
| CURINFO
| DONE for open

repeat 10
ROW | times

\ DONE for fetch
<+—— SEND

/*
** Process the results of the cursor.
*/

while((ret = dbcmdresults(cmd)) '= DBNOMORERESULTS)
{

switch(ret)

case DBREGRESULT:

/*

** Bind the columns here.

*/

dbcmdbind(cmd, DBREGROW, SYBINTBIND, 1,
4, 1, NULL, &intbuf);

dbcmdbind(cmd, DBREGROW, SYBNTSBIND, 1,
255, 1, NULL, charbuf);

TDS 5.0 Functional Specification 29 Version 3.4

Examples

Sybase Confidential
/*
** Now fetch the rows.
*/
while(dbfetch(cmd, 1, 0, 0)
I= DBNOMOREROWS)
Client Server
FETCH
7 repeat 10
SEND =—b ROW | times, or until
-l no more rows
‘ DONE for fetch

<+—— SEND

The fetch will be automatically sent when 10 rows
are consumed by the client application.

{
/*
** Update a particular row.
*/
if(intouf == 25)
{

/*

** Define the update clause.

*/

dbinitop(cmd, DB_CURSOR_UPDATE, NULL,
“set coll = 55",0);

Client
CURUPDATE
key which indicates
the client’'s notion KEY
of “current cursor”
position

/*
** Send the update command
to the server.

*/

Version 3.4 30 TDS 5.0 Functional Specification

Sybase Confidential Examples

dbcmdsend(cmd);

Client Server

CURUPDATE

key which indicates
the client’s notion KEY
of “current cursor”

SEND — | rROwWeMT | K€y format
| KEY new key,
if any
| DONE for update

<— SEND

/*

** Verify that the update
** succeeded.

*/

if(dbcmdresults(cmd) == FAIL)

exit(1);
}
/*
** Go on to the next row.
*/
}
break;
case FAIL:
default:

/*
** This is an error - Open Client has
** already called the application’s
** error handler, so just exit.
*/
exit(1);
}
/*
** Go on to the next result set.
*/

TDS 5.0 Functional Specification 31 Version 3.4

Examples Sybase Confidential

}
/*
** All done.

*/

dbclose(dbproc);

Client Server

| CURCLOSE

| Locout

SEND =———

| CURINFO closed
\ DONE for cursor close
| DONE for logout

<¢——— SEND

Version 3.4 32 TDS 5.0 Functional Specification

Sybase Confidential Examples

Example — Language-based Cursor Operations

The previous example accessed cursor functionality in a server via the TDS cursor tokens. Clients
may also use language commands for cursor operations. In order to illustrate the ability to access
cursor functionality in SQL Server via Transact-SQL queries, we will rewrite the previous exam-
ple, sending a language command to the server containing cursor operations.

/*

:; Open a connection to the server.

login = dblogin();

dbproc = dbopen(login, SERVER_NAME);

Client Server

‘ Login

| LOGINACK

SEND —m

| DONE

<4— SEND

/*

** Now get a command handler.
*/

cmd = dbinitcmd(dbproc);

/*

** | et's build our command string. This command batch
** will declare and open the cursor. It will also set
** cursor rows to 1.

*

/

strepy(charbuf, “declare cursor my_cursor for *“);
strcat(charbuf “select * from A_Table for update ");
strcat(charbuf, “set cursor rows 10 for my_cursor);
strcat(charbuf, “open my_cursor);

strcat(charbuf, “fetch my_cursor”);

dbinitop(cmd, DB_LANG_CMD, NULL, charbuf, 0);

Client
| LANGUAGE
/*
** Send the query to the Server.
*/

TDS 5.0 Functional Specification 33 Version 3.4

Examples Sybase Confidential

dbcmdsend(cmd);

Client Server

| LANGUAGE

SEND —™

CURINFO I updatable, rows = default
ROWFMT |

| DONE for declare
| CURINFO updatable, rows = 1
| DONE for open
ROW |
| DONE for fetch

<¢— SEND

/*

** Process the results of the cursor.

*/

while((ret = dbcmdresults(cmd)) '= DBNOMORERESULTS)

switch(ret)
case DBREGRESULT:

/*

** Bind the columns here.

*/

dbcmdbind(cmd, DBREGROW, SYBINTBIND, 1,
4, 1, NULL, &intbuf);

dbcmdbind(cmd, DBREGROW, SYBNTSBIND, 1,
255, 1, NULL, charbuf);

/*

** Now fetch the rows.

*/

while(dbfetch(cmd, 1, 0, 0) I=

Version 3.4 34 TDS 5.0 Functional Specification

Sybase Confidential Examples

DBNOMOREROWS)

/*
** Update a particular row.
*/

i{f(intbuf == 25)

/*

** Define the update clause.

** Change the first column

** the value 1.

*/

strcpy(charbuf,

“update A_Table set col 1 =17
strcat(charbuf,

“where current of my_cursor”);

dbinitop(cmd, DB_LANG_CMD,
NULL, charbuf, 0);

Client Server

LANGUAGE

/*

** Send the update command
** to the server.

*/

dbcmdsend(cmd);

Client Server

LANGUAGE

‘ rRowemT | ke format
and key,

‘ KEY if any

SEND ———>

‘ DONE for update

<4— SEND

TDS 5.0 Functional Specification 35 Version 3.4

Examples Sybase Confidential

/*
** Verify that the update
** succeeded.

*/

if(dbcmdresults(cmd) == FAIL)

fprintf(stderr, “ERROR - update
failed\n");
exit(1);

}

/*
** Go on to the next row.
*/

}

/*

** Send another fetch to see if there are more rows.
*/

strepy(charbuf, “fetch my_cursor”);

dbinitop(cmd, DB_LANG_CMD,NULL, charbuf, 0);

Client

LANGUAGE

dbsend(cmd);

Client Server

LANGUAGE

SEND —

ROW |

‘ DONE for fetch

<— SEND

break;

Version 3.4 36 TDS 5.0 Functional Specification

Sybase Confidential Examples

case FAIL:
default:

/*
** This is an error. Open Client has
already printed an error message,
** 50 just exit here.

*/

exit(1);

%

}
/*
** All done.

*/

dbclose(dbproc);

Client Server

| CURCLOSE

| LogouT

SEND =—>

| CURINFO closed
\ DONE for cursor close
‘ DONE for logout

<4—— SEND

TDS 5.0 Functional Specification 37 Version 3.4

Examples Sybase Confidential

Version 3.4 38 TDS 5.0 Functional Specification

T ldentity Columns

Identity columns are used to uniquely identify a row in a table. They are a column of type
numeric. They must have a scale value of 0. The status field aftBeROWFMT token is

used to determine if a column is an identity column. Identity columns will have a status of
TDS_ROW_IDENTITY.

16. Identity Column Options

There are two ways an identity column in a table is updated:

* Implicitly: The server generates a unique value for the identity column

 Explicitly: Client provides a value for the identity column.

These two methods of updating an identity column are controlled using options. The T-
SQL option command is:

set identity_insert <tablename> <on/off>

If identity is turned on, the client is expected to provide a value for the identity column.
This is the explicit case. If identity is turned off, the server will generate a value for the
identity column. The client does not provide a value for the identity column. This is the
implicit case.

Identity can only be turned on for one table at a time on a given dialog.

The option definitions for thabs_OPTIONCMD token to support identity columns are
TDS_OPT_IDENTITYON and TDS_OPT_IDENTITYOFF. See TDS_OPTIONCMD on page
199 for details on this options.

Sybase Confidential 39 Version 3.4

Identity Columns Sybase Confidential

17. Bulk Copy Support

When Bulk Copy loads or retrieves table information it must account for the identity column. In
the default case (implicit) the identity column is not returned to the user of the bcp stand-alone or
the bulk copy library API. The bulk copy library must provide/strip the identity column based on
the table description information received from the server during initialization. In the explicit case
the identity column will be provided by and returned to the user of the bcp stand-alone or bulk
copy API.

Table 1: Sample Table Description

Table

ity?
Description | D2t@ Type dentity*

Column 1 Character No

Column 2 Numeric Yes

Column 3 Integer No

For implicit inbound, the data provided in the bcp input file or via the bulk copy API by a BCP
user would not include any information for column 2. When the BCP library is building the for-
matted row, it would insert a O placeholder in the row for the identity column before sending the
row to the server.

For explicit inbound, the data provided in the bcp input file or via the bulk copy API by a BCP
user would include information for column 2. If this information is not provided the bulk copy li-
brary would report an error. The formatted row is built entirely from data provided by the user.

For implicit outbound, the bulk copy library and bcp would not return description information or
data for column 2 to the user. If a user asked for a description of column 2, they would receive the
description for column 3.

For explicit outbound, descriptions for all columns would be available to the user. Column 2
should be identified as an identity column.

To support identity columns an external configuration option must be made available for both bcp
and the bulk copy library. This configuration option is used to indicate whether implicit or explicit
identity column behavior is wanted. This configuration option should be made available via a
command line option for the bcp stand-alone, and either a new property API to the bulk library, or
a new argument tblk_init.

Version 3.4 40 TDS 5.0 Functional Specification

Sybase Confidential Identity Columns

If explicit identity column support is requested, the bulk copy library must request the current set-
ting of the TDS_OPT_IDENTITYON option. It then must send EDS_OPT_IDENTITYON option for

the table that will be loaded. When the load is complete, the bulk library must generate a
TDS_OPT_IDENTITYOFF option for the table that was just loaded, and reset the current state of the
TDS_OPT_IDENTITYON option using the initial setting requested before the bulk copy was started.

Bulk copies on tables that contain identity columns will not be supported in TDS versions <5.0. If
a bulk copy is attempted on a table with an identity column using TDS < 5.0, the server will gen-
erate an error and the bulk copy will be aborted.

TDS 5.0 Functional Specification 41 Version 3.4

Identity Columns Sybase Confidential

Version 3.4 42 TDS 5.0 Functional Specification

> Security Support

TDS 5.0 added support for negotiated login and security specific data types.

18. Data Types

Two new data types were added to support the secure server. Both of these data types are
1 byte variable length data types. Their names are:

* TDS_SENSITIVITY
* TDS_BOUNDARY

Servers will perform character set translation on these data types. There are no conver-
sions defined for these data types. These data types are used during security handshake
during login and ass column values in a row.

If a client uses capabilities bits to indicate that these data types are not supported, a server
automatically sends these data type3@S VARCHARS instead. The capability bits are:

* TDS_DATA_SENSITIVITY (TDS_CAP_REQUEST)
e TDS_DATA_BOUNDARY (TDS_CAP_REQUEST)
* TDS_DATA_NOSENSITIVITY (TDS_CAP_RESPONSE)
e TDS_DATA_NOBOUNDARY (TDS_CAP_RESPONSE)

19. Login Record Support

The Iseclogin field in the login record is used to indicate that a client is willing to perform
the indicated security handshaking. The server has the final say over whether this hand-
shaking will occur.

Sybase Confidential 43 Version 3.4

Security Support

Sybase Confidential

The Iseclogin field can have any combination of the following bits set:

Table 2: Negotiated Login Bits

Name

Description

TDS_SEC_LOG_ENCRYPT

Perform password encryption. No plain text pass-
words are sent in eithdéow/Ipwnlen or Irempw/
Irempwlen fields (pwnlen andirempwlen

should be set to 0). Any information in these fields
is ignored by the server.

TDS_SEC_LOG_CHALLENGE

perform challenge/response login sequence.

TDS_SEC_LOG_LABELS

Perform security label exchange.

TDS_SEC_LOG_APPDEFINED

Perform application specific security hand-shake.

20. Security Messages

The message numbers in the table below are reserved for secure login negotiation.

Table 3: Negotiated Login Messages

Name Client Description
Server
TDS_MSG_SEC_ENCRYPT Server Start encrypted login protocol. This mes-
sage has oneDS_VARBINARY parameter
containing the encryption key.
TDS_MSG_SEC_LOGPWD Client Send encrypted user password to a server.

This message has omeS_VARBINARY
parameter containing the encrypted user
password.

Version 3.4

TDS 5.0 Functional Specification

Sybase Confidential Security Support

Table 3: Negotiated Login Messages

Name Client Description
Server

TDS_MSG_SEC_REMPWD Client Send a list of remote servers and encrypted
passwords to a server. The message param-
eters consist of pairs abDS_VARCHAR/
TDS_VARBINARY parameters that contain

the remote server name and the encrypted
password for that remote server.

TDS_MSG_SEC_CHALLENGE Server Start challenge/response protocol. This
message has one TDS_VARBINARY
parameter which contains an un-encrypted
challenge byte string. This message is only
used for the probe account and the backup
server.

TDS_MSG_SEC_RESPONSE Client Return the encrypted challenge byte string
to a server. This message is only used for
the probe account and the backup server.

TDS_MSG_SEC_GETLABELS Server Start trusted user login protocol. There are
no parameters to this message.

TDS_MSG_SEC_LABELS Client Return security labels to a server. This mes-
sage has an undefined number of parame-
ters of typeTDS_SENSITIVITY. These
parameters contain the security labels. The
number of security labels returned to the
server is undefined by the TDS protocol.

21. Security Protocols

The client program is responsible for requesting that a security hand-shake should occur using
one or more of the negotiated login bits in the login record. A client can abort a security hand-
shake at any time by closing the connection.

Security hand-shaking is done using the messages defined above. The protocol for the encrypted
password, challenge/response, and trusted user are below.

TDS 5.0 Functional Specification 45 Version 3.4

Security Support Sybase Confidential

Encrypted Password

Client Server
LOGIN(TDS_SEC_LOG_ENCRYPT) —
Ipwnlen = 0

Irempwlen =0

<¢—— LOGINACK(TDS_LOG_NEGOTIATE)
MSG(TDS_MSG_SEC_ENCRYPT)
PARAMFMT(TDS_VARBINARY)
PARAMS(password key)
DONE(FINAL)

MSG(TDS_MSG_SEC_LOGPWD) —>
PARAMFMT(TDS_VARBINARY)
PARAMS(encrypted password)
MSG(TDS_MSG_SEC_REMPWD)
PARAMFMT(TDS_VARCHAR)
PARAMFMT(TDS_VARBINARY)
PARAMS(server name)
PARAMS(encrypted server password)

(repeat for each remote server

password pair)

<—— LOGINACK(SUCCEED)
DONE(FINAL)

Challenge/Response

Client Server
LOGIN(TDS_SEC_LOG_CHALLENGE) —#

-¢——— LOGINACK(TDS_LOG_NEGOTIATE)
MSG(TDS_MSG_SEC_CHALLENGE)
PARAMFMT(TDS_VARBINARY)
PARAMS(challenge string)
DONE(FINAL)

MSG(TDS_MSG_SEC_RESPONSE) —
PARAMFMT(TDS_VARBINARY)
PARAMS(encrypted challenge string)

< LOGINACK(SUCCEED)
DONE(FINAL)

Version 3.4 46 TDS 5.0 Functional Specification

Sybase Confidential Security Support

Encrypted Password and Trusted User

Client Server
LOGIN(TDS_SEC_LOG_ENCRYPT —>

| TDS_SEC_LOG_LABELS)
Ipwnlen =0
[rempwlen =0

<¢—— LOGINACK(TDS_LOG_NEGOTIATE)
MSG(TDS_MSG_SEC_ENCRYPT)
PARAMFMT(TDS_VARBINARY)
PARAMS(password key)
DONE(MORE)
MSG(TDS_MSG_SEC_GETLABELS)
DONE(FINAL)

MSG(TDS_MSG_SEC_LOGPWD) —
PARAMFMT(TDS_VARBINARY)
PARAMS(encrypted password)
MSG(TDS_MSG_SEC_REMPWD)
PARAMFMT(TDS_VARCHAR)
PARAMFMT(TDS_VARBINARY)
PARAMS(server name)
PARAMS(encrypted server password)

(repeat for each remote server

password pair)
MSG(TDS_MSG_SEC_LABELS)
PARAMFMT(TDS_SENSITIVITY)
PARAMS(label data)

(repeated for each sensitivity

label)
<¢—— LOGINACK(SUCCEED)
DONE(FINAL)
Trusted User
Client Server
LOGIN(TDS_SEC_LOG_LABELS) —

<—— LOGINACK(TDS_LOG_NEGOTIATE)
MSG(TDS_MSG_SEC_GETLABELS)

DONE(FINAL)

MSG(TDS_MSG_SEC_LABELS) — >
PARAMFMT(TDS_SENSITIVITY)
PARAMS(label data)

(repeated for each sensitivity

label)

<« LOGINACK(SUCCEED)
DONE(FINAL)

TDS 5.0 Functional Specification a7 Version 3.4

Security Support Sybase Confidential

22. Bulk Copy Support

When Bulk Copy loads or retrieves table information it must account for the identity column. In
the default case (implicit) the identity column is not returned to the user of the bcp stand-alone or
the bulk copy library API. The bulk copy library must provide/strip the identity column based on
the table description information received from the server during initialization. In the explicit case
the identity column will be provided by and returned to the user of the bcp stand-alone or bulk
copy API.

Table 4: Sample Table Description

Table

ity?
Description | D2t@ Type dentity*

Column 1 Character No

Column 2 Numeric Yes

Column 3 Integer No

For implicit inbound, the data provided in the bcp input file or via the bulk copy API by a BCP
user would not include any information for column 2. When the BCP library is building the for-
matted row, it would insert a O placeholder in the row for the identity column before sending the
row to the server.

For explicit inbound, the data provided in the bcp input file or via the bulk copy API by a BCP
user would include information for column 2. If this information is not provided the bulk copy li-
brary would report an error. The formatted row is built entirely from data provided by the user.

For implicit outbound, the bulk copy library and bcp would not return description information or
data for column 2 to the user. If a user asked for a description of column 2, they would receive the
description for column 3.

For explicit outbound, descriptions for all columns would be available to the user. Column 2
should be identified as an identity column.

To support identity columns an external configuration option must be made available for both bcp
and the bulk copy library. This configuration option is used to indicate whether implicit or explicit
identity column behavior is wanted. This configuration option should be made available via a
command line option for the bcp stand-alone, and either a new property API to the bulk library, or
a new argument tblk_init.

Version 3.4 48 TDS 5.0 Functional Specification

Sybase Confidential Security Support

If explicit identity column support is requested, the bulk copy library must request the current set-
ting of the TDS_OPT_IDENTITYON option. It then must send EDS_OPT_IDENTITYON option for

the table that will be loaded. When the load is complete, the bulk library must generate a
TDS_OPT_IDENTITYOFF option for the table that was just loaded, and reset the current state of the
TDS_OPT_IDENTITYON option using the initial setting requested before the bulk copy was started.

Bulk copies on tables that contain identity columns will not be supported in TDS versions <5.0. If
a bulk copy is attempted on a table with an identity column using TDS < 5.0, the server will gen-
erate an error and the bulk copy will be aborted.

TDS 5.0 Functional Specification 49 Version 3.4

Security Support Sybase Confidential

Version 3.4 50 TDS 5.0 Functional Specification

- TDS 5.0 Reference
Pages

Each TDS token has a reference page which provides a detailed description of the format
of the token’s data stream and of its usage. Each reference page contains a graphic de-
scription of the data stream’s syntax, comments on various aspects of its usage, and a de-
tailed description of each argument.

In most cases, the graphic syntax gives enough information to be used as a quick reference
to the datastream. This is the legend for the graphics.

LEGEND
| token || Argument || data
| onebyte || twobytes || four bytes

A box without any marks indicates a one byte argument.

A box with one pair of marks indicates a two byte argument.

A box with three pairs of marks indicates a four byte argument.

TOKEN — A bold-faced font indicates the TDS token for the data stream.

Sybase Confidential 51 Version 3.4 |

TDS 5.0 Reference Pages Sybase Confidential

Argument — A Helvetica font indicates that the argument is part of the data stream description
but not part of the actual data of the data stream.

data— An italic font indicates that this argument is replaced by actual data in the data stream.

All multi-byte length fields in the data streams are sent in the client’'s byte order. The server re-
ceiving the token converts the length field as required.

TDS Token List

This is a complete list of all assigned TDS tokens, not including the data type tokens. See the data
type man page for a complete list of the data type tokens.

TDS_ALTCONTROL OxAF (obsolete)
TDS_ALTFMT. O0xA8
TDS_ALTNAME OxA7
TDS_ALTROW............... 0xD3
TDS_CAPABILITY OxE2

TDS COLFMT 0xA1l (obsolete)
TDS_COLFMTOLD 0x2A (obsolete)
TDS_COLINFO. OxA5
TDS_COLNAME.............. 0xAO (obsolete)
TDS_CONTROL.............. OxAE
TDS_CURCLOSE. 0x80
TDS_CURDECLARE 0x86
TDS_CURDECLARE2 0x23 |
TDS_CURDELETE............ 0x81
TDS_CURFETCH............. 0x82
TDS_CURINFO. 0x83
TDS_CUROPEN.............. 0x84
TDS_CURUPDATE 0x85
TDS_DBRPC OXE6
TDS_DEBUGCMD 0x60
TDS_DONE.................. OxFD
TDS_DONEINPROC. OxXFF
TDS_DONEPROC OXFE
TDS_DYNAMIC OXE7
TDS_DYNAMIC2 OxA3
TDS_EED................... OXE5
TDS_ENVCHANGE OXE3

TDS ERROR OxAA (obsolete)
TDS_EVENTNOTICE 0xA2

TDS INFO OxAB (obsolete)

Version 3.4 52 TDS 5.0 Functional Specification |

Sybase Confidential

TDS 5.0 Reference Pages

TDS_KEY ... OXCA
TDS_LANGUAGE 0x21
TDS_LOGINACK OxAD
TDS_LOGOUT 0x71
TDS_MSG. ... 0x65
TDS_OFFSET. 0x78
TDS_OPTIONCMD. OxA6
TDS_ORDERBY.............. O0xA9
TDS_ORDERBY2............. 0x22
TDS_PARAMFMT OXEC
TDS_PARAMFMT2 0x20
TDS_PARAMS 0xD7

TDS PROCID................ 0x7C (obsolete)
TDS_RETURNSTATUS 0x79
TDS_RETURNVALUE OXAC (obsolete)
TDS_ROW 0xD1
TDS_ROWFMT............... OXEE
TDS_ROWFMT2. 0x61

TDS RPC........ OxEO (obsolete)
TDS_TABNAME. O0xA4

TDS 5.0 Functional Specification

53

Version 3.4}

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 54 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

TDS_ALTFMT

Function

The data stream for describing the data type, length, and stabasvefUTE

data.
Syntax
|TDS_ALTFMT | Length | Id | #Ops
0xA8
**|OpType |- OpCol# || user type|| DataType |+ Length |+ LocaleLen |{Iocale info}—

1, 2 or 4 bytes
repeat for each operator in compute clause
ByCols Col

S—— .
one for each column in by-list

Arguments

| TDS_ALTFMT | This i the data stream token that indicates that this is a data
stream containing a description of compute data. This token is one byte and
has the valuexAs.

@l This length specifies the number of bytes remaining in the data
stream. It is an unsigned, two-byte integer.

Id | This is the id which identifies the compute statement to which the
compute column formats apply. Because a Transact-SQL statement may
have more than one compute clause, the id is necessary. The id is used later
in order to correctly interpret the compute row data which comes in the
TDS_ALTROW data stream. Id is a two-byte, unsigned integer.

@. This is the number of aggregate operators in the compute clause.
For example, the clauseompute count(x), min(x), max(x}ias three
aggregate operators. This field is a one-byte, unsigned integer.

TDS 5.0 Functional Specification 55 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

OpType I This is the type of aggregate operator. The operands for the
aggregate are described by th8yCols andCol # fields. The possible
operators are:

Table 5: Aggregate Operator Types

Operator Name O\F};Laetor Description
TDS_ALT_AVG Ox4F The average value.
TDS_ALT_COUNT 0x4B The summary count valug.
TDS_ALT_MAX 0x52 The maximum value.
TDS_ALT_MIN 0x51 The minimum value.
TDS_ALT_SUM 0x4D The sum value.

OpCol# I This is the column number associated witpType. The
first column in the select list is 1. This argument is a one-byte, unsigned
integer.

user type

This is the user-defined datatype of the data. It is a signed,
tour-byte integer.

_DataType | Thisis the data type of the data and is a one-byte unsigned
integer. Fixed length datatypes are represented by a single datatype byte
and have no followind.ength argument. Variable length datatypes are
followed byLength which gives the maximum datatype length, in bytes.

@l This is the maximum length, in bytes, DataType. The size of
Length depends on the datatype. This argument only exists for variable
length datatypes.

@l This is the length of the localization information. It is a one-

byte, unsigned integer which may have a value of DolfaleLen is 0, no
localization information follows.

Version 3.4 56 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

@l This is the localization information for the column. Itis a
character string dfocaleLen bytes This argument only exists if the

LocaleLen argument is not equal to O.

@l This is the number of columns in the by-list of the compute
clause. For example, the compute clatisempute count(sales) by
year, month, division” has three by-columns. Itis legal to have no by-
columns. Inthat case, # ByCols is 0. The argument is a one-byte, unsigned
integer.

@, When there are by-columns in a comput8yCols not equal to
0), there is one Col# argument for each select column listed in the by-
columns clause. For exampteselect a, b, c order by b, a compute
sum(a) by b, a” willreturn# ByCols as 2 followed byCol# 2 andCol#

1. The first column number is 1. This argument is a one-byte, unsigned
integer.

Comments

This is the data stream used to describe the format of a compute clause.

A compute clause may have multiple operators.

A compute clause may have only one by-list.

A Transact-SQL statement may have multiple compute clauses.

Each compute clause is described by a sepaitzgeALTFMT data stream.

The information iINTDS_ALTFMT describes the data in th®s_ALTROW
data stream.

Examples

See Also

TDS_ALTNAME, TDS_ALTROW

TDS 5.0 Functional Specification 57 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 58 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_ALTNAME

Function

Describes the number and name of a compute clause.

Syntax
TDS_ALTNAME [|— Lerigth Id NamelLen name
| |
OxA7 repeat for each
Arguments

| TDS_ALTNAME I This token indicates that this datastream describes a
compute clause. The token’s length is one byte and it’s valoe\s.

Length | This is the total length, in bytes, of the remaining data stream. It
is a two-byte, unsigned integer.

E‘Z, This is the id of the compute clause being described. Itis legal for a
Transact-SQL statement to have multiple compute clauses. The id is used
to associateDS_ALTNAME , TDS_ALTFMT, andTDS_ALTROW data
streams. The field is a two-byte unsigned integer.

NameLen I This the length, in bytes, of the name or heading for each of

the aggregate operators in the compute clause. Aggregate operators are not
required to have headings and usually don't. In the null heading case,
NameLen will be 0 and no name field will follow. There isldameLen

for each operator in a compute clause.

name | This is the compute clause heading. This argumeXginelLen
bytes long. IINameLen is 0, this argument does not exist.

Comments

» This token is used to describe the number of aggregate operators in a
compute clause. It optionally associates names with each of the aggregate
operators.

TDS 5.0 Functional Specification 59 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

» There may be more than one compute statementin a Transact-SQL compute
clause. Each compute clause is assigned dd is used to associate the
TDS_ALTFMT andTDS_ALTROW data streams.

» All TDS_ALTNAME data streams are grouped together and precede any
TDS_ALTFMT data streams. If there is more than one compute statement, alll
theTDS_ALTNAME data streams for the compute come first, followed by the
TDS_ALTFMT data streams.

Examples

See Also

TDS_ALTFMT, TDS_ALTROW

Version 3.4 60 TDS 5.0 Functional Specification

Sybase Confidential Introduction

TDS_ALTROW

Function

A row of data for a compute clause.

Syntax
TDS_ALTROW Id DataLen || data
| |
OxD3 repeat for each compute operator
Arguments

TDS_ALTROW] This token indicates that this is a data stream containing data
for a compute clause. This is a one byte with a valuexD8.

Id | Thisisthe id of the compute clause data. Itis legal for a Transact-SQL
statement to have multiple compute clauses. The id is used to associate
TDS_ALTNAME, TDS_ALTFMT, andTDS_ALTROW data streams. The field

is a two-byte unsigned integer.

Datalen |This is the length, in bytes, of the data. This field is optional,
depending on the datatype of the following data.The details for repre-
senting TDS datatypes in a data stream are covered in the Datatypes
reference page.

data| Thisis the actual data of the compute clause. It's format is identical to
aTDS_ROW data stream. Each aggregate operator in the compute clause is
represented in the data stream as a column.

The data received is always in the native format of the client machine. For
example, if integers are represented differently on the server than on the
client, the server will perform any conversion before sending data.

Comments

* An TDS_ALTROW includes a complete row of compute data. It is in the
format described by theEDS_ALTFMT data stream for a particular compute
clause.

TDS 5.0 Functional Specification 61 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

* An TDS_ALTROW data stream consists DatalL.en and data pairs, one for
each aggregate operator in the compute clauseDHb@Len argument is
only included for variable length and nullable datatypes.

* AnTDS_ALTROW data stream is identical tor@s_ROW data stream except
that it has an Id field following th&DS_ALTROW token. Because there may
be more than one compute clause in a Transact-SQL statement, each
compute clause is given a uniglae This|d is used to associate all TDS
TDS_ALT* data streams.

Examples

See Also

TDS_ALTFMT, TDS_ALTNAME, TDS_ROW

Version 3.4 62 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CAPABILITY

Function
Exchange client and server capabilities during dialog establishment.

Syntax
TDS_CAPABILITY Length Type TypelLen ValueMask
OxE2 | repeat for each capability type
Arguments

‘ TDS_CAPABILITY I Thjs token indicates that this data stream contains a list
of capabilities.

@l This is the length, in bytes, of the remaining data stream for this
token. This argument is a two-byte, unsigned integer.

@, This is theType to which the following value mask refers.
Capabilities are grouped Aypes. This argument is a one-byte, unsigned

integer. The supported capability types are:

Table 6: Capability Types

Type Value Description
TDS_CAP_REQUEST 1 Requests and data types that can be sent on this
dialog.
TDS_CAP_RESPONSE 2 Responses and data types that should not be sent
on this dialog.

Typelen | This is the length of ValueMask.

ValueMask | \/ajueMask contains the bit-field encoded capabilities

being reported In the data stream. The first byte inthkieMask
contains the high order capability bits. The last byte inMhieMask

contains the low order capability bits.

TDS 5.0 Functional Specification 63 Version 3.4}

TDS 5.0 Reference Pages Sybase Confidential

Comments

* When a client sends a login request to a server it sends a list of capabilities
that it requires on the dialog. A client does not have to send all known
capabilities to a server, only those it considers important.

» A server must respond to all capability requests from a client.

* TheTDS_CAPABILITY data stream from a client is optional. It does not have
to be sent. If no capability data is sent by a client, the behavior of the server
with respect to TDS capabilities is undefined. Tilmess_CAPABILITY data
stream is determined to be in a login packet using the length field in the
packet header.

* TheTDS_CAPABILITY data stream is sent by a client following the login
record. The server responds to the capability data stream following the
TDS_LOGINACK(SUCCEED) token.

Question: There is a problem with withholding the CAPABILITY response from
the server until after LOGINACK(SUCCEED) The client logically needs to know
some of the datatype/parameter capabilities of the server in order to send the
TDS_MSG, TDS_PARAMFMT, TDS_PARAM sequences which may required
during login negotiation. (ie. what if a client wants to send a JAVA_OBJECT
parameter ...? The server has not denied that datatype yet.) At a minimum we
need to document the range of parameter types which MUST be supported by
any server before it can participate in a negotiated login sequence.

* If a negotiated login is being done on the dialog, the capability data stream only follows the
TDS_LOGINACK(SUCCEED) token, not theTDS_LOGINACK(NEGOTIATE) . A capability re-
sponse never follows EDS_LOGINACK(NEGOTIATE) token.

» Capabilities are not in affect until completion of the login sequence.

» Capabilities are used on all client dialogs, both client to server and server to
server.

» Capabilities are only exchanged during the login sequence. Client libraries
must save a list of capabilities supported on a dialog in case the client appli-
cation requests the current capabilities following the login sequence. Itis
illegal to send abs_CAPABILITY token following a successful login
seguence

Version 3.4 64 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

Protocol Description

Non-neqotiated login protocol

Client

login packet {DS_BUF_LOGIN) —
TDS_CAPABILITY
msg header (TDS_BUFSTAT_EOM)

Server

< TDS_LOGINACK@UCCEED)

TDS_DONE(FINAL)
msg header (TDS_BUFSTAT_EOM)

Neqgotiated login protocol

Client

login packet {DS_BUF_LOGIN) —
TDS_CAPABILITY
msg header (TDS_BUFSTAT_EOM)

Server

<—— TDS_LOGINACK(NEGOTIATE)
TDS_MSG
TDS_DONE(FINAL)
msg heademn(pS_BUFSTAT_EOM)
TDS_MSG -
msg header(TDS_BUFSTAT_EOM)

<« TDS_LOGINACK(SUCCEED)
TDS_CAPABILITY

TDS_DONE(FINAL)
msg header (TDS_BUFSTAT_EOM)

» Aclient uses th&/alueMask in theTDS_CAPABILITY data stream a
follows:

- setting avalueMask bit to 1 for aTDS_CAP_REQUEST capability
indicates that the client is requesting the server to support this capability.

- setting avalueMask bit to O for aTDS_CAP_REQUEST capability

indicates that the client does not require support for this request type on
this dialog.

TDS 5.0 Functional Specification 65 Version 3.4}

TDS 5.0 Reference Pages Sybase Confidential

- setting avalueMask bit to 1 for aTDS_CAP_RESPONSE capability
indicates that the client is requesting the server to withhold this response
type on this dialog.

- setting avalueMask bit to O for aTDS_CAP_RESPONSE capability
indicates that the client is willing to receive this response type on this
dialog.

» Servers use théalueMask in theTDS_CAPABILITY data stream as follows:

- converting a client’s 1 bitin aDS_CAP_REQUEST ValueMask to a 0
indicates that the server cannot support this request capability.

- converting a client’s 1 bitin aDS_CAP_RESPONSE ValueMasktoa 0
indicates that the server is not willing to withhold this response/data type
from a client.

* Ifa server does not understand a capabiligpe it should set all bitsto 0 in
theValueMask. This indicates to the client that the server cannot support or
withhold any of these capabilities.

« |f a server does not understand a bit MaueMask it should set this bit to
0 to indicate that it cannot support or withhold this capability.

Capabilities

The tables below summarize all of the supported request and response capabil-
ities supported in TDS 5.0.

Table 7: TDS_CAP_REQUEST Capabilities

Name Value Description

TDS_REQ_LANG 1 Language requests

TDS_REQ_RPC

RPC requests

TDS_REQ_EVT Registered procedure event notification

TDS_REQ_MSTMT Support multiple commands per request

TDS_REQ_BCP Bulk copy requests

|0 WDN

TDS_REQ_CURSOR Cursor command requests

Version 3.4 66 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

Table 7: TDS_CAP_REQUEST Capabilities

Name Value Description
TDS_REQ_DYNF 7 Dynamic SQL requests
TDS_REQ_MSG 8 TDS_MSG requests
TDS_REQ_PARAM 9 RPC requests will use th®S_DBRPC
token andDS_PARAMFMT/TDS_PARAM
to send parameters.
TDS_DATA_INT1 10 Support 1 byte unsigned integers
TDS_DATA_INT2 11 Support 2 byte integers
TDS_DATA_INT4 12 Support 4 byte integers
TDS_DATA_BIT 13 Support bit data types
TDS_DATA_CHAR 14 Support fixed length character data types
TDS_DATA_VCHAR 15 Support variable length character data
types
TDS_DATA_BIN 16 Support fixed length character data types
TDS_DATA_VBIN 17 Support variable length binary data types
TDS_DATA_MNY8 18 Support 8 byte money data types
TDS_DATA_MNY4 19 Support 4 byte money data types
TDS_DATA_DATES 20 Support 8 byte date/time data types
TDS_DATA_DATE4 21 Support 4 byte date/time data types
TDS_DATA_FLT4 22 Support 4 byte floating point data types
TDS_DATA_FLT8 23 Support 8 byte floating point data types
TDS_DATA_NUM 24 Support numeric data types
TDS_DATA_TEXT 25 Support text data types
TDS_DATA_IMAGE 26 Support image data types

TDS 5.0 Functional Specification 67 Version 3.4}

TDS 5.0 Reference Pages Sybase Confidential

Table 7: TDS_CAP_REQUEST Capabilities

Name Value Description
TDS_DATA_DEC 27 Support decimal data types
TDS_DATA_LCHAR 28 Support long variable length character
data types

TDS_DATA_LBIN 29 Support long variable length binary data
types.

TDS_DATA_INTN 30 Support NULL integers

TDS_DATA_DATETIMEN 31 Support NULL date/time

TDS_DATA_MONEYN 32 Support NULL money

TDS_CSR_PREV 33 Support fetch previous cursor commands

TDS_CSR_FIRST 34 Support fetch first row cursor commands

TDS_CSR_LAST 35 Support fetch last row cursor commands

TDS_CSR_ABS 36 Support fetch specified absolute row cur-
sor commands

TDS_CSR_REL 37 Support fetch specified relative row cur-
sor commands

TDS_CSR_MULTI 38 Support multi-row fetch cursor com-
mands

TDS_CON_OOB 39 Support expedited attentions

TDS_CON_INBAND 40 Support non-expedited attentions

TDS_CON_LOGICAL 41 Support logical logout (not supported in
this release)

TDS_PROTO_TEXT 42 Support tokenized text and image (not
supported in this release)

TDS_PROTO_BULK 43 Support tokenized bulk copy (not sup-

ported this release)

Version 3.4 68 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

Table 7: TDS_CAP_REQUEST Capabilities

Name Value Description

TDS_REQ_URGEVT 44 Use new event notification protocol

TDS_DATA_SENSITIVITY 45 Support sensitivity security data types

TDS_DATA_BOUNDARY 46 Support boundary security data types
TDS_PROTO_DYNAMIC 47 Use DESCIN/DESCOUT dynamic pro-
tocol
TDS_PROTO_DYNPROC 48 Pre-pend “create proc” to dynamic pre-

pare statements
TDS_DATA_FLTN 49 Support NULL floats
TDS_DATA_BITN 50 Support NULL bits
TDS_DATA_INT8 51 Support 8 byte integers
TDS_DATA_VOID 52 ?
TDS_DOL_BULK 53 ?
TDS_OBJECT_JAVA1 54 Support Serialized Java Objects
TDS_OBJECT_CHAR 55 Support Streaming character data
TDS_DATA_COLUMNST 56 Indicates that a one-byte status field pro-
ATUS ceeds any length or data (etc.) for every

column within a row using TDS_ROW
or TDS_PARAMS

TDS_OBJECT_BINARY 57 Streaming Binary data
RESERVED 58 Reserved for future use |
TDS_WIDETABLE 59 The client may send requests using the
CURDECLAREZ2, DYNAMIC2,
PARAMFMT2 tokens.
RESERVED 60 Reserved |
TDS_DATA_UINT2 61 Support for unsigned 2-byte integers |

TDS 5.0 Functional Specification 69 Version 3.4}

TDS 5.0 Reference Pages Sybase Confidential

Table 7: TDS_CAP_REQUEST Capabilities

Name Value Description
TDS_DATA_UINT4 62 Support for unsigned 4-byte integers |
TDS_DATA_UINT8 63 Support for unsigned 8-byte integers |
TDS_DATA_UINTN 64 Support for NULL unsigned integers |
TDS_CUR_IMPLICIT 65 Support for

TDS_CUR_DOPT_IMPLICIT cursor
declare option.

TDS_DATA_NLBIN 66 Support for LONGBINARY data con-
taining UTF-16 encoded data (usertypes
34 and 35)

TDS_IMAGE_NCHAR 67 Support for IMAGE data containing
UTF-16 encoded data (usertype 36).

TDS_BLOB_NCHAR_16 68 Support for BLOB subtype 0x05 (uni-
char) with serialization type O.

TDS_BLOB_NCHAR_8 69 Support for BLOB subtype 0x05 (uni-

char) with serialization type 1.

TDS_BLOB_NCHAR_SCS 70 Support for BLOB subtype 0x05 (uni-
U char) with serialization type2.

Table 8: TDS_CAP_RESPONSE capabilities

Name Value Description
TDS_RES _NOMSG 1 No support forrDS_MSG results
TDS_RES_NOEED 2 No support forrDS_EED token
TDS_RES_NOPARAM 3 No support for

TDS_PARAM/TDS_PARAMFMT for return
parameter. USEDS_RETURNVALUE to
return parameters to this client.

TDS_DATA_NOINT1 4 No support for 1 byte integers

Version 3.4 70 TDS 5.0 Functional Specification |

Sybase Confidential

TDS 5.0 Reference Pages

Table 8: TDS_CAP_RESPONSE capabilities

Name Value Description
TDS_DATA_NOINT2 5 No support for 2 byte integers
TDS_DATA_NOINT4 6 No support for 4 byte integers
TDS_DATA_NOBIT 7 No support for bit data types
TDS_DATA_NOCHAR 8 No support for fixed length character data

types
TDS_DATA_NOVCHAR 9 No support for variable length character
data types
TDS_DATA_NOBIN 10 No support for fixed length binary data
types
TDS_DATA_NOVBIN 11 No support for variable length binary data
types
TDS_DATA_NOMNY8 12 No support for 8 byte money data types
TDS_DATA_NOMNY4 13 No support for 4 byte money data types
TDS_DATA_NODATES8 14 No support for 8 byte date/time data types
TDS_DATA_NODATE4 15 No support for 4 byte date/time data types
TDS_DATA_NOFLT4 16 No support for 4 byte float data types
TDS_DATA_NOFLT8 17 No support for 8 byte float data types
TDS_DATA_NONUM 18 No support for numeric data types
TDS_DATA_NOTEXT 19 No support for text data types
TDS_DATA_NOIMAGE 20 No support for image data types
TDS_DATA_NODEC 21 No support for decimal data types
TDS_DATA_NOLCHAR 22 No support for long variable length char-

acter data types

TDS 5.0 Functional Specification

71 Version 3.4}

TDS 5.0 Reference Pages Sybase Confidential

Table 8: TDS_CAP_RESPONSE capabilities

Name Value Description

TDS_DATA_NOLBIN 23 No support for long variable length binary
data types

TDS_DATA_INTN 24 No support for nullable integers

TDS_DATA_NODATETIMEN 25 No support for nullable date/time data
types

TDS_DATA_NOMONEYN 26 No support for nullable money data types

TDS_CON_NOOOB 27 No support for expedited attentions

TDS_CON_NOINBAND 28 No support for non-expedited attentions

TDS_PROTO_NOTEXT 29 No support for tokenized text and image.

TDS_PROTO_NOBULK 30 No support for tokenized bulk copy

TDS_DATA_NOSENSITIVITY 31 No support for the security sensitivity
data type

TDS_DATA_NOBOUNDARY 32 No support for the security boundary data
type

TDS_RES_NOTDSDEBUG 33 No support forDS_DEBUG token. Use
image data instead.

TDS_RES_NOSTRIPBLANKS 34 Do not strip blank from fixed length char-
acter data

TDS_DATA_NOINTS8 35 No support for 8 byte integers

TDS_OBJECT_NOJAVAL1 36 No Support Serialized Java Objects

TDS_OBJECT_NOCHAR 37 No Support Streaming character data

TDS_DATA_NOZEROLEN 38 No Support for O-length non-null strings |

TDS_OBJECT_NOBINARY 39 No Streaming Binary data

40 Reserved for future use |

Version 3.4 72 TDS 5.0 Functional Specification |

Sybase Confidential

TDS 5.0 Reference Pages

Table 8: TDS_CAP_RESPONSE capabilities

Name Value Description
TDS_DATA_NOUINT2 41 No Support for unsigned 2-byte integers
TDS_DATA_NOUINT4 42 No Support for unsigned 4-byte integers
TDS_DATA_NOUINT8 43 No Support for unsigned 8-byte integers
TDS_DATA_NOUINTN 44 No Support for NULL unsigned integers
TDS_NO_WIDETABLES 45 Client cannot process the ORDERBY?2,
PARAMFMT2, and ROWFMT2 tokens
required to support tables with a LARGE
number of columns. The server should
not send them.

TDS_DATA_NONLBIN 46 No Support for LONGBINARY data con-
taining UTF-16 encoded data (usertypes
34 and 35)

TDS_IMAGE_NONCHAR 47 No Support for IMAGE data containing
UTF-16 encoded data (usertype 36).

TDS_BLOB_NONCHAR_16 48 No Support for BLOB subtype 0x05/0.

TDS_BLOB_NONCHAR_8 49 No Support for BLOB subtype 0x05/1.

TDS_BLOB_NONCHAR_SCSU 50 No Support for BLOB subtype 0x05/2.

See Also

TDS_OPTIONCMD

TDS 5.0 Functional Specification

73 Version 3.4}

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 74 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

TDS_COLINFO

Function
The data stream used to provide column information for browse mode.

NOTE the select list fora SELECT WITH BROWSE must not contain > 25

columns.
Syntax
Ds_coLinFol—| Length
OxAS repeat for each column
eee | Column# Table# Status ColLength column namg |
if ColRename |
Arguments

|__TDS_COLINFO_| This token indicates that this is a data stream
containing information about columns involved iselect with browse

mode
Length | This is the total length of the remaining@s_coLINFO data
stream. It 1S a two-byte, unsigned integer.

Column# | This is the number of the column in tiselect target list to
which the column information applies. The number of the first columnis 1.
Column# is a one-byte, unsigned integer.

Table# | This is the number of the table from which the column comes.
I he tables names are listed in ttiesSs_ TABNAME data stream which

precedes th&DS_COLINFO data stream. The first table in the
TDS_TABNAME data stream is TLable# is a one-byte, unsigned integer.

d

i

TDS 5.0 Functional Specification 75 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

@, This one-byte, unsigned integer is the status of the current
column being described. Every column in 8edect target listis
described in theDS_COLINFO data stream.

Table 9: TDS_COLINFO status values

Status Name Status Value Description

—

TDS_STAT_EXPR 0x04 This column is the result of an SQL expressio
and not an actual column in the underlying table

TDS_STAT_KEY 0x08 The column is part of the row key. It does not
have to be part of theelect target list.

TDS_STAT_HIDDEN 0x10 This column was not in treelect target list. Itis
usually not made visible to the client application
by the client library. However, it was passed to
the client because it is part of the row key. Hid-
den columns are always key columns.

TDS_STAT_RENAME | 0x20 The column name returned for this column in the
select target list (described in tHEDS_ROWFMT
data stream) is not the column’s name in the
table. For example, in the stateméselect
orderdate = date from order”, the real col-
umn name is “date” but the name returned in the
TDS_ROWFMT data stream was “orderdate”. If
the column status i8DS_STAT_RENAME, the
real column name is in the next two arguments|of
the TDS_COLINFO data stream.

ColLength | Thisis the length of the column’s real name. Note that this field
and the following column name field will appear only if the preceding
Status field hasTDS_STAT_RENAME set. This argument is a one-byte,
unsigned integer.

‘ column nam* This is the column’s real name. It's length, in bytes, is given
by theColLength argument. Theolumnnamenly exists ifColLength is
greater than O.

Version 3.4 76 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Comments

* When browse mode is used on a select statement, the server sends back
information about the tables and columns involved. With this information,
the client library can build a qualification clause for any subsequent update
or delete statements.

 All columns needed to make a unique key for a row are returned to the client
library. Some of the returned columns may not exist in the select statement’s
target list. Columns not in the target list are hidden columns. They are
usually not returned to the client application by the client library.

* Information for every column in the select list as well as hidden key columns
is included in theDS_COLINFO data stream.

* The column name and column name length fields are included only if
Status is TDS_STAT_RENAME.

» This data stream is always preceded hya_TABNAME data stream.
» This data stream is used only for browse mode.

» Browse mode functionality has been replaced by System 10 cursor support.
New applications are encourage to use cursors instead of browse mode
queries.

» Because the Column# field is only 1 byte wide, this token cannot correctl
describe “for browse” results with > 255 columns.

Examples

See Also
TDS_TABNAME, TDS_ROWFMT

TDS 5.0 Functional Specification 77 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 78 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CONTROL

Function

Describes the user control or format information for columns.

Syntax
TDS_CONTROL Length FmtLen fmt
| |
OXAE repeat for each column
Arguments

|_TDS_CONTROL | Thistoken indicates that this is a data stream containing
control information.

Length | This is the total length, in bytes, of the remaining data stream. It
is a two-byte, unsigned integer.

FmtLen I This the length, in bytes, of the control information that follows.
This is an unsigned one-byte argument.

fmt | This is the actual control information for a column. Its length is
FmitLen. If FmtLen is O, this argument doesn't exist in the data stream.
Thefmtfield is treated as a binary byte string. There is no character set
conversion performed on this argument.

Comments

» This data stream is used to tell the client about any user-defined format infor-
mation for columns. It is used to support a facility in Transact-SQL that
allows arbitrary, user-defined information to be associated s4tbct
target-list columns and then returned to the client.

» The SQL Server option control must be on for a server to return
TDS_CONTROL data streams.

» This feature is used internally by some Sybase front-end applications.
However, it is fairly obscure and normally unused by most customer appli-
cations.

TDS 5.0 Functional Specification 79 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Examples

The client sends the following query:
select name, id, type from sysobjects

controlrow 0 “name fmt string”, *”, “type fmt string”
The data stream from the server is:

| TDS_ROWFMT etc.

| T0s_conTtroL || 33 |+] 15| name fmt strind—| 0 |->

‘ 15 %‘ type fmt string

See Also
TDS_ROWFMT

Version 3.4 80 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CURCLOSE

Function

Describes the cursor close data stream.

Syntax
| TDS_CURCLOSE |- Length "Cursorld'
0x80
***| NamelLength \ cursor namel——={ Options
Arguments

| TDS_CURCLOSE

This is the token for a client request to close a cursor.

Length }This is the total length of the remainim@s_CURCLOSE data
stream. It is a two-byte unsigned integer.

Cursorld | cyrsor id of cursor that is being closedQfirsorld is 0 the
cursor I1s being closed by name. This is a four-byte unsigned integer.

NameLength| This s the length of theursor namelt is a one-byte
unsigned integer and must be >0 andrios_MAX_NAME. NamelLength
and cursor name are only includeddi@irsorld is equal to 0.

|_cursor namd This is the name of the cursor. The length of this field is in

theNameLength argument.

_Options | These are the options associated with this cursor close. The
value values for this argument are:

Table 10: Cursor close options

Name Value Description

TDS_CUR_COPT_UNUSED 0x00 | No close options.

TDS 5.0 Functional Specification 81 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Table 10: Cursor close options

Name Value Description

TDS_CUR_COPT_DEALLOC 0x01 Close and de-allocate the cursor. The
cursor must be re-declared before it can
be reopened.

Comments

» This is the data stream generated by a client when a close cursor request is
sent to a server.

» A TDS_CURCLOSE token can only be sent for a cursor following
TDS_CURDECLARE andTDS_CUROPEN tokens.

» The cursor to close is identified in th®S_CURCLOSE token.
* Multiple TDS_CURCLOSE data streams may be sent in the same request.
» TheTDS_CURCLOSE token is acknowledged with®sS_CURINFO token.

» Two TDS_CURCLOSE tokens can only be sent for the same cursor if the first
one sent does not have O@tion argument set to
TDS_CUR_COPT_DEALLOC.

Examples

See Also
TDS_CUROPEN, TDS_CURDECLARE

Version 3.4 82 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CURDECLARE

Function

Describes the data stream for declaring a cursor.

Syntax
TDS_CURDECLARE H | Length NameLen cursor namel
0x86 _
v Options Status
e+ | StmtLength statement
eee | #Columns ColNameLength column name
| |
repeat for each column
Arguments

|_TDS_CURDECLARE I This token indicates that this is a data stream
containing a client cursor request to declare a cursor.

__Length | Thisis the total length of the remainin@s_CURDECLARE
data stream. It is a two-byte unsigned integer.

NameLength| This s the length of theursor namelt is a one-byte
unsigned integer and must be > 0 and®os_MAXNAME (30).

| CUrsor Nname} Thjs is the name of the cursor.

|__Options These are the cursor declare options. This is a one-byte
unsigned Integer.

Table 11: Cursor option values

Option Name Value Description

TDS_CUR_DOPT_UNUSED 0x00 | No options associated with this cursor.

TDS 5.0 Functional Specification 83 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 11: Cursor option values

-

Status

Option Name Value Description
TDS_CUR_DOPT_RDONLY 0x01 | This cursor is read only.
TDS_CUR_DOPT_UPDATABLE 0x02 | Updates can be performed with this cursg
TDS_CUR_DOPT_DYNAMIC 0x08 | This cursor is being declared against a

dynamically prepared statement.
TDS_CUR_DOPT_IMPLICIT 0x10 | This cursor is implicitly read-only, automat-

ically fetches first set of rows on the CURQ-
PEN, and automatically closes after the last
row is fetched.
This option should not be specified unless
the TDS_CUR_IMPLICIT request capabil;
ity is set.

This is the cursor declare status argument. It is a one-byte

unsigned integer.

Table 12: Cursor Declare Status

Name

Value Description

TDS_CUR_DSTAT_UNUSED

0x00 | No status associated with this cur-

sor declare.

TDS_CUR_DSTAT_HASARGS

0x01 | The cursor declare statement is fol-

lowed by parameters.

Stth:ength

associlated with this cursor. It is a 2-byte unsigned integer. Please note that
since the totalDS_CURDECLARE data strearhength may be no greater

than 64k-1StmtLength can never be a full 64k-1. The maximum size of
StmtLength depends on the length of the cursor name and the number and

This is the total length of the followingELECT statement

length of any update columns.

Version 3.4

84 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

statement | Thjs is the actual text of the cursor, without RECLARE
CURSOR orFOR {READ ONLY | UPDATE} clauses. For example, in
the following full ANSI cursor declaration, only the words in italics would
be the statement argument.
DECLARE CURSOR csrl FOR
SELECT a, b FROM tabl
WHERE a<12 AND b > 15
FOR UPDATE OF a

#Columns | \when a cursor is declarééDR UPDATE, the update
columns may be specified. This argument identifies the number of
columns specified for update. If this number is > 0, the column (or
columns) name length and name follow. This argument is a one-byte
unsigned integer. This argument is optional. If its value is O then the
following arguments are omitted.

NameLength| \when a cursor is declardtDR UPDATE, the columns
that may be updated can be specified. This, and the following, argument
are repeated for each column specified for update. If the previous
argument#Columns, is 0, this argument and the following argument will
not be included. Columns are represented by their column name length and
column name in th&ELECT list. This parameter is a one-byte unsigned
integer.

column namd This is the name of the column optionally described in the
FOR UPDATE clause. Its length is described by tRamelLength
argument.

Comments

» This is the data stream generated by a client to declare a cursor.

 |fthe TDS_CURDECLARE is successful, the client’s and server’s notion of
the current cursor context is changed to be the new cursor. The cursor id
assigned by the server for the new cursor will be returned to the client in the
TDS_CURINFO data stream that acknowledges the cursor declare.
#Columns

refers to the columns mentioned in thies| SQL “FOR
UPDATE OF <column name list>" clause.

TDS 5.0 Functional Specification 85 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

. |_statement | should not contain theJECLARE <cursor name>
CURSOR FOR” clause of a cursor declaration but under the following
conditions the Server will report back to the client the READONLY or
UPDATABILITY through CURINFO tokens.

- If#Columns is 0 then the statement may contain tiBDATE [OF
<column name list>]" clause.

- If Option isnot TDS_CUR_DOPT_RDONLY, then the statement may
contain the FOR READ ONLY” clause.

 Information about the cursor is returned to the client inTthe_CURINFO
data stream once the server has receiveégcdare cursor token, via
cursor command.

* If the declare is successful, thes_ ROWFMT data stream describing the
results will be returned to the client at cursor open time. it ROWFMT
data stream for the results will not be returned at declare cursor time.

» A cursor declare statement may be parameterized. If so, the description of
the parameters usingr@s_PARAMFMT data stream must follow the
TDS_CURDECLARE data stream. When the cursor is opened, the parameter
values must be passed to the server witiba PARAMS data stream
following theTDS_CUROPEN data stream. Parameterized declare state-
ments are indicated by$tatus of TDS_CUR_DSTAT_HASARGS.

 TheTDS_CURDECLARE token can be sent with@bS_CUROPEN and
TDS_CURFETCH token in the same request. The server will acknowledge
each token with @aDS_CURINFO, TDS_DONE(MORE), except for the final
token ((DS_CURFETCH) which is acknowledged with BDS_CURINFO,
TDS_DONE(FINAL).

Examples

See Also
TDS_CURDECLARE2, TDS_CUROPEN, TDS_CURINFO, TDS_CURFETCH |

Version 3.4 86 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CURDECLAREZ? |

Function

Describes the data stream for declaring a cursor. It serves an identical purppse
to TDS_CURDECLARE, but has been widened to support more columns.

Syntax

TDS_CURDECLAREZH Length |—| NameLen cursor name}—
0x23

Options Status

-« StmtLengt] — | statement

«« 4 #Columns | ColNameLength column name
|

repeat for each column

Arguments

| TDS_CURDECLARE? I This token indicates that this is a data stream
containing a client cursor request to declare a cursor.

__Length This is the total length of the remaining
TDS_CURDECLARE?2 data stream. It is a four-byte unsigned integer. |

| NameLength

This is the length of theursor namelt is a one-byte
unsigned integer and must be > 0 and®s_MAXNAME (30).

| cursor name

This is the name of the cursor.

| Options These are the cursor declare options. This is a one-byte
unsigned integer. Option values are described in the
TDS CURDECLARE section.

__Status This is the cursor declare status argument. It is a one-byte
unsigned Integer. |

TDS 5.0 Functional Specification 87 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

_StmtLength | This is the total length of the followin§ELECT statement
assoclated with this cursor. It is a 4-byte unsigned integer.

__statement | This is the actual text of the cursor, without thECLARE
CURSOR orFOR {READ ONLY | UPDATE} clauses. For example, in
the following full ANSI cursor declaration, only the words in italics would
be the statement argument.

DECLARE CURSOR csrl FOR
SELECT a, b FROM tabl
WHERE a<12 AND b > 15

FOR UPDATE OF a

#Columns | \when a cursor is declaré@DR UPDATE, the update
columns may be specified. This argument identifies the number of
columns specified for update. If this number is > 0, the column (or
columns) name length and name follow. This argument is a two-byte |
unsigned integer. This argument is optional. If its value is 0 then the
following arguments are omitted.

NameLength| \when a cursor is declaréDR UPDATE, the columns
that may be updated can be specified. This, and the following, argument
are repeated for each column specified for update. If the previous
argument#Columns, is 0, this argument and the following argument will
not be included. Columns are represented by their column name length and
column name in th&ELECT list. This parameter is a one-byte unsigned
integer.

column nam(* This is the name of the column optionally described in the
FOR UPDATE clause. Its length is described by tRameLength
argument.

Comments

* Read comments in the TDS_CURDECLARE section. |

Version 3.4 88 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Examples

See Also
TDS_CURDECLARE, TDS_CUROPEN, TDS_CURINFO, TDS_CURFETCH

TDS 5.0 Functional Specification 89 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 90 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CURDELETE

Function

Describes the data stream for deleting a row through a cursor.

Syntax
TDS_CURDELETE H| Length “Cursorld "]
0x81
*** | NamelLength cursor name
*e Status
*** | TableLength table name
Arguments

TDS_CURDELETE I This is the data stream command token for a client
request talelete through a cursor.

Length }This is the total length of the remainim@s_CURDELETE data
stream. It is a two byte unsigned integer.

. Cursorld

This is the internal identifier for the cursor@iursorld is O

it means that the cursor on which to perform the delete is identified by
name using thBlameLength andcursor namerguments. This argument
is a four byte, unsigned integer.

[Name Length| This s the length of theursor namelt is a one-byte
unsigned integer and must be > 0 and®s_MAX_NAME(30). This part
of the data stream is only included if Cursorld is equal to O.

| CUrsor Nname§ Thijs is the name of the cursor.

TDS 5.0 Functional Specification 91 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Status This is status information associated with the cursor delete.
This argument is a one-byte unsigned integer. It has the following values:

Table 13: Cursor Delete Status Values

Name Value Description

TDS_CUR_DELSTAT_UNUSED | 0x00 | No status associated with the
cursor delete.

|_TableLength | Thisis the length of the table name which follows. Itis a
one byte unsigned integer.

|_tablename | Thisis the name of the table to which tielete applies.
It may be a compound name such as “site.db.owner.table”. It should be the
same table reference as used indkelare cursor .

Comments

* This is the data stream generated by the client wraglete cursor
command is sent to the server.

e The cursor to which theDS_CURDELETE refers is identified in the
TDS_CURDELETE data stream.

* When aTDS_CURDELETE data stream is sent to the server, it is always
followed by aTDS_KEY data stream. TheDS_KEY data stream defines to
the server what the client’s current row is.

* A TDS_CURINFO, TDS_DONE is returned on a successful delete.
A TDS_CURINFO, TDS_EED, TDS_DONE Is returned on a version mismatch.

A TDS_EED, TDS_DONE is returned for a key mismatch.
Examples

See Also

TDS_CURUPDATE, TDS_CURDECLARE, TDS_CUROPEN, TDS_KEY

Version 3.4 92 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CURFETCH

Function

Describes the data stream for sending a fetch command to a server.

Syntax
TDS_CURFETCH |—| Length " Cursorld I
0x82
*++ | NameLength cursor name
. Type ~ Row# I
Arguments

‘ TDS_CURFETCH | Thjs is the data stream command token that indicates that
this IS a data stream containing a client cursor requestdarsor fetch .

Length This is the total length of the remainin@®s_CURFETCH
dafa stream. It is a two byte unsigned integer.

Cursorld This is the internal cursor identifier for this cursor. It is
a our-vyte unsigred integer.

|NameLength| Thisis the length of theursor namelt is a one byte
unsigned integer and must be > 0 and®s_MAXNAME (30).
NameLength is only included if Cursorld is equal to O.

| cursor name

This is the name of the cursor. Its lengtiNameLength

TDS 5.0 Functional Specification 93 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Type | This argument defines the row that should be returned for this
tetch. If cursor scrolling is not supported by a server (determined using
capabilities), theype must always b&DS_CUR_NEXT. Type is an
unsigned, one byte integer and its possible values are:

Table 14: Cursor fetch types

Type Names Value Row# Sent? Description

TDS_CUR_NEXT 1 No Return next row from table.

TDS_CUR_PREV 2 No Return previous row from table.

TDS_CUR_FIRST 3 No Return first row from table.

TDS_CUR_LAST 4 No Return last row from table.

TDS_CUR_ABS 5 Yes Return row at position specified in Row#.
The first row in a table is 1. Row# equal to 0
indicates the current row. Row# must be >=0.

TDS_CUR_REL 6 Yes Return row at current position plus Row#.
Row# can be positive or negative.

row # This is a signed, four-byte integer which indicates the row

position. I his argument is optional and is only included in the data stream
as indicated in the table above.

CUrsor Nname} Thjs is the name of the cursor.

Comments

» Thisis the data stream generated by a client wHetcha cursor requestis
sent to a server.

» The number of rows that are returned detch cursor are determined by
the cursor fetch count set using theS_CURINFO token.

» The cursor to which theDs_CURFETCH refers is identified in the
TDS_CURFETCH token.

* If scrolling is not supported by the server, fhgpe argument must be
TDS_CUR_NEXT.

Version 3.4 94 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

» Therow #argumentis only in the data stream wiig/pe isTDS_CUR_ABS
Oor TDS_CUR_REL.

* Ifthe cursor is up-datable, the cursor key is imbedded imtige ROW that
is returned. Please sees_ROWFMT for a description of the cursor key.

* TDS_FETCH tokens are responded to with row results amta_DONE.

» TheTDS_CURFETCH token can be sent by a client with a
TDS_CURDECLARE andTDS_CUROPEN in the same request. A server will
acknowledge th&DS_CURDECLARE andTDS_CUROPEN tokens with a
TDS_CURINFO and arDS_DONE(MORE). TheTDS_CURFETCH will be
acknowledged with the row results antiizs_DONE(FINAL).

Examples

See Also

TDS_CURDECLARE, TDS_CUROPEN, TDS_CURINFO

TDS 5.0 Functional Specification 95 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 96 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CURINFO

Function

The data stream for describing cursor characteristics and state.

Syntax
TDS_CURINFO || Length _ Cursorid ']
0x83
e+« | NamelLen cursor name
eee| Command Status RowCount
Arguments

‘ TDS_CURINFO | Thjs is the data stream token that indicates that this is a
data stream containing a description of a cursor.

__Length | Thisis the total length of the remainim@s_CURINFO data
stream. It is a two-byte unsigned integer.

\ Cursorld

This is the internal identifier for a cursor. Ti&irsorld is
always set by the server that is managing the cursor. Itis never assigned by
a client. This argument is a four-byte, signed integer.

\ NameLength

This is the length of the followingursor nameltis a
one-byte, unsigned integer. This argument only appe&usn$orid is O.

‘ cursor name

This is the cursor name for this cursor. The argument only
appears if there isldameLength parameter in the data stream. Its length
is in NameLength.

TDS 5.0 Functional Specification 97 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Command

This is the command associated with l&s_CURINFO

token.

Table 15: TDS_CURINFO Commands

Name Value Description

TDS_CUR_CMD_SETCURROWS 1 Set the fetch count.

TDS_CUR_CMD_INQUIRE Ask status of a cursor.

2
TDS_CUR_CMD_INFORM 3 Report status of a cursor.
4

TDS_CUR_CMD_LISTALL

Report status of all open cursors.

Version 3.4 98 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Status This argument describes the status of the cursor. This
argument is a two-byte, unsigned integer. The possible values are:

Table 16: Valid Cursor Status

Option Names Values Description
TDS_CUR_ISTAT_UNUSED 0x0000 | The option argument is unused.
TDS_CUR_ISTAT_DECLARED 0x0001 | The specified cursor has been declared.
TDS_CUR_ISTAT_OPEN 0x0002 | The specified cursor is open.
TDS_CUR_ISTAT_CLOSED 0x0004 | The specified cursor is closed.
TDS_CUR_ISTAT_RDONLY 0x0008 | The specified cursor is read-only. Any

update or delete statements against this
cursor are illegal.

TDS_CUR_ISTAT_UPDATABLE 0x0010 | The specified cursor is updatable. Update
and delete statements may be issued
against this cursor.

TDS_CUR_ISTAT_ROWCNT 0x0020 | The rowcount argument is valid. This
TDS_CURINFO command is setting the
current row fetch count.

TDS_CUR_ISTAT_DEALLOC 0x0040 | The specified cursor has been deallocated.
It cannot be opened unless it is declared
again.
row count | Thig describes how many rows will be returned for a cursor

fetch . Itis a four-byte signed integer.

Comments

» This data stream is used for two purposes. Itis used to communicate changes
in the state of a cursor. It is also used to set the current cursor context.

» This data stream is used to set the “current cursor”. This is required because
there can be multiple open cursors on a single client server dialog. The
TDS_CURINFO is used to coordinate commands and responses with a
particular cursor.

TDS 5.0 Functional Specification 99 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

» TheTDS_CURINFO token is used by servers to return the assigned cursor id
after a cursor has been declared.

» This data stream is first returned to a client when the curstectared . It
is also returned to the client if the number of rows feéch is changed.

e |If Command is TDS_CUR_CMD_LISTALL theCursorld must be 0.

* NameLength andCursorName are optional. They are only in the data
stream ifCursorld is O.

» RowCount is optional. It is only present if theength argument after
subtracting out the lengths of the other arguments is 4. (It was initially
specified that this field would be present if and only if the
TDS_CUR_ISTAT_ROWCNT bit was set. Open Client was not coded to this
requirement, thus we are left with this silly subtraction technique.)

* Returning eRowCount equal to O is illegal.

* Itisillegal to settherDS_CUR_ISTAT_ROWCNT Status with the
TDS_CUR_CMD_INQUIRE andTDS_CUR_CMD_LISTALL commands.

» Language based cursors do not catse CURINFO tokens to be sent.

» A client requests the status of a specified cursor using the
TDS_CUR_INQUIRE command withCursorld set to the identifier of the
cursor the client wants information on. The server responds with the
TDS_CUR_CMD_INFORM Command and the status bits set appropriately
for the cursor identifier identified in th€ursorld argument. NOTE: This
command is not currently supported in any Sybase products.

A client can request the status of all active cursor using the
TDS_CUR_CMD_LISTALL Command. When a server receives this
Command it returns arbS_CUR_CMD_INFORM Command for all active
cursors on the dialog.

» A server will acknowledge thebsS_CUR_CMD_SETCURROWS Command
with aTDS_CURINFO, TDS_DONE. If the requested row count is invalid the
server will respond with #aDS_CURINFO, TDS_EED, TDS_DONE.

Examples

See Also

TDS_CURDECLARE, TDS_CUROPEN

Version 3.4 100 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CUROPEN

Function

Describes the cursor open data stream.

Syntax
TDS_CUROPEN |—| Length "cursorid "]
0x84
oo ‘Name Length cursor name

o Status

Arguments
| TDS_CUROPEN
a cursor.

Length IThis is the total length of the remainim@s_CUROPEN data
stream. It is a two byte unsigned integer.

| Cursorld

This is the data stream token for a client request to open

This is the internal identifier for the cursorQursorid is 0

it means that the cursor being opened is identified by name using the
NameLength andcursor namearguments. This argument is a four byte,
unsigned integer.

| NameLength

This is the length of theursor namelt is a one byte
unsigned integer and must be > 0 and®s_MAXNAME. This part of the
data stream is only included if Cursorld is equal to 0.

| cursor name

This is the name of the cursor. ItNameLength bytes long.

TDS 5.0 Functional Specification 101 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Status This argument contains status associated with the cursor
open command. This argument is a one-byte, unsigned integer.

Table 17: Cursor Open Status Values

Name Value Description

TDS_CUR_OSTAT_UNUSED 0x00 This open command has no status.

TDS_CUR_OSTAT_HASARGS | 0x01 Data for arguments associated with the cursor
declare statement following the cursor open com-
mand in arDS_PARAM data stream.

Comments

» Thisisthe data stream generated by a client whagres cursor command
is sent to a server.

» The cursor to open is identified in th®S_CUROPEN data stream.

» Acursor must have been declared using_CURDECLARE before itcan be
opened.

» The description of the cursor results, if any, are returned to the client using a
TDS_ROWFMT data stream at cursor open time.

* ATDS_CURDECLARE, TDS_CUROPEN andTDS_CURFETCH can be sentin
the same request if they all refer to the same cursor.

» A cursor declare statement may be parameterized. If it is, the description of
the parameters is passed to the server usimgsaPARAMFMT data stream
following the TDS_CURDECLARE data stream. When the cursor is opened,
the parameter values must be passed to the server with #ARAMS data
stream following th@DS_CUROPEN data stream. The
TDS_CUR_OSTAT_HASARGS status must be set in this case.

e Both aTbs_PARAMFMT andTDS_PARAMS data streams can follow a
TDS_CUROPEN. This allows conversion to occur between the parameters
specified at declare time and the actual parameters provided at open time.

» Aserverresponds witheDS_CURINFO andTDS_ROWFMT on success. The
TDS_CURINFO must come before thHEDS_ ROWFMT.

Version 3.4 102 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

» A client must be able to acceptras_EEeD token at any time during the
server response to th®S_CUROPEN.

* TheTDS_CUROPEN token can be sent by a client with a
TDS_CURDECLARE andTDS_CURFETCH in the same request. A server will
acknowledge th&DS_CURDECLARE andTDS_CUROPEN tokens with a
TDS_CURINFO, TDS_DONE(MORE), and therDS_CURFETCH with the rows
and arDS_DONE(FINAL).

Examples

See Also

TDS_CURDECLARE, TDS_ROWFMT, TDS_PARAMFMT, TDS_PARAMS,
TDS_CURCLOSE, TDS_CURFETCH

TDS 5.0 Functional Specification 103 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 104 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CURUPDATE

Function

Describes the data stream for updating a row through a cursor.

Syntax
TDS_CURUPDATE Length " Cursorld ' |
0x85 « «« | NameLength Cursor Namg
oo Status TableLength}-» TableName
s Stth:ength statement
Arguments

| TDS_CURUPDATE

This is the data stream token for an update through a

cursor.

__Length This is the total length of the remainingps_CURUPDATE
data stream. It is a two byte unsigned integer.

| Cursorld | This s the internal identifier for the cursor.@ursorld is 0

it means that the cursor being fetched is identified by name using the
NameLength andcursor namearguments. This argument is a four byte,
unsigned integer

|_NameLength | Thisis the length of the cursor name which follows. It is
a one byte unsigned integer.

| cursor name
applies.

This is the name of the cursor to which the update

TDS 5.0 Functional Specification 105 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Status This is the status information associated with this cursor
update. This argument is a one-byte unsigned integer. It can have the
following values:

Table 18: Cursor Update Status Values

Name Value Description

TDS_CUR_OSTAT_UNUSD 0x00 | Status field is unused

TDS_CUR_OSTAT_HASARGS 0x01 | Parameters follow the cursor
update token

TDS_CUR_CONSEC_UPDS 0x02 | Consecutive cursor updates are
occurring on this cursor.

|_TableLength Length of table name that follows. If this argument is 0,
no table name follows. This argument is a one-byte unsigned integer.

_tablename | Thisis the name of the table to which the update applies.
It may be a compound name such as “site.db.owner.table”. It should be the
same table reference as used in the declare cursor statement.

_StmtLength | ysed in the language option case, this is the total length of
the following set clause statement. It is a two-byte unsigned integer. This
argument is optional.

_statement | ysedinthe language option case, this is the actual text of the
SET clause in the update cursor statement, withoutR®ATE tableor
WHERE CURRENT OF clauses. Unlike theinary option, the values in
theSET clause need not be constants.

Comments

» This is the data stream generated by the client when an update cursor
command is sent to a server.

e The cursor to which theDS_CURUPDATE refers is the one that is current,
according to the lagtbS_CURINFO or TDS_CURDECLARE data stream
received by the server.

Version 3.4 106 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

» An update cursor data stream is optionally followed bya KEY data
stream which defines the cursor key for the client’s “current” row. No
TDS_ROWFMT data stream is sent to the server withtis_KEY data
stream.

* Ifanew key is generated by an update, the new key will be returned to the
client by sending abDsS_ROWFMT andTDS_KEY data stream, describing the
new key, before th&DS_DONE data stream acknowledging the update.

» The server always returnsras_CURINFO, TDS_DONE on a successful
update.

» The server will return aDS_CURINFO, TDS_EED, TDS_DONE 0n a version
mismatch.

» The server will returTDS_EED, TDS_DONE on a key mismatch.
Examples

See Also

TDS_CURDELETE, TDS_CURDECLARE, TDS_KEY, TDS_ROWFMT

TDS 5.0 Functional Specification 107 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 108 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS Datatypes

Description

This is a complete description of how all data types are represented using TDS.
the data type is defined using thesS_ROWFMT, TDS_ALTFMT, or

TDS_PARAMFMT data streams for rows, compute rows, and parameter data
respectively. The actual data is sent usingpa_ROW, TDS_ALTROW, or
TDS_PARAMS data stream.

Length information is sent with variable length and nullable datatypes. Fixed
length datatypes do not contain a length argument.

The length information sent in a format data stream indicates the maximum
length of this datatype. The length information sent with the data is the actual
length of the specific datatype being sent.

TDS 5.0 Functional Specification 109 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

If the TDS_DATA_COLUMNSTATUS request capability is enabled, then alll
datatype representations begin witktaaus byte. Status field meanings are

Table 19: Status bit meanings

Bit Mask Meaning if the bit is set

0x01 No Data follows, the value is NULL

0x02 This data value is corrupted due to Overflow/Underflow

0x04 This data value has been truncated or rounded.

OxF8 Reserved for future use.

Combined Interpretation for combinations of these 3 bits

000b Standard data, getXXX returns value that follows

001b NULL, isNull returns true

011b Overflow/underflow exception, isNull returns true

100b Truncated/rounded, getXXX returns value that follows (A truncation warn-

ing is raised)

Any other Not valid, communication exception
defined inTable 19: Status bit meanings .
If the TDS_DATA_COLUMNSTATUS capability is off, this status byte is never
present. In this situatiohable 20: Datatype Summaiydicates which
datatypes have a Length field. Only those datatypes can convey SQL NULL by
having a length of 0.
TDS presentation conversion is server makes right. This means that the sefver
is always responsible for performing any required conversions. Presentation
conversion is performed for the following cases:
» Character set conversions for character and text datatypes.
» Numeric conversions for float, decimal, and numeric datatypes between the

client’s local representation and the server’s.
Version 3.4 110 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

» Date and time conversions between a client’s local representation and the
server’s.

» Byte ordering conversions for length fields and integer datatypes.

Each of the datatypes has a request and a response capability associated with it.
If the request capability bit is set after login then it is OK for the client to send
parameters of that type to the server. If the response capability NOXXX s clear
then it is OK for the server to send this datatype to the client (in rows, param-
eters, etc.). If the NOXXX response capability is set, then the server may not
send this datatype. The server may convert the datatype to another which the
client does accept, or may raise an error indicating that a response could not be
returned due to client datatype restrictions. For example, if the server is
returning rows from an unsigned short column and the client doesn’t support
UINT2 or UINTN datatypes, then the server may choose to convert each row
to an INT4 or INTN(4) to preserve the value, or may raise an error.

A brief description of all datatypes supported by TDS is in the table below. The
syntax of their data streams is in the Syntax section below.

Table 20: Datatype Summary

Datatype Name Value Lglr)l(get?l? Nullable? | Converted? Description
TDS_BINARY 0x2D Yes No No Binary
TDS_BIT 0x32 Yes No No Bit
TDS_CHAR Ox2F Yes No Yes Character
TDS_DATETIME 0x3D Yes No Yes Date/time
TDS_SHORTDATE Ox3A Yes No Yes Date/time
TDS_DATETIMEN Ox6F No Yes Yes Date/time
TDS_DECN Ox6A No Yes Yes Decimal
TDS_FLT4 0x3B Yes No Yes Float
TDS_FLT8 Ox3E Yes No Yes Float
TDS_FLTN 0x6D No Yes Yes Float

TDS 5.0 Functional Specification 111 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 20: Datatype Summary

Datatype Name Value ng(get?l? Nullable? | Converted? Description
TDS_IMAGE 0x22 No Yes No Image
TDS_INT1 0x30 Yes No No Integer
TDS_INT2 0x34 Yes No Yes Integer
TDS_INT4 0x38 Yes No Yes Integer
TDS_INTN 0x26 No Yes Yes Integer
TDS_UINT1 0x40 Yes No No Unsigned Integer
TDS_UINT2 0x41 Yes No Yes Unsigned Integer
TDS_UINT4 0x42 Yes No Yes Unsigned Integer
TDS_UINT8 0x43 Yes No Yes Unsigned Integer
TDS_UINTN 0x44 No Yes Yes Unsigned Integer
TDS_LONGBINARY | OxE1l No Yes No Binary
TDS_LONGCHAR OxAF No Yes Yes Character
TDS_MONEY 0x3C Yes No Yes Money
TDS_SHORTMONEY | Ox7A Yes No Yes Money
TDS_MONEYN Ox6E No Yes Yes Money
TDS_NUMN 0x6C No Yes Yes Numeric
TDS_TEXT 0x23 No Yes Yes Text
TDS_VARBINARY 0x25 No Yes No Binary
TDS_SENSITIVITY 0x67 No Yes Yes Sensitivity
TDS_BOUNDARY 0x68 No Yes Yes Boundary
TDS_VARCHAR 0x27 No Yes Yes Character
Version 3.4 112 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Table 20: Datatype Summary

Fixed L
2 2
Datatype Name Value Length? Nullable~ Converted? Description
TDS_BLOB 0x24 No Yes No Serialized Object
TDS_VOID oxaf N/A N/A N/A Void (unknown)

Usertypes

Some TDS datatypes are used to carry more than one SQL datatype. For
example, in SQL the BINARY(30) datatype is different from the
VARBINARY(30) in that a BINARY is always logically 30-bytes long - itis
NULL-padded to 30 bytes if < 30 bytes are contained in the corresponding
TDS_BINARY value. A VARBINARY is a varying-length datatype, it has no
implied trailing NULLs. Though the data representation for both is the samq,
clients and servers at either end of TDS may need to determine what sort of
SQL type agiven TDS_BINARY value corresponds to for proper semantic
processing. We use theertype field of the format (ROWFMT, PARAMFMT,
ALTFEMT) to distinguish among the SQL datatypes. Tabéble 21:
USERTYPE mappingissts the mappings used. To complete the example,
suppose a clientreceivesa TDS_BINARY data value with alength of 10. If the
format.usertype indicates it needs to determine whether

Table 21: USERTYPE mappings |

TDS Datatype SQL Datatyps Usertype Comment |
TDS_VARCHAR char 1 blank pad to the length in the formaj
TDS_VARCHAR varchar 2 |
TDS_BINARY binary 3 null pad to the length in the format |
TDS_BINARY varbinary 4 |
TDS_INTN tinyint 5 |
TDS_INTN smallint 6 |
TDS_INTN int 7 |

TDS 5.0 Functional Specification 113 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 21: USERTYPE mappings

TDS Datatype SQL Datatype Usertype Comment

TDS_FLTN float 8

TDS NUMERIC numeric 10

TDS_MONEYN money 11

TDS_DATETIMEN datetime 12

TDS_INTN intn 13

TDS_FLTN floatn 14

TDS_DATETIMN datetimn 15

TDS_BIT bit 16

TDS_MONEYN moneyn 17

TDS_VARCHAR syshame 18 Internal ASE datatype

TDS_TEXT text 19

TDS_IMAGE image 20

TDS_MONEYN smallmoney 21

TDS DATETIMN smalldatetime 22

TDS_FLTN real 23

TDS_VARCHAR nchar 24

TDS VARCHAR nvarchar 25

TDS _NUMERIC decimal 26 decimal and numeric datatypes arg
identical on ASE, but we maintain the
distinction on how they were declare
so that clients can report column typg
in a way that is consistent with how
they were declared.

TDS NUMERIC decimaln 27

Version 3.4 114 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

Table 21: USERTYPE mappings

a

TDS Datatype SQL Datatype Usertype Comment
TDS_NUMERIC numericn 28 |
TDS_LONGBINARY unichar 34 fixed length UTF-16 encoded data |
TDS_LONGBINARY univarchar 35 variable length UTF-16 encoded d4t
TDS_IMAGE unitext 36 UTF-16 encoded data |
TDS DATETIMN date 50 The hh:mm:ss.nnnn information

should be ignored
TDS_DATETIMN time 51 The mm/dd/yyyy information should
be ignored
TDS_INTN unsigned short| 52 |
TDS_INTN unsigned int 53 |
TDS_INTN unsigned long 54 |
TDS_LONGBINARY serialization 55 serialized java object or instance (iJ.
java object)
TDS_LONGBINARY serialized java | 56 serialized java class (i.e. byte code)
class
TDS_LONGCHAR string 57 internally generated varchar strings
(e.g. select @@version), not
table columns
TDS_INTN unknown 58 adescribe input will return TDS_INTH
(as a simple placeholder) for all col-
umns where it does not know the
datatype. This usertype indicates thgt
the actual type is unknown.
TDS_LONGBINARY smallbinary 59 64K max length binary data (ASA)
TDS_LONGCHAR smallchar 60 64K maximum length char data (A$A)
TDS 5.0 Functional Specification 115 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Table 21: USERTYPE mappings

TDS Datatype SQL Datatyps Usertype Comment

TDS_BINARY timestamp 80 This has nothing to do with date or
time, itis an ASE unique value for us
with optimistic concurrency.

U

Syntax

TDS_BINARY — 0x2D
The TDS_BINARY datatype is considered a fixed length data type.
However, its network representation can vary from 0 to 255 bytes
to eliminate sending non-significant trailiogoos. The length is specified
by a one-byte unsigned integer which precedes the datatype token and the

data.
format— | TDs_BINARY || Length
0x2D 0 -255
data—\ Status H Length data
0 -255

TDS_BIT — 0x32
TDS_BIT is a fixed length datatype of one byte. The only valid
values for this datatype are 0x00 or 0x01.

format — TDS_BITl
0x32
data—| Status [+ data
1 byte

Version 3.4 116 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_CHAR — Ox2F
The TDS_CHAR datatype is considered a fixed length data type.
However, its network representation can vary from 0 to 255 bytes
to eliminate sending non-significant trailing spaces. The length is specified
by a one-byte unsigned integer which precedes the datatype token and the

data.
format — | Tps_cHAR Length

OX2F 0 - 255
data — | Status]e| Leng%‘ data
0-255

TDS_DATETIME — 0X3D
TDS_DATETIME is a fixed length datatype of 8 bytes.

format — | Tos _paTETIME ||
0x3D
data— | Status || data

TDS_SHORTDATE — 0X3A
TDS_SHORTDATE is a fixed length datatype of4 bytes.

format — | TDS_SHORTDATE I
0X3A
data— | Status || data

TDS 5.0 Functional Specification 117 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_DATETIMN — OX6F
TDS_DATETIMN is a nullable version of the TDS_DATETIME and
TDS_DATETIME4 datatypes. The token and its data are preceded by an
unsigned one-byte integetich has the value 0, 4, or 8. A NULL is
indicated by a length value of O.

format — | TDs DATETIMN |—| Length
OX6F 40r8
data— | Status |>| Length data
0, 4, 8 bytes

The data length must either be 0 or the length specified in the format length
argument.

TDS_DECN — Ox6A
TheTDS_DECN is a variable length nullable datatype. The token is
followed by one byte arguments for data length, precision, and scale. The
length byte is the length of the data only. It does not include the bytes for
precision and scale. Bength of 0 in the data stream indicatesiaLL
datatype. Th@Ds_DECN has exactly the same format as times_NUMN

datatype.
format — ‘ TDS_DECN e| Length Precision Scale
0X6A 1-33 1-77,255 0-77,255
data — \ Status He| Length data
0 or Length

set in format

TDS_FLT4 — Ox3B

This is a fixed length four-byte floating point datatype. The precision of the
floating point number is platform specific.

format — | TDs_FLT4
0x3B
data— | Status || data
4 bytes

Version 3.4 118 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_FLT8 — OX3E

This is fixed length eight-byte floating point datatype. The precision of the
floating point is platform specific.

format — | Tps_FLT8
Ox3E
data — | Status b data
8 bytes

TDS_FLTN — 0x6D
This is the same as the TDS_FLT4 and TDS_FLT8 datatypes except
that NULLS are allowed. The token and its data are preceded by an
unsigned one-byte integethich has the value 0, 4, or 8. A NULL is
indicated by a Length value of 0.

format — | Tps FLTN |—s| Length
Ox6F 40r8
data — | Status |- Length data
0,4,8

The datalength must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data
length can not be 8.

TDS_IMAGE — 0x22

This is a large binary datatype. TxtPtrLen gives the length in bytes of the
following txtptr argument. If TxtPtrLen is O then the value of the IMAGE
data item is SQL NULL and none of the other fields follow. The txtptr is a
varbinary value (of length TxtPtrLen) which the database can use to re-
locate the source of this data if the client wants to modify it.

TimeStamp is an 8-byte binary value which is automatically changed on
the database whenever an IMAGE value is changed. If the client uses a
BULK_WRITE stream to update this value it must pass this timestamp
value into the WRITETEXT clause. If the timestamp doesn’t match the
current value on the server the update will fail because there has been an
intervening modification to that IMAGE value.

TDS 5.0 Functional Specification 119 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

DatalLen is a 4 byte, unsigned value which indicates the length in bytes of
the following data . Data is the value of the IMAGE column.

format —
TDS_IMAGE Length NameLength |->{ name
0x22
data— | Status]e| TxtPtrLen || txtptr |[—
| TimeStamp |->| DataLen data
8 bytes

TDS_INT1 — 0x30
This is an unsigned, one-byte integer. It may have the value of O through

format — | Tpbs_INT1 |

0x30

data—| Status || data
1 byte

255.

TDS_INT2 — 0x34
This is a signed, two-byte integer. It may have the value of -32,768 through

32,767.
format — | TDs_INT2
0x34
data | Status |>| data
2 bytes

TDS_INT4 — 0x38
This is a signed, four-byte integer. It may have the value of -2,147,483,648
through 2,147,483,647.

format— | TDs_INT4
0x38
data—‘ Status ”»| data
4 bytes

Version 3.4 120 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_INT8 —This is a signed, eight-byte integer. It may have the value of -
9,223,372,036,854,775,808 through 9,223,372,036,854,775,807.

format — | TDs_INT8

data —| Status data
8 bytes

TDS_INTN — 0x26
This is either arTDS_INT1, TDS_INT2, or TDS_INT4, or TDS_INT8 which
allowsNULLS. The token and its data are preceded by an unsigned one-
byte integer which specifies its length. If used to represemtan INT1,
the length must be either 0 or 1. If used to represemoe INT2, the
length must be either 0 or 2. If used to representz® INT4, the length
must be either O or 4.1f used to representras_INT8, the length must be

format— | TDS_INTN |—| Length

0x26 1, 2, 4, or 8 bytes
data— | Status [Length |5 data
0,1, 2, 4, or 8 bytes

either O or 8

The datalength must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data
length can not be 1 or 2. If the TDS_DATA_INT8 request capability is
clear or the TDS_DATA_NOINT8 response capability is set, then the
Length field may not indicate 8 bytes.

Note that for historical reasons, TDS_INT1 is unsigned, and a TDS_INTN with a length of 1 must
be interpretted as an unsigned integer while the rest are signed. We have added a TDS_SINT1 to
specifically indicate a signed 1-byte integer value.

TDS 5.0 Functional Specification 121 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_SINT1 — 0x40
This is a signed, one-byte integer. It may have the value of -128 through

format— | TDS_SINT1 |

0x40

data—| Status b| data
1 byte

127.

TDS_UINT2 — 0x41
This is an unsigned, two-byte integer. It may have the value of O through

65535.
format — | TDS_UINT2
0x41
data —| Status |>| data
2 bytes

TDS_UINT4 — 0x42
This is an unsigned, four-byte integer. It may have the value of -0 through
4,294,967,295.

format — | TDs_uINT4
0x42
data —| Status || data
4 bytes

TDS_UINT8 — 0x43
This is an unsigned, eight-byte integer. It may have the value of -0 through
18,446,744,073,709,551,613.

format — | Tps_uiNTs
0x43
data—‘ Status ﬂe| data
8 bytes

Version 3.4 122 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_UINTN — Ox44
This is either arTDS_INT1, TDS_UINT2, or TDS_UINT4, Or TDS_UINT8
which allowsNULLS. The token and its data are preceded by an unsigned
one-byte integer which specifies its length. If used to represent an
TDS_UINT1, the length must be either O or 1. If used to represent an
TDS_UINT2, the length must be either O or 2. If used to represent an
TDS_UINT4, the length must be either O or 4.If used to represent an

format — | TDS_UINTN |—| Length

0x44 1, 2, 4, or 8 bytes
data— | Status [Length | data
0,1, 2, 4, or 8 bytes

TDS_UINTS, the length must be either O or 8

The data length must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data
length can not be 1 or 2. If the TDS_DATA_UINT8 request capability is
clear or the TDS_DATA_NOUINTS response capability is set, then the
Length field may not indicate 8 bytes.

TDS_LONGBINARY — OxE1
This is a large variable length binary datatype. This datatype can support
the same length of BDS_IMAGE datatype without the additional
complexity. This data type has a four-byte unsigned integer length field.

format —TDS_LONGBINARY Length
OXE1 1-2732-1
data — | Status ”»| Length data
0-2732-1

TDS 5.0 Functional Specification 123 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_LONGCHAR — OXAF
Thisis alarge variable length character datatype. This datatype can support
the same length of BDS_TEXT datatype without the additional
complexity. The maximum number of characters may be different than the
number of bytes if the character set being used requires one, two, or four
bytes to represent a character. This data type has a four byte unsigned

format — TDS_LONGCHAR Length
SXAF T-2/32-1
data— | Status Length | | data
0-2732-1

integer length field.

TDS_MONEY — 0x3C
This is a fixed length datatype of 8 bytes.

format — | TDs_MONEY
0x3C
data —‘ Status H»‘ data
8 bytes

TDS_SHORTMONEY — Ox7A
This is a fixed length data type of 4 bytes.

format— [TDS_SHORTMONEY |
Ox7A
data —‘ Status ﬂe‘ data
4 bytes

Version 3.4 124 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_MONEYN — Ox6E
This is the same as the TDS_MONEY and TDS_MONEY4 datatypes
except that NULLS are allowed. The token and its data are preceded by
an unsigned one-byte integehigh has the value 0, 4 or 8. A NULL is
indicated by a length value of O.

format — TDs_MONEY |{ Length

OX6F 4or8
data— | Status || Length data
0,4,8

The data length must either be 0 or the length specified in the format length
argument. For example, if the format length is specified as 4, the data
length can not be 8.

TDS_NUMN — 0x6C
This is the numeric datatype. The token is followed by bytes for data
length, precision, and scale. The length byte describes the length of the data
only and does not include the precision and scale bytes. Numeric has
exactly the same format as the decimal datatype.

format — | Tps_NumN || Length | Precision|> Scale
0x6C 1-33 1-77,255 0-77,255
data — | Status | Length data
0 or Length

set in format

TDS 5.0 Functional Specification 125 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_SENSITIVITY — 0X67
This datatype is used by secure versions of the SQL Server. It is exactly
like theTDS_VARCHAR datatype. ANULL value has a length of 0. This
datatype may be from 0 to 255 bytes. The token and its data are preceded
by an unsigned one-byte integer which specifies its length. This data type

format —| Tps_sensimivity |- Length

0x67
data — | Status "e| Length data

0-255

is used for security handshake during login processing. They may also
exist as columns in arow. If a client uses capability bits to indicate that this
data type is not supported, a server automatically converts this data type to
aTDS_VARCHAR.

TDS_TEXT — 0x23

Thisis a character datatype.Thisis a large binary datatype. TxtPtrLen gives
the length in bytes of the following txtptr argument. If TxtPtrLen is O then
the value of the TEXT data item is SQL NULL and none of the other fields
follow. The txtptr is a varbinary value (of length TxtPtrLen) which the
database can use to re-locate the source of this data if the client wants to
modify it.

TimeStamp is an 8-byte binary value which is automatically changed on
the database whenever an TEXT value is changed. If the client uses a
BULK_WRITE stream to update this value it must pass this timestamp
value into the WRITETEXT clause. If the timestamp doesn’t match the
current value on the server the update will fail because there has been an
intervening modification to that TEXT value.

Version 3.4 126 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

DatalLen is a 4 byte, unsigned value which indicates the length in bytes of the
following data . Data is the value of the TEXT column.

format —
TDS_IMAGE Length |- Name Length |-+ name
0x23
data — ‘ Status ﬂe|TxtPtrLen txtptr
| TimeStamp | Datalen data

8 bytes

TDS_VARBINARY — 0x25

This is variable length nullable binary datatype. Its length may vary

from 1 to 255 bytes. The length is specified by a one-byte unsigned
integer which precedes the datatype token and the dataLA value has
a length of 0. There is no way to represent a nant empty string of

length O.
format —| TDS_VARBINARY Length
0x25 0 -255
data — \ Status H%‘ Length data
0 -255

TDS_VARCHAR — 0x27

This is a variable length nullable character datatype. A NULL value

has a length of 0. There is no way to represent amoair- empty string of
length 0. This datatype may be from 0 to 255 bytes. The token and its data
are preceded by an unsigned one-byte integer which specifies its length.

format — | tps_varcHAR

Length

0ox27

0-255

data— | Status || Length

data

0-255

TDS 5.0 Functional Specification 127

Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_BOUNDARY — 0x68
This is a variable length nullable character datatype. A NULL value
has a length of 0. There is no way to represent amMioi- empty string of
length 0. This datatype may be from 0 to 255 bytes. The token and its data
are preceded by an unsigned one-byte integer which specifies its
length.This data type is used for security handshake during login

format — | 1ps_sounpARY |+ Length

0x68 0 -255
data— | Status |=| Length data
0 -255

processing. They may also exist as columns in a row. If a client uses
capability bits to indicate that this data type is not supported, a server
automatically converts this data type to@S_VARCHAR. |

TDS_BLOB — 0x24
This is a streaming/chunked datatype. It may represent a serialized object,

format —
DS BLOB |- BlobType |-
0x24
| ClassID Length H ClassID
data —
Status |+ SerializationTypd | ClassiDLength || ClassiD

. { DataLen |—| data }
— R

or a long binary or character datatype.

TheBlobType - indicates what type of serialized data this is. ValiebType
values are listed ifable 22:. |

TheclassiDLength field indicates how long the negtassID byte array is. If
this value is 0, then thelassID field will be absent.

Version 3.4 128 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TheclassID byte array identifies the type of Object which the column was
declared to contain. All rows in that column are subclasses of this Class.
How thisClassID should be interpreted depends onghType value. In
the case of Java Objects using Native serialization, ClassID may be
missing since the serialization internally contains the name of the Class

which each object is an instance of.

TheSerializationType - indicates how the members of the object are actually

Table 22:
BlobType ClassID meaning
0x01 The fully qualified name of the class (“com.foo.Bar”). This is a Character

String in the negotiated TDS character set currently in use on this connegtion.

0x02 4-byte integer (database ID) 4-byte integer(sysextypes number of this ¢lass
definition in this database). Both integers are in the byte-ordering negotiated
for this connection.

0x03 This is long character data and has no ClassID associated with it.
0x04 This is long binary data and has no ClassID associated with it.
0x05 This is unichar data with no ClassID associated with it. It is

represented in the followingpta field SerializationType meanings depend
on theBlobType and are summarized ifable 23:. |

Table 23:

BlobType | Serialization Meaning

0x01, 0x01 Native Java Serialization

0x02

0x03 0x00 Characters are in their native format, the character set of the
data is the same as that of all other character data as negoti-
ated on the connection during login.

0x04 0x00 Binary data in its normal form

TDS 5.0 Functional Specification 129 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Table 23:
BlobType | Serialization Meaning
0x05 0x00 This is unichar data with normal UTF-16 encoding with
byte-order identical to that of the client.
0x05 0x01 This is unichar data in its UTF-8 encoding. |
0x05 0x02 This is unichar data in SCSU (compressed) encoding. |

ClassID Length gives the length of the followinglassIiD character string. If
ClassID Length is 0, then this object is exactly an instance of the column
type class (from the FORMAT) stream, and the follow@igssID token
will be missing.

ClassID Has the same meaning as ClassID from the Format token, but indicates
the specific sub-class that this Object is of the declared class for the
column.

DatalLen is a 4-byte field The high-order bit indicates whether this is the last (0)
DataLen/Data pairs, or if there is anoth@ataLen value after th®ata array
(2). The low-order 31 bytes is an unsigned length of the folloviiag
array.

Data is a byte array which contains the serialized value of the object.

- The DataLen/Data pairs continue until a DataLen with a clear high-bit is
seen. If that final DataLen has a value of O then no additional Data array
follows it (This is sort of a NULL terminated data stream). This allows us
to pass Objects of arbitrary size with out having to first know how large
these objects are).

- Avalue of 0x80000000 is legal, and means simply that the length of the
following Data stream is 0, and thus the next item will be another 4-byte
Datalen.

- There is no requirement that the lengths of the stream of Data chunks be
the same.

Version 3.4 130 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

See Also

TDS_ROWFMT,TDS_ PARAMFMT, TDS_ROW, TDS_PARAMS, TDS_ALTFMT,
TDS_RPC

TDS 5.0 Functional Specification 131 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 132 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_DBRPC

Function

Describes the data stream which contains a data base remote procedure call
request.

Syntax

TDS_DBRPC Length NameLen |—{ rpc name}—| Options
OXE6

Arguments

| TDS_DBRPC | Thijs is the command token to send an data base RPC
request.

i

Length | This is the length, in bytes, of the remainings_DBRPC data
stream. It is a two-byte, unsigned integer.

NamelLen

|

I This is length, in bytes, of the RPC name. It is a one-byte,
unsigned integer.

f

PC hame

| This is the name of the RPC. Its length, in bytes, is given by the
preceding argument.

Options

i

| This is a bit mask which contains options related to the RPC. The
mask is a two-byte, unsigned integer. The defined options are:

Table 24: RPC Option Values

Name Value Description
TDS_RPC_UNUSED 0x000 Options field is unused.
TDS_RPC_RECOMPILE 0x0001 Recompile the RPC before execution.
TDS_RPC_PARAMS 0x0002 There are parameters associated with this

RPC.

TDS 5.0 Functional Specification 133 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Comments

This token is used by a client to make an RPC request to a server.
Only oneTDS_DBRPC token per request is allowed.

Parameter data is sent using tis_PARAMFMT/PARAMS data stream
tokens.

There are two protocols supported for RPCs and return parameters in TDS
5.0. Thisis because the original 10.0 release was shipped usirpgherc
andTDS_RETURNVALUE tokens to send RPCs and return parameters.
However, theaDs_RPC token had a 64K-1 byte limit that was unacceptable.
This was resolved by using th®s_DBRPC and

TDS_PARAMFMT/PARAMS tokens for RPCs and return parameters.

TheTDs_DBRPC token will be used by clients if thHEDS_REQ_PARAM
capability bit is true.

Return parameters will be returned to a client using the
TDS_PARAMFMT/PARAMS tokens if theTDS_RES_NOPARAM capability
bit is false.

Examples

See Also

TDS_PARAMFMT, TDS_PARAMS, TDS_RPC, TDS_RETURNVALUE

Version 3.4

134 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_DONE

Function

Indicates completion status of a command.

Syntax

| TDs_DoNE || Status TranState ‘count
OxFD

Arguments
TDS_DONE

IThis token is used to indicate command completion status.

@E, This field is a two-byte, unsigned integer and is a bit field
indicating the completion status. The possible bits are:

TDS_DONE_FINAL - 0x0000

This is the final result for the last command. It indicates that
the command has completed successfully.

TDS_DONE_MORE - 0x0001
This Status indicates that there are more results to follow
for the current command.

TDS_DONE_ERROR - 0x0002
This indicates that an error occurred on the current
command.

TDS_DONE_INXACT - 0x0004
There is a transaction in progress for the current request.

TDS_DONE_PROC - 0x0008
This TDS_DONE is from the results of a stored procedure.

TDS_DONE_COUNT - 0x0010
This Status indicates that theountargument is valid.
This bit is used to distinguish between an emguynt
field and acountfield with a value of O.

TDS 5.0 Functional Specification 135 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_DONE_ATTN - 0x0020
This TDS_DONE is acknowledging an attention command.

TDS_DONE_EVENT - 0x0040

This TDS_DONE was generated as part of an event notifi-
cation.

TranState This is a two-byte, unsigned integer field. It indicates the
current state of the transaction on this connection.

Table 25: Transaction State Values

Name Value Description
TDS_NOT_IN_TRAN 0 Not currently in a transaction
TDS_TRAN_SUCCEED 1 Request caused transaction to complete

successfully.
TDS_TRAN_PROGRESS 2 A transaction is still in progress on this dia-
log.
TDS_STMT_ABORT 3 Request caused a statement abort to occur.
TDS_TRAN_ABORT 4 Request caused transaction to abort.
count I : . .
~ 1 Thisis afour-byte integer. fDS_DONE_COUNT is set in the

Status argument, count contains the number of rows affected by the
current command.

Comments

* TDS_DONE is used to indicate the completion status of a command. Multiple
commands may be sentin one request. The result sets for each command are
terminated by abs_DONE. When multiple result sets are returned, all but
the finalTDs_DONE will have theTDS_DONE_MORE bit set in theStatus
field.

* The server returns the current transaction state to the clientirdmState.
* TheTranState field was redefined from aimfo field in TDS 5.0.

Version 3.4 136 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

* Stored procedures retundS_DONEINPROC andTDS_DONEPROC tokens
instead offDS_DONES.

Examples

See Also

TDS_DONEPROC, TDS_DONEINPROC

TDS 5.0 Functional Specification 137 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 138 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_DONEPROC, TDS_DONEINPROC

Function

Indicates completion status of stored procedure commands.

Syntax
| Tos_DoNePRoc |+ Status || TranState || count
OxFE
|_TDS_DONEINPROC |_Status || TranState |—{_count
OxFF
Arguments
|_TDS_DONEPROC | | _TDS_DONEINPROC | These tokens are used to

indicate completion status from stored procedure commands.

@E, This field is a two-byte, unsigned integer and is a bit field
indicating the completion status. The possible bits are:

TDS_DONE_FINAL - 0x0000

This is the final result for the last command. It indicates that
the command has completed successfully.

TDS_DONE_MORE - 0x0001
This Status indicates that there are more results to follow
for the current command.

TDS_DONE_ERROR - 0x0002
This indicates that an error occurred on the current
command.

TDS_DONE_INXACT - 0x0004
There is a transaction in progress for the current request.

TDS_DONE_COUNT - 0x0010
This Status indicates that theountargument is valid.
This bit is used to distinguish between an emguynt
field and acountfield with a value of 0.

TDS 5.0 Functional Specification 139 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_DONE_ATTN - 0x0020
This TDS_DONE is acknowledging an attention command.

TranState This is a two-byte, unsigned integer field. It indicates the
current state of the transaction on this connection.

Table 26: Transaction State Values

Name Value Description
TDS_NOT_IN_TRAN 0 Not currently in a transaction
TDS_TRAN_SUCCEED 1 Request caused transaction to complete

successfully.
TDS_TRAN_PROGRESS 2 A transaction is still in progress on this dia-
log.
TDS_STMT_ABORT 3 Request caused a statement abort to occur.
TDS_TRAN_ABORT 4 Request caused transaction to abort.

count This is a four-byte integer. If theDS_DONE_COUNT bit in the
Status field is set, then the count is meaningful and it gives the number of
rows that were affected by the current command.

Comments

« If all the statements in a stored procedure have been executed a
TDS_DONEPROC is returned. However, BEDS_DONEPROC may have the
TDS_DONE_MORE bit set in theStatus field if there are more statements to
be executed. This can happen if a stored procedure has called another stored
procedure. There will a separates_DONEPROC for each stored procedure
that gets called.

Version 3.4 140 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

» Each statement in a stored procedure that executes will return a
TDS_DONEINPROC. All statements in Transact-SQL are considered state-
ments except variable declarations. For example, assignment of a variable is
considered a separate statement arlsa DONEINPROC will be generated.

The stored procedure itself is considered a statement so a stored procedure
consisting of a singlselecwill generate abS_DONEINPROC for theselect
followed by aTbs_DONEPROC for the completion of the stored procedure.

* A TDS_DONEINPROC is guaranteed to be followed by another
TDS_DONEINPROC or TDS_DONEPROC. A TDS_DONEPROC will be
followed by anotherDS_DONEINPROC or TDS_DONEPROC only if the
TDS_DONE_MORE bit is set in theStatus field.

» For execution of stored proceduresS_DONEINPROC and
TDS_DONEPROC tokens are returned insteadmafS_DONES.

* The server returns the current transaction state to the clientirdmState.
* TheTranState field was redefined from aimfo field in TDS 5.0.

TDS 5.0 Functional Specification 141 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Examples

In this example we’ll execute a stored procedure which deedext calls
another stored procedure and then does anstfect The procedurgrocl
looks like:

select 1
execute procedure proc2
select3

Proc2looks like:

select 2

When we executproclthe datastream from the server looks like:

row info and data for first select

| DONEINPROC etc. (from select 1)

row info and data for second select

| DONEINPROC etc. (from select 2)

| DONEPROC etc. (with More bit set in Status)

row info and data for third select

| DONEINPROC etc. (from select 3)
| DONEPROC etc.
See Also
TDS_DONE

Version 3.4 142 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_DYNAMIC

Function

A request to prepare or execute a dynamic SQL statement.

Syntax
TDS_DYNAMIC Length Type Status
OxE7
eee | |dLen id
eee |Stmtlen stmt
Arguments
TDS_DYNAMIC |} Thijs is token indicates that this is a dynamic SQL
command.

@l This is the total length, in bytes, of the remaining datastream. It is
a two-byte, unsigned integer.

Type | This indicates the type of dynamic operatidype is a one-byte
integer. Its values are:

Table 27: Dynamic Operation Types

Name Value Description
TDS_DYN_PREPARE 0x01 This is a request to prepasint
TDS_DYN_EXEC 0x02 This is a request to execute a prepared
statement.

TDS_DYN_DEALLOC 0x04 Request to deallocate a prepared state-
ment.

TDS_DYN_EXEC_IMMED 0x08 This a request to prepare and execute
stmtimmediately.

TDS 5.0 Functional Specification 143 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Table 27: Dynamic Operation Types

Name Value Description
TDS_DYN_PROCNAME 0x10 Is this used? If so what for?
TDS_DYN_ACK 0x20 Acknowledge a dynamic command.
TDS_DYN_DESCIN 0x40 Send input format description.
TDS_DYN_DESCOUT 0x80 Send output format description.

Status | This is the status associated with this dynamic command. Status is a
one-byte unsigned integer argument. It has the following valid values:

Table 28: Dynamic Status Values

Name Value Description
TDS_DYNAMIC_UNUSED 0x00 No status associated with this dynamic
command.
TDS_DYNAMIC_HASARGS 0x01 Parameter data stream follows the dynamic
command.

ldLen | This the length, in bytes, of the statement id which follows. The
statement id may be up to 255 bytes long. It must be at least one byte long.
IdLen is a one-byte, unsigned integer.

id_| This is the statement id. It may be up to 255 bytes long. In practice, a
maximum length of 30 is widely supported. The id is a character string and
must be at least one byte long.

StmtLen| Thisis the length of the statement. See the comments section
below for information on how this argument is used.

stmt] This is the statement that is to be either prepared or executed. Itis a
character string whose length is given, in bytes, by the previous argument.
The maximum length of the statement is 32767 - 2 - the length of the
statement id. This argument is only in the data stre&@iniftLen is non-0.

Version 3.4 144 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Comments

* In SQL pre-compilers that support dynamic SQL, the prepared statement is
common. It allows the client to send a SQL statement to the server to be
“prepared” and then later executed, perhaps repeatedly. It is similar to a
Sybase stored procedure except that it’s life is limited to the client session.

* When a statement is prepared, the server will return a description of the
output, if any, using th&eDS_ROWFMT data stream. If there are any input
parameters, they will be described at the same time using the
TDS_PARAMFMT data stream.

» EachTDs_DYNAMIC data stream is acknowledged witli@S_DONE data
stream.

» The followingTDS_CAP_REQUEST capability bits are defined for the
dynamic protocol:

Table 29: Dynamic Protocol Capabilities

Capability Description

TDS_PROTO_DYNAMIC If this capability is enabled (1) the
TDS_DYN_DESCOUT/DESCIN protocol is used

to send input and output formats to a client. If
this capability is disabled (0), the format infor-
mation is sent back automatically by the server
atTDS_DYN_PREPARE time.

TDS_PROTO_DYNPROC If this capability is enabled (1) a client library
will prepend “create proc” in th&tmt field of
theTDS_DYN_PREPARE data stream. If this
capability is disabled (0) a client library will
just send thé&stmt information un-modified.

» TheTDS_CURDECLARE token is used to declare a cursor on a prepared
statement. it is the client library’s responsibility to associate the prepared
statement name with th®®S_CURDECLARE token. The prepared statement
name must be in thBtatement argument of theDS_CURDECLARE data
stream and th&DS_CUR_DOPT_DYNAMIC bit must be set in th®ption
argument.

TDS 5.0 Functional Specification 145 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Only oneTDS_DYNAMIC token can be sent in a request.

The Stmt argument is only used in th®®S_DYN_PREPARE and
TDS_DYN_EXEC_IMMED data stream$&tmtLen must be setto 0 in all other
dynamic data streams.

Parameters are not supported intips_DYN_EXEC_IMMED data stream.
TheldLen argument must be O foredbs_DYN_EXEC_IMMED data stream.

No results can be returned by a server in response to a
TDS_DYN_EXEC_IMMED command. The only valid response is a
TDS_DONE.

Only oneTDS_PARAMFMT/TDS_ROWFMT is legal when responding to a
TDS_DYN_PREPARE/TDS_DYN_DESCIN/TDS_DYN_DESCOUT command.

Compute rows are illegal in the dynamic protocol.

Parameter names are not supported imth& PARAMFMT associated with
theTDS_DYN_EXEC.

Version 3.4

146 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Protocol Examples

Prepare - SuccessfS PROTO_DYNAMIC == 0)

Client Server
TDS_DYN_PREPARE —

<«—— TDS_DYN_ACK
TDS_ROWFMT
TDS_PARAMFMT
TDS_DONE(FINAL)

Prepare - FailuretbS_PROTO_DYNAMIC == Q)

Client Server
TDS_DYN_PREPARE —

<«—— TDS_DYN_ACK
TDS_ROWFMT
TDS_PARAMFMT
TDS_EED
TDS_DONE(FINAL|ERROR)

NOTE: The TDS_EED token could occur any where in the server
response data stream. Also, the TDS_ ROWFMT/PARAMFMT may not

be returned from the server. It is possible to receive just a TDS_ROWFMT,
a TDS_ ROWFMT/PARAMFMT, or no format information.

Prepare - SuccessfS PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_PREPARE —

<«—— TDS_DYN_ACK
TDS_DONE(FINAL)

Prepare - FailuretbS_ PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_PREPARE —
<—— TDS_DYN_ACK
TDS_EED

TDS_DONE(FINAL|ERROR)

TDS 5.0 Functional Specification 147 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Describe Input ParamtensfS PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_DESCIN —
-<-—— TDS_DYN_ACK
TDS_PARAMFMT
TDS_DONE(FINAL)
Describe Output Rowsrps_PROTO_DYNAMIC == 1)
Client Server
TDS_DYN_DESCOUT —
-<—— TDS_DYN_ACK
TDS_ROWFMT
TDS_DONE(FINAL)
Describe Input Parameters - failureS_PROTO_DYNAMIC == 1)
Client Server
TDS_DYN_DESCIN

—>

-<¢— TDS_DYN_ACK

TDS_PARAMFMT
TDS_EED

TDS_DONE(FINAL|ERROR)
NOTE: The TDS_PARAMFMT may not be returned if an error is detected.

Version 3.4

148 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Describe Output Rows - failureifS_ PROTO_DYNAMIC == 1)

Client Server
TDS_DYN_DESCOUT —
<¢—— TDS _DYN_ACK
TDS_ROWFMT
TDS_EED
TDS_DONE(FINAL|ERROR)
NOTE: The TDS_ROWFMT may not be returned if an error is detected
Execute
Client Server
TDS_DYN_EXEC —
TDS_PARAMFMT
TDS_PARAM
-¢+—— TDS_DYN_ACK
TDS_ROWFMT
TDS_ROW
[]
[)
[]
TDS_DONE(FINAL)
Execute - failure
Client Server
TDS_DYN_EXEC —
TDS_PARAMFMT
TDS_PARAM

<—— TDS_DYN_ACK
TDS_ROWFMT
TDS_ROW

TDS_EED

TDS_DONE(FINAL|ERROR)

NOTE: The TDS_ROWFMT and TDS_ROW(s) may not be received if an
error is detected.

See Also

TDS 5.0 Functional Specification 149

Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Execute Immediate

Client Server
TDS DYN_EXEC_IMMED —

<—— TDS_DYN_ACK
TDS_DONE(FINAL)

Execute Immediate - Failure

Client Server
TDS DYN_EXEC_IMMED —
<—— TDS _DYN_ACK
TDS_EED

TDS_DONE(FINAL|ERROR)

Deallocation

Client Server
TDS_DYN_DEALLOC —

<—— TDS_DYN_ACK
TDS_DONE(FINAL)

TDS_EED TDS_ROW, TDS_PARAMFMT, TDS_ROWFMT

Version 3.4 150 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_DYNAMIC2 |

Function

A request to prepare or execute a dynamic SQL statement. This token is
identical to the TDS_DYNAMIC token, except it has a 4-byte length and
StmtLen is expanded to 4 bytes to accommodate longer statements.

Syntax

TDS_DYNAMIC Length Type Status
OXA3

eee | |dLen id

* ¢ StmtLen stmt

Arguments
TDS_DYNAMIC |} Thijs is token indicates that this is a dynamic SQL
command.

Length | This is the total length, in bytes, of the remaining datastream. It
is a four-byte, unsigned integer. |

d

Type | This indicates the type of dynamic operatidype is a one-byte
integer. See TDS_DYNAMIC for a description of its values.

Status | This is the status associated with this dynamic command. Status i a
one-byte unsigned integer argument. See TDS_DYNAMIC for its valid

values:

i

E

dLen | This the length, in bytes, of the statement id which follows. The
statement id may be up to 255 bytes long. It must be at least one byte long.
IdLen is a one-byte, unsigned integer.

id | This is the statement id. It may be up to 255 bytes long. In practice, a
maximum length of 30 is widely supported. The id is a character string and

must be at least one byte long.

TDS 5.0 Functional Specification 151 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Stm'gLe;n

This is the length of the statement. See the comments section

below for information on how this argument is used.

~—+

stmt| This is the statement that is to be either prepared or executed. Itis a
character string whose length is given, in bytes, by the previous argumgnt.

Comments

» See TDS_DYNAMIC for comments. |

Version 3.4

152 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_EED

Function

Return a text message to a client.

Syntax

TDS_EED Length | MsgNumber State Class
e+ | Status TranState
coe MsgLéngth msg ServerLength server nam
coe ProcLen proc. name ’Tnem

Arguments

TDS_EED This is the data stream command token that indicates that
this is a data stream containing a text message.

Length | This s the length, in bytes, of the remaining data stream. Itis a
two-byte unsigned integer.

| MsgNumber

This is the message number for the messktggNumber
is a four-byte, unsigned integer.

State | Thjs is the message state. Itis used as a modifier to the
MsgNumber. It is a one-byte, unsigned integer.

Class | Thisis the class or severity of the message. It is a one-byte
unsigned integer.

_SaistateLen]this the length of the SQL state argument that follows.

SQL State| This is the SQL state value associated with this message. Its
length is inNSQLStateLen. This argument is treated as binary data. No
character set conversion will occur.

TDS 5.0 Functional Specification 153 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Status

| Thisis the status associated with this extended message. this

argument is a one-byte unsigned integer. It has the following valid values:

Table 30: Valid Status Values

Name Value Description
TDS_NO_EED 0x00 No extended error data follows.
TDS_EED_FOLLOWS 0x01 Extended error data follows this

token. Extended error data is sent
usingTDS_PARAMFMT/PARAM

TranState

This is the current state of any transactions that are active on

this dialog. See theDS_DONE man page for valid values for this
argument. This argument is a two-byte unsigned integer.

| MsgLength

This is the length of thensgtext that follows. It a two-byte,

unsigned integer. Note that the total length of tbs_EED data stream

must be no longer than 64k-1. Since the data stream includes other infor-
mation in addition to thensg the actual length thabsgcan be is less than
64k-1. How much less depends on the length of the other fields in the

TDS_EED data stream.

msg
MsgLength.

\ ServerLength

server nam

i

| This is the actual text of the message. Its length, in bytes, is in

This is the length of the server name argument which

follows. It may be 0. It is a one-byte, unsigned integer.

FThis is the name of the server that is sending the message. It

will be omitted if ServerLength is 0.

‘ ProcLength

proc. name

proc. name

This is the length of theroc. nameargument which

follows. It may be 0. It is a one-byte, unsigned integer.

| This is the name of the stored procedure or RPC in which the

message occurred. It will be omittedRfocLength is 0.

Version 3.4

154 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

This is the line number in the command batch or stored

procedure that has the error, if applicable. Line numbers start at 1 so if
LineNum isn’t applicable to the message, it will be 0. It is a two-byte,
unsigned integer.

Comments

* Thisis the data stream that is sent from the server to return a text message to
a client. These messages are usually sent because an error was detected.

» A server may send multipfeDS_EED tokens in one response.

» TheTDS_EED token is sentin place of thtebS_ERROR/INFO tokens when
theTDS_RES_NOEED capability is not enabled (0).

e TheStatus field must be settoDS_EED_FOLLOWS if extended error data
follows. Any number of parameters may be sent followirtpa_EED
token.

» ATDS_EED token cannot come between regular results. It either has to come
before any results, or after all of the results.

* Multiple TDS_EED tokens can follow regular results. The multiple
TDS_EEDS are differentiated using™@S_DONE(MORE).

» Any results values that follow®bs_EED for another command batch must
be preceded by 8DS_DONE(MORE).

» Errors generating theDs_EED data stream are reported by a server by
setting theeRROR bit in the TDS_DONE(MORE) token associated with the
TDS_EED. TheERROR bit is the only valid status bit in tHEDS_DONE data
stream other thaMORE for TDS_EED data streams.

» TheTDS_EED token replaces both th®S_ERROR andTDS_INFO tokens in
earlier versions of TDS.

TDS 5.0 Functional Specification 155 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Protocol Examples

Version 3.4 156 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

Sending an Extended Error Data Stream

TDS_ROWFMT+
TDS_ROW+

TDS_EED(TDS_EED_FOLLOWS)
TDS_PARAMFMT*
TDS_PARAM*

.

[]

TDS_DONE(FINAL)**

+ Regular Results

* Extended error data
** This TDS_DONE delineates both result set and the

TDS_EED data stream.
Sending an Extended Error Data Stream
with multiple result sets

TDS_ROWFMT+
TDS_ROW+

TDS_EED(TDS_EED_FOLLOWS)
TDS_PARAMFMT*
TDS_PARAM*
.
[]
TDS_DONE(MORE)**
TDS_DONE(MORE)***
TDS_ROWFMT++
TDS_ROW++

TDS_DONE(FINAL)

+First Result Set
* Extended error data
** This TDS_DONE(MORE) delineates the

TDS_EED data stream.

**+ This TDS_DONE(MORE) delineates the first result set

++ Second result set

TDS 5.0 Functional Specification 157

Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Reporting an Error while generating a
TDS_EED stream

TDS_ROWFMT+
TDS_ROW+

TDS_EED(TDS_EED_FOLLOWS)
TDS_DONE(MORE|ERROR)*
TDS_DONE(MORE)**

TDS_ROWFMT++
TDS_ROW++

TDS_DONE(FINAL)

+First Result Set

* This TDS_DONE(MORE|ERROR) indicates that an error
occurred while generating the TDS_EED token. NOTE:
No parameters were sent in this example. It is undefined
whether parameters are sent when an error occurs.

** This TDS_DONE(MORE) delineates the first result set.
++ Second result set.

See Also

TDS_DONE, TDS_INFO, TDS_ERROR

Version 3.4 158 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_ENVCHANGE

Function

Notify receiver of a change in the supported environmental variables.

Syntax
TDS_ENVCHANGE || Length
OxE3
« « o[Type | —=|NewVal Len}— new valud—| Oldval Len old value
| repeat for each variable |
Arguments

|_TDS_ENVCHANGE I This token indicates that this is a datastream
containing environment change information.

Length | This is the total length of the remaining environmental change
data stream.

@, This one-byte, unsigned argument defines the variable affected by
this command. The defined types are:

TDS_ENV DB -1
The current database.

TDS_ENV_LANG -2
The current national language.

TDS_ENV_CHARSET - 3
The current character set.

TDS_ENV_PACKSIZE - 4
The current packet size, in bytes.

NewValLen|] Thjs gives the length, in bytes, of thew valugfor the
variable. The length may be O.

TDS 5.0 Functional Specification 159 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

new value| This is the new value of the environment variable. Its length is
given by the preceding argument. If length is 0O, it will be omitted from the
datastream.

OldValLen | Thjs gives the length, in bytes, of tiid valuefor the
variable. The length may be 0.

old value I This is the old value of the environment variable. Its length is
given by the preceding argument. If length is 0O, it will be omitted from the
datastream.

Comments

» This datastream is used to inform the receiver of any changes in any of the
environment variables.

* More than one variable change can be described in a single datastream.
Examples

See Also

Version 3.4 160 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

TDS_ERROR

Function

Describes the datastream which contains an error message.

Syntax
TDS_ERROR Length || ErrorNumber State Class
OxAA oo MsgLéngth \ error msg ServerLength server namp
*«+ | ProcLength || proc. name | line# |
Arguments
TDS_ERROR | Thjs is the datastream command token that indicates that this

is a datastream containing an error message.

Length .

This is the length, in bytes, of the remaining error message. It is
a two-byte unsigned integer.

‘ error number

This the server-generated error number for the message.

Error numbers below 20001 are reserved by the SQL Server. The number
is a four-byte, signed integer.

State .

class

This is the error state. Itis used as a modifier tagirer number
It is a one-byte, unsigned integer.

This is the class or severity of the error. In the SQL Server, a
classof 10 or less indicates an information message. It is a one-byte
unsigned integer.

| MsgLéngth

This is the length of thensgtext that follows. It a two-byte,

unsigned integer. Note that the total length oftbs_ERROR datastream
must be no longer than 64k-1. Since the datastream includes other infor-
mation in addition to therror msg the actual length th&trror msgcan be

is less than 64k-1. How much less depends on the length of the other fields
in theTDS_ERROR datastream.

TDS 5.0 Functional Specification

161

Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

error msg| This is the actual text of the error message. Its length, in bytes,
is described in the preceding parameter.

\ Server Length

This is the length of the server name parameter which
follows. It may be 0. It is a one-byte, unsigned integer.

server namla This is the name of the server that is sending the message. It
will be omitted if ServerLength is 0.

_ProcLength | Thisis the length of theroc. nameparameter which
follows. It may be 0. It is a one-byte, unsigned integer.

Proc. namg Thjs js the name of the stored procedure or rpc in which the
error occurred It will be omitted iProcLength is O.

line# | This is the line number in the command batch of stored
procedure that has the error, if applicable. Line numbers start at lrsef
isn’'t applicable to the message, it will be 0. It is a two-byte, unsigned
integer.

Comments
* This is the datastream that is sent from the server when an error occurs.
» A server may send multipfeDS_ERROR statements.

» TheTDS_ERROR datastream is exactly the same agti®e INFO datas-
tream except for the token value.

» This token is obsolete and has been replaced byiseEED token.
Examples

See Also

TDS_INFO, TDS_EED

Version 3.4 162 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_EVENTNOTICE

Function
The data stream for sending a notice that an event has been raised.

Syntax

TDS_EVENTNOTICE H Lerigth NameLength event name}
0XA2

Arguments

|_TDS_EVENTNOTICE I This is the data stream command token that
indicates that this is a data stream containing an event notification.

Length | This is the total length of the remaining data stream. It is a two-
byte, unsigned integer.

‘ NameLength

This is the length, in bytes, of the name of the eventwhich
has been raised.

@I This is the event name of the event that has been raised. It's
length is given by the preceding argument.

Comments

» Thisis the data stream sent by the server to the client when an event is raised.
The client must have previously asked the server to send notification for a
particular event.

» See the Event Notification chapter in this document for a complete
description of the event notification protocol.

Examples

See Also

TDS 5.0 Functional Specification 163 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 164 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_INFO

Function

Describes the datastream which contains an information message.

Syntax
| TDS_INFO Length |- info number state class
OXxAB
oo MsgLéngth | info msg ServerLength server namF
*++| ProcLength proc. namg-—/ line # |
Arguments

TDS_INFO | This is the datastream command token that indicates that
this IS a datastream containing an information message.

E‘E, This is the length, in bytes, of the remaining information datas-
tream. It is a two-byte unsigned integer.

‘ info number

This the server-generated information number for the
message. Information numbers below 20001 are reserved by the SQL
Server. The number is a four-byte, signed integer.

staté | This s the information state. It is used as a modifier toitiie
numbper It is a one-byte, unsigned integer.

class | Thisis the class of the information message. In the SQL Server,
aclassof 10 or less indicates an information message. It is a one-byte
unsigned integer.

_MsgLength | This is the length of thensgtext that follows. It a two-byte,
unsigned integer. Note that the total length of tbs_INFO datastream
must be no longer than 64k-1. Since the datastream includes other infor-
mation in addition to theafo msg the actual length thafo msgcan be is
less than 64k-1. How much less depends on the length of the other fields in
theTDS_INFO datastream.

TDS 5.0 Functional Specification 165 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

info msg | This is the actual text of the information message. Its length, in
bytes, is described in the preceding parameter.

_ServerLength | Thisis the length of theerver namgarameter which
follows. It may be 0. It is a one-byte, unsigned integer.

server namla This is the name of the server that is sending the message. It
will be omitted if ServerLength is 0.

_ProcLength | Thisis the length of theroc. nameparameter which
follows. It may be 0. It is a one-byte, unsigned integer.

Proc. namg Thjs is the name of the stored procedure or rpc in which the
message occurred It will be omittedRfocLength is O.

line # | Thisis the line number in the command batch of stored
procedure that has the message, if applicable. Line numbers start at 1 so if
line#isn't applicable to the message, it will be 0. Itis a two-byte, unsigned
integer.

Comments

* This is the datastream that is sent from the server when an informational
message occurs.

* A server may send multipfeDS_INFO statements.

» TheTDS_INFO datastream is exactly the same asthe_ERROR datas-
tream except for the token value.

» This token is obsolete and has been replaced withise EED token.
Examples

See Also
TDS_ERROR, TDS_EED

Version 3.4 166 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_KEY

Function

The datastream for key data.

Syntax

TDS_KEY %‘ Length %{ data
OXCA 1 or4 bytes
repeat for each

Arguments

TDS_KEY | Thjs is the token that indicates that this is a data stream
containing key data.

@l This is the actual, as opposed to maximum, data length, in
bytes, of the following data. It is one-byte unsigned integer. If the
following data is a fixed length datatype of standard length, e.g., ints,
floats, datetimes, then there is bength argument.

data | Thisis the actual data for the key column. Its length, if variable, is
Indicated by the precedirigength argument. It is in the format requested
in the login request from the client.

Comments

» Thisis the data stream that contains all the key for a particular row. The key
data is returned to the server along with a cursor update command to tell the
server the client’s current row. The server will also return the new key to the
client when the key is changed on a cursor update or cursor delete.

* The key data is described in thes_ROWFMT for the row with the key. The
“key” column status tells the client that a particular column in a row is part
of the key for that row. The key is “embedded” in the regular row. If the key
column was not specifically requested by the client request, the key column
is also a “hidden” column.

TDS 5.0 Functional Specification 167 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

No format information is passed back to the server withrtb@ KEY since
the server already has that information. Tpss_KEY data stream which
identifies the client’s current row follows th®S_CURUPDATE or
TDS_CURDELETE data streams.

If the key changes as a result of trBS_CURUPDATE, the server will return
the new key data inaDS_KEY data stream, preceded by@as_ROWFMT
data stream.

When a client sends®s_KEY to the server, n0DS_ROWFMT data stream
is sent. However, when a server send®a_KEY data stream to a client, a
TDS_ ROWFMT data stream describing the key data precedesiBeKEY
data stream.

A TDS_KEY data stream consists béngth and parameter pairs, one for

each parameter described by the associebsdROWFMT data stream. The
Length component doesn'’t appear if the data is a fixed datatype of standard
length,e.g, TDS_INT2, TDS_MONEY, TDS_DATETIME, etc. If the datatype
allows nulls then the data will always be preceded hgmagth argument.

Fixed length datatypes that are not of a standard lengthTes).CcHAR and
TDS_BINARY are also preceded byLangth.

TheTDS_PARAMS data stream has exactly the same format as the
TDS_ROW andTDS_KEY data streams. Three tokens are used for the same
data stream in order to provide data stream state information. The formats
will remain the same so that client and server code used to encode and
decode the data streams can be the same.

Note that if the cursor update request is made via a language request and not
aTDS_CURUPDATE data stream, 8DS_KEY will not be passed to the server
with the request.

Question: Verify when KEY data streams are returned to client.

Examples

See Also

TDS_ROWFMT, TDS_ROW

Version 3.4

168 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_LANGUAGE

Function

The token used to send a language command.

Syntax
TDS_LANGUAGE P Length Status language tex
0x21

Arguments
TDS_LANGUAGE

This is the token that indicates that this is a language
command.

Length

This is the length, in bytes, of the rest of the token. It includes
the status byte and the length of the language command. It is a four-byte,
unsigned integer.

| Status | This status byte is a bit-mask. The only currently defined bit
Is 0x01 which indicates that the command is parameterized and that
PARAMFMT/PARAM tokens follow

| language tex] Thjs the text of the language command. Presentation
conversion Is performed by the server if required.

Comments

» This is the token that is used by a client to send a language command to a
server.

» Language commands may be parameterized. In that case, the Status 0x01 bit
is set and the character and content of the parameters are described following
theTDS_LANGUAGE data stream using thes_PARAMFMT and
TDS_PARAMS data streams.

» Currently, only one@DS_LANGUAGE command is supported per client
request.

TDS 5.0 Functional Specification 169 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Examples

See Also
TDS_RPC, TDS_CURDECLARE, TDS_PARAMFMT, TDS_PARAMS

Version 3.4 170 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

Login Record

Description

This is the record that is sent to request that a dialog be established between a

client and a server.

Syntax

typedef struct loginrec
{
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE
TDS_BYTE

Ihostname[TDS_MAXNAME];
Ihostnlen;
lusername[TDS_MAXNAME];
lusernlen;
Ipw[TDS_MAXNAME];
Ipwnlen;
Ihostproc[TDS_MAXNAME];
Ihplen;

lint2;

lint4;

Ichar;

Iflt;

Idate;

lusedb;

[dmpld;

linterfacespare;

Itype;
Ibufsize[TDS_NETBUF];
Ispare[3];
lappname[TDS_MAXNAME];
lappnlen;
Iservname[TDS_MAXNAME];
Iservnlen;
[rempw[TDS_RPLEN];
[rempwlen;
[tds[TDS_VERSIZE];
Iprogname[TDS_PROGNLEN];

TDS 5.0 Functional Specification 171

Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

TDS_BYTE Iprognlen;

TDS_BYTE Iprogvers[TDS_VERSIZE];
TDS_BYTE Inoshort;

TDS_BYTE Iflt4;

TDS_BYTE Idate4;

TDS_BYTE llanguage[TDS_MAXNAME];
TDS_BYTE llanglen;

TDS_BYTE Isetlang;

/~k

** The following 13 bytes were used by 1.0 secure servers. Actually 2 bytes in
** the middle are unused. Since we do not support logins to 1.0 secure servers,
** we can re-use these 13 bytes.

** However, non-secure servers, check if the first 2 bytes are non-zero. If they
** are non-zero, they assume that the user want's to login a secure server and
** reject the login.

*/
TDS_BYTE loldsecure[TDS_OLDSECURE];
TDS_BYTE Iseclogin;
TDS_BYTE Isecbulk;

/*

** The following 2 fields were added in specification revision 3.2 to support High

** Availability failover. The lhalogin byte and the 6 Ihasessionid bytes were taken from
** the Isecspare bytes, The TDS_SECURE value was reduced from 9 to 2 accordingly.
*/

TDS_BYTE Ihalogin;
TDS_BYTE Ihasessionid[TDS_HA];
TDS_BYTE Isecspare[TDS_SECURE];
TDS_BYTE Icharset[TDS_MAXNAME];
TDS_BYTE Icharsetlen;
TDS_BYTE Isetcharset;
TDS_BYTE Ipacketsize[TDS_PKTLEN];
TDS_BYTE Ipacketsizelen;
TDS_BYTE [dummy[4];

} LOGINREC;

Version 3.4 172 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Comments

* When a client wants to establish a dialog with a server, a TDS packet is sent
that contains a login record. This packet is denoted by a packet header type
of TDS_BUF_LOGIN. Clients may have more than one dialog to a server but
each one is established separately in the same way. The dialogs may be
established on different transport connections or over the same one (server-
to-server).

* When a client sends a login record to a server, the server will respond with a
TDS_LOGINACK data stream. The status argument inThe_LOGINACK
data stream will indicate success or failure of the login attempt.

» The size of the login record will not be changed in future releases of TDS.
Any additional functionality will be implemented using separate token data
streams.

TDS 5.0 Functional Specification 173 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Fields

Table 31: Login Record Fields

Field Name Possible Values Description

Ihostname Contains the client’s host name.

Ihostlen Length, in bytes, of the client’s host name in
Ihostname.

lusername Client’'s user name. This field can be used for
authentication.

lusernlen Length, in bytes, of user name limsername
field.

lpw Client's password. This field can be used for
authentication. However, this field is sent as
clear text.

lpwnlen Length, in bytes of the password in thov
field.

Ihostproc Process identifier associated with client pro-
gram. The process identifier is specified as a
string of AScCIl characters.

lhplen Length, in bytes, of the process identifier in
Ihostproc.

lint2 TDS_INT2_LSB_HI (2) Specifies the client byte ordering for two byte

TDS_INT2_LSB_LO(3) integersTDS_INT2_LSB_HI specifies that the
least significant byte is in the high byte (68000
byte ordering)TDS_INT2_LSB_LO specifies that
the least significant byte is in the low byte
(VAX and 80x86 byte ordering).
Version 3.4 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

Table 31: Login Record Fields

Field Name

Possible Values

Description

lint4

TDS_INT4_LSB_HI (0)
TDS_INT4_LSB_LO(1)

This field identifies the client byte-ordering for
four-byte integersTDS_INT4_LSB_HI indicates
that the least significant byte is in the high byte
(68000 byte ordering)rDS_INT4_LSB_LO indi-
cates that the least significant byte is in the low
byte (VAX and 80x86 byte ordering).

Ichar

TDS_CHAR_ASCII (6)
TDS_CHAR_EBCDIC (7)

This field identifies the type of character repre-
sentation being used by the client.
TDS_CHAR_ASCII indicates that theBcDIC
character set is not being used by the client. The
actual character set being used by the client is
specified in thdcharset field below.
TDS_CHAR_EBCDIC indicates that theBcDIC
character set is being used by the client.

Iflt

TDS_FLT_IEEE_HI(4)
TDS_FLT_VAXD(5)
TDS_FLT_IEEE_LO(10)
TDS_FLT_ND5000(11)

This field identifies the type of floating point
representation used by the client.
TDS_FLT_IEEE_HI indicateSEEE 754 float type
with the least significant byte in the high byte
(e.g. Sun)TDS_FLT_VAXD indicates that VAX
‘D’ floating point format is being used.
TDS_FLT_IEEE_LO indicateSEeE 754 float type
with the least significant byte in the low byte
(e.g. 80x86)TDS_FLT_ND5000 indicates a
ND5ooofloat byte with the least significant byte
in the high byte.

[date

TDS_TWO_I4_LSB_HI(8)
TDS_TWO_l4_LSB_LO(9)

This field identifies the type of 8-byte datetime
representation used by the client. The 8-byte
datetime data type is implemented as two four-
byte integersTDS_TWO_I4_LSB_HI indicates

that the least significant integer is the high inte-
ger.TDS_TWO_l4_LSB_LO indicates that the
least significant integer is the low integer.

TDS 5.0 Functional Specification

Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 31: Login Record Fields

Field Name

Possible Values

Description

linterfacespare

TDS_LDEFSQL(0)
TDS_LXSQL(1)

TDS_LSQL(2)

TDS_LSQL2_1(3)
TDS_LSQL2_2(4)
TDS_LOG_SUCCEED(5)
TDS_LOG_FAIL(6)
TDS_LOG_NEG(7)
TDS_LOG_SECSESS_ACK(0x08)

This field is only used in server-server negotia-
tions. Values and meanings here are pulled from
SQLServer’s version of login header files:

server's default SQL will be sent
TRANSACT-SQL will be sent
ANSI SQL, version 1

ANSI SQL, version 2, level 1
ANSI SQL, version 2, level 2
Log in succeeded

Log in failed

Negotiate further

LOGINACK status bit.

Note that this bit can be set and one of the
above status values may be returned in the same
byte. i.e. 0x05, 0x06, 0x07, 0x85, 0x86, and
0x87 are the possible values for the status.

Itype

TDS_LSERVER(0x01)
TDS_LREMUSER(0x02)
TDS_LINTERNAL_RPC(0x04)

This field specifies the type of dialog. Dialog
requests come from two sources; directly from a
server, or server-to-server. Server-to-server dia-
logs are differentiated from normal client con-
nections by thdtype field in the login record. If
the dialog is specified as a server-to-server type,
thelrempw field contains the actual user name
and passwordiDS_LSERVER indicates that this
dialog is a server-to-server type,
TDS_LREMUSER indicates that this dialog is a
user login through another server

TDS_LINTERNAL_RPC indicates allow an internal
RPC to be executed in the connection

Ibufsize

This field is not currently specified by TDS.
However, it was used in the past by certain
Sybase products. Because of this, this field will
never be specified by TDS.

Version 3.4

TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Table 31: Login Record Fields

Field Name Possible Values Description

Ispare This field is not currently specified by TDS.
However, it was used in the past by certain
Sybase products. Because of this, this field will
never be specified by TDS.

lappname The client application name. The application
name defined by the application program. It is
different from the program name which is the
name of the library that the client is using to
manage the communication with the server.

lappnlen Length, in bytes, of theappname field.

Iservname The name of the server to which the client is
attempting to establish a dialog. CTlib and
DBIib set this field to the interfaces file entry
which was specified by the application explic-
itly of via the $DBQUERY environment vari-
able. This field SHOULD correspond with the
@ @servername of the server for best results.
In server-server rpc’s this servname field is
passed on to the remote server. If that remote
server needs to open a connection back to this
server for some reason, it will often use this
value to access its local interfaces file.

With some gateways (DirectConnnect for DB2)
this field indicates the name of the desired back-
end subsystem.

For Adaptive Server Anywhere this field indi-
cates the name of the database which the con-
nection should be made to (the database must
already be loaded). If the name in this field
doesn’t match any currently loaded database the
connection silently ends up in the “default”
database.

TDS 5.0 Functional Specification 177 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential
Table 31: Login Record Fields
Field Name Possible Values Description

Iservnlen Length, in bytes, of théservname field.

Irempw Pairs of remote server name and password
fields. This field is used on server-to-server dia-
logs.See below for a description of the format of
this field.

I[rempwlen Length, in bytes, of the Irempw array.

ltds TDS_5_0_V1(5) The TDS version requested by the client. This is

TDS_5_0_V2(0) a four-byte array where each byte specifies a
gz—g—g—ﬁggg number in the TDS version. The requested TDS
- - version is specified with the major version iden-
tifier in the high order byte.

Iprogname The name of the client library that is being used
to establish the dialog.

Iprognlen Length, in bytes, of thiprogname.

Iprogvers TDS_CT_5_0_V1(5) The version of the client library. This field is a

%i—g—g—g—@% four byte array where each byte specifies a num-

TDS_ T 5.0_V4(0) ber in the client library version.

TDS_DB_5_0_V1(5)

TDS_DB_5_0_V2(0)

TDS_DB_5_0_V3(0)

TDS_DB_5_0_V4(0)

Inoshort TDS_CVT_SHORT(1) This flag indicates whether 4 byte datetime,

TDS_NOCVT_SHORT(0) money, and floating point data types should be
automatically converted to 8 byte equivalents.
TDS_CVT_SHORT indicates that the short data
types should be convertetbS_NOCVT_SHORT
indicates that they should not be converted.

Version 3.4 178 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

Table 31: Login Record Fields

Field Name

Possible Values

Description

Iflt4

TDS_FLT4_IEEE_HI(12)
TDS_FLT4_IEEE_LO(13)
TDS_FLT4_VAXF(14)
TDS_FLT4_ND50004(15)

This is the format of 4 byte floating point num-
bers that will be used by the client.
TDS_FLT4_IEEE_HI IEEE floating point numbers
with the least significant byte in the high byte.
TDS_FLT4_IEEE_LO IEEE floating point num-
bers with the least significant byte in the low
byte.TDS_FLT4_VAXF indicate a VAX ‘F’ float-
ing point numberTDS_FLT4_ND50004 indicates
ND50004 byte floating point format.

[date4

TDS_TWO_I2_LSB_HI(16)
TDS_TWO_I2_LSB_LO(17)

The type of 4 byte datetime representation used
by the client. Four byte date time numbers are
implemented as two unsigned shorts.
TDS_LOW_I2_LSB_HI indicates that the least
significant short is in the high byte.
TDS_LOW_I2_LSB_LO indicates that the least
significant short is in the low byte.

llanguage

The client’s requested national language. The
default is “english”. This is the national lan-
guage that will be used for error messages.
Question: need list of valid national

language names.

llanglen

The length, in bytes, of thkanguage field
value. If this field is O the default server lan-
guage will be used.

Isetlang

TDS_NOTIFY(1)
TDS_NO_NOTIFY(0)

This field indicates whether the client wants to
be notified of language changa®s_NOTIFY
indicates that the client wants to be notified,
TDS_NO_NOTIFY indicates that the client does
not want to be notified.

TDS 5.0 Functional Specification

Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 31: Login Record Fields

Field Name

Possible Values

Description

loldsecure

This field was used by the original secure
server. It is not documented by the TDS specifi-
cation.

Iseclogin

TDS_SEC_LOG_ENCRYPT (0x01)
TDS_SEC_LOG_CHALLENGE (0x02)
TDS_SEC_LOG_LABELS (0x04)
TDS_SEC_LOG_APPDEFINED (0x08)

Negotiated login bit mask.

Isecbulk

TDS_SEC_BULK_LABELED (0x01)

Bulk copy security bit mask.

Ihalogin

TDS_HA_LOG_SESSION(0x01)
TDS_HA_LOG_RESUME(0x02)
TDS_HA_LOG_FAILOVERSRV/(0x04)

If the session bit is set, the client is requesting a
High-Availability login session. If the server

can provide this level of service, it responds
with a negotiated login sequence. If login is suc-
cessful the lhasessionid will be returned to the
client.

If the HARESUME bit is set then the client is
resuming an existing HA session and the Ihases-
sionid has been set.

If the HARESUME bit is set, the FAILOVER-
SRV bit indicates whether this server is the “pri-
mary” (FAILOVERSRYV is clear) or a
“secondary” server (FAILOVERSRV is set) in
the cluster.

If the failover bit is set, the client is explicitly
telling the server that it has already attempted an
initial login to the “primary” server for this HA
cluster, and is failing over to this, the “second-
ary”

See the HA negotiated login sequence on page

185.

Version 3.4

180

TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

Table 31: Login Record Fields

Field Name

Possible Values

Description

Ihasessionid

This field is only meaningful if the

TDS_HA LOG_SESSION and

TDS HA LOG_RESUME bits are set.

The server will attempt to re-establish an exist-
ing session which corresponds to this session id.

Isecspare

Spare fields. Not currently used. Reserved for
secure server.

Icharset

The name of the character set requested by the
client.

Icharsetlen

Length, in bytes, of th&charset field. If this
field is O the default server character set will be
used.

Isetcharset

TDS_NOTIFY(1)
TDS_NO_NOTIFY(0)

This field indicates whether the client wants to
be notified of character set changes.
TDS_NOTIFY indicates that the client wants to be
notified, TDS_NO_NOTIFY indicates that the cli-
ent does not want to be notified.

Ipacketsize

This field contains a character array that speci-
fies the client’'s requested packet size. Each digit
of the requested packet size is represented as an
ASCII character. The minimum packet size is

256 bytes and the maximum is 9999 bytes.

Ipacketsizelen

Length, in bytes, of the Ipacketsize field. If this
field is 0, the default packet size of 512 bytes is
used.

[dummy

pad the login record structure to a longword

TDS 5.0 Functional Specification

181

Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Remote Password Array Format

Thelrempw field contains an array of remote server name and user password
pairs. The length of this array is in thempwlen field. This field is used when

a server-to-server dialog is established. It is possible for the original client
application to pass different passwords to different remote servers.

The format of thdrempw array is:

\ SrvnameLength server namg—

|PasswordLength e| password

This pattern is repeated once for each remote server/password pair. If the
SrvnameLength is 0, the password which follows is a “universal password”
and will be used for any remote server. If tRasswordLength is O, it means

that the password iSULL. The total length of theempw array is 255 bytes.

This limits the total possible number of server name and password pairs to this
length.

See Also

TDS_LOGINACK, TDS_ENVCHANGE

Version 3.4 182 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_LOGINACK

Function

The response to token to a login request.

Syntax
TDS_LOGINACK || Length Status tds version
OXAD
«+« | NameLength program name prograrh ve:rsiorl
Arguments

| TDS_LOGINACK | This is the token used to acknowledge a client login
request.

Length | This is the length, in bytes, of the remaining data stream. Itis a
two-byte, unsigned integer.

Status | The status of the login request. Itis a one-byte, unsigned integer.
I nese are the possible status values.

TDS_LOG_SUCCEED -5
The login request completed successfully.

TDS_LOG_FAIL - 6
The login request failed. The client must terminate the
dialog and restart to attempt another login request.

TDS_LOG_NEGOTIATE - 7
The server is requesting that the client complete a negoti-
ation before completing the login request. The login
negotiation is done using tl®Ss_MSG token.

TDS 5.0 Functional Specification 183 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

For example, if a server uses a double-authentication key
to verify logins the sequence of events would be:

Client Server

login packet —p»
<— TDS_LOGINACK (TDS_LOG_NEGOTIATE)
~<&— TDS_MSG (first key)
-&— TDS_DONE
TDS_MSG (first key) —o»
~&— TDS_LOGINACK (TDS_LOG_NEGOTIATE)
<&— TDS_MSG (second key)
<€— TDS_DONE
TDS_MSG (second key) —p»

<— TDS_LOGINACK (TDS_LOG_SUCCEED)
<€— TDS_DONE

COMMENTS:Note that eacltbs_MSG must be followed by abs _PARAMFMT/TDS_PARAM
sequence, even though there are no parameters (paramfmt.#params = 0). This is just how the
CTLib state machine is define.

tds version

This is the version of TDS that the server is going to use. This
argument is an array of four unsigned, one-byte integers. For example,
TDS version 5.0.0.0 is 0x05000000.

 NameLength| This s the length of the program name argument. Itis a
one-byte, unsigned integer.

_program namq This is the name of the server program. It's length is in the
NamelLength argument.

| program version] s s the version of the server program. This
argument is an array of four unsigned, one-byte integers. For example,
SQL Server version 4.0.2 is 0x04000200.

Comments

* A TDS_LOGINACK token is always returned to the client whether or not the
login attempt has been successful, failed, or is on-going.

Version 3.4 184 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

* Ifthe login has a status 0bS_LOG_NEGOTIATE, the client and server will

continue to exchangebs_MsG tokens until the login either succeeds or
fails.

* Note that thdnterface argument in the data stream has been dropped in
TDS 5.0. It has been replaced by B&atus argument.

» With the TDS 5.0 Specification revision, the HA Failover login negotiation
sequence was added. If the HA_SESSION bit is set and the HA_ RESUME
bit is clear, then the client is requesting a new HA session. The login negoti-
ation proceeds as:

Client Server

TDS_LOGIN(TDS_LOG_HA SESSION) —p»
TDS_CAPABILITY —P»
~— TDS_LOGINACK (TDS_LOG_NEGOTIATE)
-@— TDS MSG (TDS MSG HAFAILOVER)
-@— TDS_PARAMFMT
-— TDS_PARAM (TDS_BINARY(6) Session ID)
The sessionlD indicates “this” server if the FAILOVER bit is clear, and indicates the

companion server which this server is an HA secondary server to if it is set.

~€— TDS_DONE

TDS_MSG(TDS_MSG_EMPTY) —#»
TDS_PARAMFMT(#Params=0) —#»
TDS_PARAM —P»

<— TDS_LOGINACK (TDS_LOG_SUCCEED)
<@— TDS_CAPABILITY
<@€— TDS_DONE(FINAL)

TDS 5.0 Functional Specification 185 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

 Ifthe HA_SESSION and HA RESUME bits are both set then the lhases-
sionid field in the login request contains the sessionID of the existing
session.

Client Server

TDS_LOGIN(TDS_LOG_HA_SESSION| —p»
TDS_LOG_HA RESUME)
TDS_CAPABILITY —p»

Server checks the sessionlD with existing HA sessions, and if it is val-

id...
<&— TDS_LOGINACK (TDS_LOG_SUCCEED)
~@— TDS_CAPABILITY
<@— TDS_DONE(FINAL)
Examples
See Also

TDS_MSG, login request

Version 3.4 186 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS _LOGOUT

Function

Client logout request.

Syntax

| TDS_LoGOUT Options
0x71

Arguments

__TDs_L0GoUT | This token is a client logout request.

@l Options is a one-byte, unsigned integer. There are currently no
options defined. This argument must be 0x00.

Comments

» This token is used by a client to logout from the server.
* A TDS_LOGOUT is acknowledged by the server witlreS_DONE.

Examples

See Also

TDS 5.0 Functional Specification 187 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 188 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_MSG

Function

Token to send generic messages between clients and servers.

Syntax

TDS_MsG | —{ Length || Status |-+ Msgid

0x65
e e+ TDS_PARAMFMT] eee | TDS_PARAMS XX
| OxXEC 0xD7 |
If Status = HasArgs
Arguments

TDS_MSG | This is token used to send a message to either a client or a
server.

Length | This s the total length, in bytes, of the remaining data stream. It
is a one-byte, unsigned integer.

Status | This indicates whether or not th®s_MSG hasTDS_PARAMFMT
andTDs_PARAMS following to describe message arguments. If there are
no arguments theBtatus is 0x00. If the MSG has arguments th&tatus
must beTDS_MSG_HASARGS (0x01) . Status is a one-byte, unsigned
integer.

Msgld | This is the id of the message. Ids are two-byte, unsigned integers.
Ids O through 32,767 are reserved for the CS/l implementation of TDS. The
following ids are reserved:

Table 32: Reserved Message ldentifiers

. Client _
Define Value Visible Description
TDS_MSG_SEC_ENCRYPT 1 No

TDS 5.0 Functional Specification 189 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 32: Reserved Message ldentifiers

Define Value \(/f!ﬁ)rl]; Description
TDS_MSG_SEC_LOGPWD 2 No
TDS_MSG_SEC_REMPWD 3 No
TDS_MSG_SEC_CHALLENGE 4 No
TDS_MSG_SEC_RESPONSE 5 No
TDS_MSG_SEC_GETLABEL 6 No
TDS_MSG_SEC_LABEL 7 No
TDS_MSG_SQL_TBLNAME 8 Yes CS_MSG_TABLENAME
TDS_MSG_GW_RESERVED 9 No Used by interoperability group.
TDS_MSG_OMNI_CAPABILITIES 10 No Used by OMNI SQL Server
TDS_MSG_HAFAILOVER 12 No Used during login to obtain the HA

Session ID

TDS_MSG_EMPTY 13 No Sometimes a MSG response stream

is required by TDS syntax, but the
sender has no real information to
pass. This message type indicates
that the following paramfmt/param
streams are meaningless

Comments

» TheTDS_MSG token is used whenever the client and/or server wish to pass
unstructured messages.

* TheTDS_MSG token is used by both the server and client to implement a
negotiated login sequence.

Version 3.4

190

TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

» TheTDS_MSG token can be interleaved with other TDS tokens. A
TDS_DONE is not required specifically for theEDS_MSG token. If the
TDS_MSG token is the only token being sentfeS_DONE(FINAL) is
required.

* Message Ids greater than 32k are reserved by TDS for user applications.

* A TDS_MSG token from a client is acknowledged by the server with a
TDS_DONE token.

» The CTlib state machine requires thatzs_MsG always be followed by a
TDS_PARAMFMT, TDS_PARAMS sequence even if the paramfmt.#params =
0.

Examples

See Also

TDS_LOGINACK, TDS_PARAMFMT, TDS_PARAMS

TDS 5.0 Functional Specification 191 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 192 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Message Buffer Header

Function

Describes the buffer header used by messages.

Syntax

‘ MsgType % Status Lerigth 4 Channel |/Packet #}—|Window

Arguments
MsgType | This one-byte unsigned integer defines the buffer type. The
types are:
Table 33: Buffer Types
Define Value Description
TDS_BUF_LANG 1 The buffer contains a language command. TDS does
not specify the syntax of the language command.
TDS_BUF_LOGIN 2 The buffer contains a login record
TDS_BUF_RPC 3 The buffer contains a remote procedure call com-
mand.
TDS_BUF_RESPONSE 4 The buffer contains the response to a command.
TDS_BUF_UNFMT 5 The buffer contains raw unformatted data.
TDS_BUF_ATTN 6 The buffer contains a non-expedited attention request.
TDS_BUF_BULK 7 The buffer contains bulk binary data.
TDS_BUF_SETUP 8 A protocol request to setup another logical channel.
This buffer is a header only and does not contain any
data.
TDS_BUF_CLOSE 9 A protocol request to close a logical channel.This

buffer is a header only and does not contain any data.

TDS 5.0 Functional Specification 193 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 33: Buffer Types

Define Value Description

TDS_BUF_ERROR 10 A resource error was detected while attempting to
setup or use a logical channel. This buffer is a header
only and does not contain any data.

TDS_BUF_PROTACK 11 A protocol acknowledgment associated with the logi-
cal channel windowing protocol. This buffer is a
header only and does not contain any data.

TDS_BUF_ECHO 12 A protocol request to echo the data contained in the
buffer.

TDS_BUF_LOGOUT 13 A protocol request to logout an active logical channel.
This buffer is a header only and does not contain any
data.

TDS_BUF_ENDPARAM 14 What is this???

TDS_BUF_NORMAL 15 This packet contains a tokenized TDS request or
response.

TDS_BUF_URGENT 16 This packet contains an urgent tokenized TDS request
or response.

TDS_BUF_CMDSEQ_NO | 24 SQL Anywhere CMDSEQ protocol

RMAL

TDS_BUF_CMDSEQ_LO | 25 SQL Anywhere CMDSEQ protocol

GIN

TDS_BUF_CMDSEQ_LIV | 26 SQL Anywhere CMDSEQ protocol

ENESS

TDS_BUF_CMDSEQ_RE | 27 SQL Anywhere CMDSEQ protocol

SERVED1

TDS_BUF_CMDSEQ_RE | 28 SQL Anywhere CMDSEQ protocol

SEVERD?2

Version 3.4

194 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

Status | This is a bit field used to indicate the message st&tatus is a
one-byte unsigned integer.

Table 34: Status Values

Define

Value Description

TDS_BUFSTAT_EOM

0x01 | Thisis the last buffer in a request or a response.

TDS_BUFSTAT_ATTNACK 0x02 | Thisis an acknowledgment to the last received atten-

tion.

TDS_BUFSTAT_ATTN

0x04 | This is an attention request buffer.

TDS_BUFSTAT_EVENT

0x08 | This is an event notification buffer.

TDS_BUFSTAT_ENCRYPT | 0x20 | The buffer is encrypted (SQL Anywhere CMDSEQ

protocol)

@l Length is the size of the buffer including the eight bytes in the

buffer header. It is the number of bytes from the start of this header to the
start of the next buffer header. For example, if there are 504 bytes of data
in the buffer,Length will be 512.Length is a two-byte, unsigned

integer. Regardless of the hardware architecture of either the server or the
client, Length is represented by <MSB, LSB>. The most significant byte
is first, followed by the least significant byte.

@l This is the channel number of the logical dialog. It is used for

multiplexing dialogs across the same physical connection. If multi-
plexing is not being use@hannel must be set to @Channel is a two-

byte, unsigned integer. Regardless of the hardware architecture of either
the server or the client, Length is represented by <MSB, LSB>. The most
significant byte is first, followed by the least significant byte.

@, This is used for numbering buffers that contain data in addition

to the buffer header. It is only significant when multiplexing. Each time
a data buffer is sent the value Backet is incremented, modulo 256.
Packet is a one-byte, unsigned integer.

TDS 5.0 Functional Specification 195 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

l@l This is used to control the number of buffers which will be sent
before an acknowledgment is received. Acknowledgments are sent
usingTDS_BUF_PROTACK type buffers. The receiving side defines its
buffering limit, which it reports in th&Vindow field of each
TDS_BUF_PROTACK buffer and in ther'Ds_BUF_SETUP buffer. A
TDS_BUF_SETUP buffer must always be acknowledged immediately so
that the site that initiated the dialog can be informed of the window size
ituses. The sending side cannot send a buffer if the receiving side has not
acknowledged enough buffers and might have to buffer more than its
window size. Windw is a one-byte, unsigned integer. If not multi-
plexing, window size must be set to 0.

Comments

* Requests and responses between clients and servers are passed in buffers.
Every buffer has a message buffer header which describes the buffer’s type,
length, and status information.

 Clients and servers send logical messages to each other. A logical message
may consist of multiple buffers. The last buffer in a logical message has the
EOM bit set in theStatus field.

» All multi-byte fields in the message buffer header are in a fixed byte and
bit order. The two-byte integers are represented by <MSB,LSB> which
matches the data representation used by the 68000 but is reverse of the
80x86 and the VAX. The most significant byte is first, followed by the
least significant byte.

Examples

To send a request that is 1500 bytes long the headers sent look like:

1}{o}+{512]+[0 |+ 0}-0
504 bytes of SQL command
(1 |-0}+{512] 5[0 |+ 0}={o0
504 bytes of SQL command
[1}{1] {500}~ 0 }slo}+0
492 bytes of SQL command

Version 3.4 196 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_OFFSET

Function

Returns the offset of the specified keyword in the language command buffer.

Syntax

| TDS_OFFSET || Keyword Offset
0x78

Arguments
| TDS_OFFSET

This is the token for keyword offset information.

@l This is the keyword to which th®ffset applies. This argument
is a two-byte, unsigned integer. The following keywords are supported:

TDS_OFF_SELECT - 0x016D

TDS_OFF_FROM - 0x014F

TDS_OFF_ORDER - 0x0165

TDS_OFF_COMPUTE - 0x0139

TDS_OFF_TABLE - 0x0173

TDS_OFF_PROC - 0x016A

TDS_OFF_STMT - 0x01CB

TDS_OFF_PARAM - 0x01C4

@Szl This is the offset into the command buffer whé&eyword
begins. The first byte in a command buffer is byte numbéfiset is a
two-byte, unsigned integer.

TDS 5.0 Functional Specification 197 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Comments

» Thistoken is used to tell a client where a particular key word appears in a
command buffer. This allows a client to use a server to perform primitive
parsing. For example, if a client wants to know each place in a command
buffer the keywordrom appears the information can be returned via this
token.

» The appropriate language option must be set for offsets to be returned.
Examples

See Also

TDS_OPTIONCMD

Version 3.4 198 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_OPTIONCMD

Function

Clear, set, and report on options.

Syntax
TDS_OPTIONCMD H Lerigth Command Option
OxA6
e+ | ArgLength option arg
Arguments

|_TDS_OPTIONCMD | This is the token used to get, set, or clear options.

@l This is the length, in bytes, of the remaining data stream for this
token. It is a two-byte, unsigned integer.

Command | This is the option. It is a one-byte, unsigned integer. The
possibleCommands are:

Table 35: Option Commands

Command Value Description
TDS_OPT_SET 1 Set an option.
TDS_OPT_DEFAULT 2 Set option to its default value.
TDS_OPT_LIST 3 Request current setting of a specific
option.
TDS_OPT_INFO 4 Report current setting of a specific option.

Option | The option being manipulated by this option command. A
complete list of all supported options is bel@ption is a one-byte,
unsigned integer.

TDS 5.0 Functional Specification 199 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

ArgLength | This defines the length, in bytes, of the followiogtion arg.

It is an unsigned one-byte integer.

option arg | This is the parameter that applies to the option listed in

Option. The format of this argument is based on the option. See the table
below. The length of this argument is in tAegLength argument.

Comments

This is the token used by both the client and server to set, clear, check, or
return information about options.

A Command to TDS_OPT_SET must specify the option being set in
Option. The value to set it to must be seniOptionArg. Arglength must
be set correctly foOptionArg.

A Command of TDS_OPT_DEFAULT must specify the option to set to the
server’s default in th©ption argumentArgLength must be set to 0.

A Command of TDS_OPT_LIST must specify the option on which infor-
mation is being requested in tption argumentArgLength must be set
to 0.

A Command of TDS_OPT_SET or TDS_OPT_DEFAULT is acknowledged
with aTDS_DONE(FINAL). The error bitis setin theDS_DONE if the option
request was not processed successfully.

TheTbs_opPT_LIST command is acknowledged by a server using the
TD_OPT_INFO command. The&DS_OPT_INFO command contains the
option specified in thebs_oOPT_LIST command irOption, and the current
value of this option irOptionArg. ArgLength must be set correctly for
OptionArg. A TDS_DONE(FINAL) is also sent following theDs_OPT_LIST
token.

There is no way to request a server to return the values for all known options.
A complete list of all supported options is:

Table 36: Supported Options

Name

Value Description

TDS_OPT_UNUSED

0 Used to specify no option.

Version 3.4

200 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Table 36: Supported Options

Name Value Description
TDS_OPT_DATEFIRST 1 Set first day of week.
TDS_OPT_TEXTSIZE 2 Set maximum text size.
TDS_OPT_STAT_TIME 3 Return server time statistics.
TDS_OPT_STAT_IO 4 Return server 1/O statistics.
TDS_OPT_ROWCOUNT 5 Set maximum row count to return.
TDS_OPT_NATLANG 6 Change national language.
TDS_OPT_DATEFORMAT 7 Set date format.
TDS_OPT_ISOLATION 8 Transaction isolation level.
TDS_OPT_AUTHON 9 Set authority level on.
TDS_OPT_CHARSET 10 Change character set.
TDS_OPT_SHOWPLAN 13 Show execution plan.
TDS_OPT_NOEXEC 14 Do not execute query.
TDS_OPT_ARITHIGNOREON 15 Set arithmetic exception handling.
TDS_OPT_ARITHABORTON 17 Set arithmetic abort handling.
TDS_OPT_PARSEONLY 18 Parse the query only. Return error messages.
TDS_OPT_GETDATA 20 Return trigger data.
TDS_OPT_NOCOUNT 21 Do not return done count.
TDS_OPT_FORCEPLAN 23 Forces substitution order for joins in the order

of the tables provided in this option.

TDS_OPT_FORMATONLY 24 Send format information only.
TDS_OPT_CHAINXACTS 25 Set chained transaction mode.
TDS_OPT_CURCLOSEONXACT 26 Close all open cursors at end of transaction.

TDS 5.0 Functional Specification 201 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Table 36: Supported Options

Name Value Description
TDS_OPT_FIPSFLAG 27 Enable FIPs flagging.
TDS_OPT_RESTREES 28 Return resolution trees.
TDS_OPT_IDENTITYON 29 Turn on explicit identity.
TDS_OPT_CURREAD 30 Set session label @ @curread.
TDS_OPT_CURWRITE 31 Set session label @ @curwrite.
TDS_OPT_IDENTITYOFF 32 Turn off explicit identity.
TDS_OPT_AUTHOFF 33 Turn authority off.
TDS_OPT_ANSINULL 34 Support ANSI null data.
TDS_OPT_QUOTED_IDENT 35 Quoted identifiers.
TDS_OPT_ARITHIGNOREOFF 36 Turn off arithmetic exceptions.
TDS_OPT_ARITHABORTOFF 37 Turn off arithmetic aborts.
TDS_OPT_TRUNCABORT 38 Abort on truncation.

» The table below summarizes the option arguments. It includes the defined
argument length and defined values for the option value.

Table 37: Option Arguments

Argument .
Name Length Option Argument
TDS_OPT_DATEFIRST 1 byte | TDS_OPT_MONDAY(1)

TDS_OPT_TUESDAY(2)
TDS_OPT_WEDNESDAY(3)
TDS_OPT_THURSDAY (4)
TDS_OPT_FRIDAY(5)
TDS_OPT_SATURDAY(6)
TDS_OPT_SUNDAY(7)

Version 3.4 202 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Table 37: Option Arguments

Argument .
Nam tion Argument
ame Length Optio gume
TDS_OPT_TEXTSIZE 4 bytes | Sizein bytes. XDR is performed on this
field.
TDS_OPT_STAT_TIME 1 byte Boolean
TDS_OPT_STAT_IO 1 byte Boolean
TDS_OPT_ROWCOUNT 4 bytes | Number of rows. XDR is performed on
this field.
TDS_OPT_NATLANG Arg National language string (7 bit ASCII).
length
TDS_OPT_DATEFORMAT 1 byte | TDS_OPT_FMTMDY(1)
TDS_OPT_FMTDMY(2)
TDS_OPT_FMTYMD(3)
TDS_OPT_FMTYDM(4)
TDS_OPT_FMTMYD(5)
TDS_OPT_FMTDYM(6)
TDS_OPT_ISOLATION 1 byte | TDS_OPT_LEVEL1(1)
TDS_OPT_LEVEL3(3)
TDS_OPT_AUTHON Arg Authorization level string (7 bit
length | ASCII).
TDS_OPT_CHARSET Arg Character set string (7 bit ASCII).
length
TDS_OPT_SHOWPLAN 1 byte Boolean
TDS_OPT_NOEXEC 1 byte Boolean
TDS_OPT_ARITHIGNOREON 4 bytes | TDS_OPT_ARITHOVERFLOW(0x01)
TDS_OPT_NUMERICTRUNC(0x02)
TDS_OPT_ARITHABORTON 4 bytes | TDS_OPT_ARITHOVERFLOW(0x01)
TDS_OPT_NUMERICTRUNC(0x02)
TDS_OPT_PARSEONLY 1 byte Boolean

TDS 5.0 Functional Specification 203 Version 3.4

TDS 5.0 Reference Pages

Sybase Confidential

Table 37: Option Arguments

Argument .
Name Length Option Argument

TDS_OPT_GETDATA 1 byte Boolean

TDS_OPT_NOCOUNT 1 byte Boolean

TDS_OPT_FORCEPLAN 1 byte | Boolean

TDS_OPT_FORMATONLY 1 byte Boolean

TDS_OPT_CHAINXACTS lbyte Boolean

TDS_OPT_CURCLOSEONXACT 1 byte | Boolean

TDS_OPT_FIPSFLAG 1 byte Boolean

TDS_OPT_RESTREES 1 byte | Boolean

TDS_OPT_IDENTITYON Arg Table name string (7 bit ASCII).
length

TDS_OPT_CURREAD Arg Read label string (7 bit ASCII).
length

TDS_OPT_CURWRITE Arg Write label string (7 bit ASCII).
length

TDS_OPT_IDENTITYOFF Arg Table name string (7 bit ASCII).
length

TDS_OPT_AUTHOFF Arg Authorization level string (7 bit
length | ASCII).

TDS_OPT_ANSINULL 1 byte | Boolean

TDS_OPT_QUOTED_IDENT 1 byte | Boolean

TDS_OPT_ARITHIGNOREOFF 4 bytes | TDS_OPT_ARITHOVERFLOW(0x01)

TDS_OPT_NUMERICTRUNC(0x02)
TDS_OPT_ARITHABORTOFF 4 bytes | TDS_OPT_ARITHOVERFLOW(0x01)
TDS_OPT_NUMERICTRUNC(0x02)
Version 3.4 204 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

Table 37: Option Arguments

Argument .
Name Length Option Argument
TDS_OPT_TRUNCABORT 1 byte Boolean

* Boolean option arguments are sent using_OPT_FALSE(0) and
TDS_OPT_TRUE(1).

Examples

See Also
TDS_CAPABILITY

TDS 5.0 Functional Specification 205 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 206 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_ORDERBY

Function

Describes the columns in an “order by” clause of a select.

Syntax
TDS_ORDERBY # Columns column #
| |
OXA9 repeat for each column
Arguments

TDS_ORDERBY I This is the token that indicates that this is column
order information.

Columns I This is the number of columns in the order-by clause. This
argument is a two-byte, unsigned integer.

column # I This is the number of column that is in the order-by clause.
The first column in the select list is number 1. For example, in the statement:
select empid, lastname, firstname
from employees
order by lastname, firstname
the order-by columns are columns 2 and 3. This argument is a one-byte
unsigned integer.

Comments

» This token is used to describe the columns in an order-by clause of a select
list.

» There will always be a least omelumn #defined by arbS_ORDERBY
token.

Example

See Also

TDS 5.0 Functional Specification 207 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 208 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages|

TDS_ORDERBY?2 |

Function

Describes the columns in an “order by” clause of a select.

Syntax
TDS_ORDERBY?2 Length | —|# Columns || column #
0x22 I I
repeat for each column
Arguments

TDS_ORDERBY2 I This is the token that indicates that this is column
order information.

Length | This 4 byte integer indicates the length of the remaining
stream.

i

Columns I This is the number of columns in the order-by clause. This
argument is a two-byte, unsigned integer.

column # | This is the number of column that is in the order-by clause.
The first column in the select list is number 1. For example, in the statement:
select empid, lastname, firsthname
from employees
order by lastname, firsthame
the order-by columns are columns 2 and 3. This argument is a two-byte |
unsigned integer.

Comments

» This token is identical is use to thi®S_ORDERBY token, but has was intro-
duced to support > 255 columns in the result set.

* TheTDS_ORDERBY token does not include a separate Length field since the
column# information was being expressed as 1-byte integers - thus the
#Columns value correctly indicates the remaining length of the token and
was not repeated.

TDS 5.0 Functional Specification 209 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential |

Capability bit is true - otherwise the client does not know this token (adde|

» Servers should only return this token if theS_ORDERBY2 Response
in version 3.4 of this specification).

Example

See Also

Version 3.4 210 TDS 5.0 Functional Specification |

Sybase Confidential

TDS 5.0 Reference Pages

TDS_PARAMFMT

Function

The token

Syntax

describing the data type, length, and statie®fPARAMS data.

| TDS_PARAMFMT Lerjgth #Params ‘ NameLength param name

OXEC

Status Ljser:type DataType }— Length e| Precision % Scale

1, 2 or 4 bytes

aleLen || locale infd— ClassiDLen || ClassID

‘ ees | LOC

repeat everything but the Length and #Params for each parameter

Arguments

| TDS_PARAMFMT | This is the command token used to describe parameter

data.

Length

tream.

| This length specifies the number of bytes remaining in the datas-
It is an unsigned, two-byte integer.

#Params

| This argument specifies the number of parameters being

described. It is an unsigned, two-byte integer.

| NameLength | This s the length of the parameter name which follows.

Since parameter names mayNog L, NamelLength may be 0. If
NameLength is 0, noparam namergument followsNameLength is a
one-byte, unsigned integer.

TDS 5.0 Functional Specification 211 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

|_param namq Ths is the name of the parameter being described. It's length
is described by the preceding parameter. Parameter names are optional.

Status | This field is used to describe any non-datatype characteristics of
the data. For example, when remote procedure callsmSePARAMFMT
to describe their parameters’ format, tteeS_PARAM_RETURN status
marks a parameter as antputparameter.e., passed by reference, in
effect.Status is a one-byte, unsigned integer. The valid status bits and
values are:

Table 38: Valid Status Values

Name Value Description
TDS_PARAM_RETURN 0x01 | Thisis areturn parameter. Itis like a parameter
passed by reference.
TDS_PARAM_NULLALLOWED 0x20 | This parameter can b&LL
‘ usertype This is the user-defined data type of the parameter. Itis a

signed, four-byte integer.

_DataType | Thisis the datatype of the data. It is a one-byte unsigned
integer. Datatypes which are fixed, standard length (1, 2, 4, or 8 bytes) are
represented by a single datatype byte and havesngth parameter
following. Thetextandimagedatatypes are not currently supported as
parameter datatypeDataType is a one-byte, unsigned integer.

The rest of the fields in the repeating datatype descriptions are as described in the Format
description for the corresponding DataType see section on page 109 |

@l This is the maximum length, in bytes, DataType. It is a one-
byte unsigned integer or a four-byte, signed integer. The sizergjth
depends on thBataType. If the precedindataType is a fixed length
datatype of standard lengthg, intl, int2, datetimeetc, there is no
Length argument.

Version 3.4 212 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

Precision

|

| This is the precision associated with numeric and decimal
data types. Itis only in the data stream if the parameter is a numeric or
decimal data type.

Scale

H

| This is the scale associated with numeric and decimal data
types. Itis only in the data stream if the parameter is a numeric or decimal
data type.

LocaleLen

H

| This is the length of the localization information, if any,
which follows. It is a one-byte, unsigned integer which may be 0. If the
length is 0, no localization information follows.

locale info

;

| This is the localization information for the parameter. It is
character string whose length is givenlycaleLen.

H

ClassIDLen| This s the 2-byte length of the ClassID, if any, which
follows. This length field is only present if timmataType is TDS_BLOB.

ClassID_| This s the class identification information for BLOB types.
Its length in bytes is given by the preceding ClassIDLen value. If
ClassIDLen is missing because thisis nota TDS_BLOB data format, or if
ClassIDLen is 0, then this field is absent.

|

Comments

» This is the token used to provide a description of data. It is just like the old
TDS_COLNAME andTDS_COLFMT tokens except that it provides a
parameter name and Status for each DataType.

This token is used to descrilbes_PARAMS data. Parameter data is sent
with parameterizedursor declaresopens andupdatesas well as for
parameter language statements and messages.

* ltisillegal to send abs_PARAMFMT data stream with zero parameters.

» Each parameter must be described Tba_PARAMFMT data stream. Only
one parameter can be sent for eabls_PARAMFMT description. For
example, itis illegal to sendEDS_PARAMFMT that contains a description
of two parameters, and then send multipihss_ PARAMS data streams, each
with two parameters. Each parameter sent from a client or server in a
TDS_PARAMS data stream must be preceded by a description in a
TDS_PARAMFMT data stream.

TDS 5.0 Functional Specification 213 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

» TheTDS_PARAMFMT token has exactly the same format as the
TDS_ROWFMT token. Two tokens are used to provide state information. The
formats will remain the same so that client and server code used to encode
and decode the tokens can be the same.

* TheTDS_PARAMFMT/PARAMS tokens are used to send return parameters to
a client if theTDS_RES_NOPARAM capability bit is false.

Examples

See Also

Data typesTDS_PARAMFMT2, TDS_ROW, TDS_ROWFMT, TDS_PARAMS |

Version 3.4 214 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

TDS_PARAMFMT2

Function

The token describing the data type, length, and statte®fPARAMS data.

Itis idential to therDS_PARAMFMT token except that the length field is 4 bytes
long (to accomodate a greater number of parameters in/out) and the Status fjeld
has been expanded to 4 bytes (status bits were nearly used up).

Syntax
|TDS_PARAMFMT Lerjgth 1=#Params ‘ NameLength param name
0x20
«+4 Status user type DataType || Length || Precision || Scale

1, 2 or 4 bytes
‘ -+« [LocaleLen || locale infd— ClassiDLen || ClassID

repeat everything but the Length and #Params for each parameter

Arguments

| TDS_PARAMEMT2| This is the command token used to describe parameter
data.

[—I_E]_ng This length specifies the number of bytes remaining in the datas-
tream. It is an unsigned, four-byte integer.

Refer to therbs_PARAMFMT token for further documentation of fields.

TDS 5.0 Functional Specification 215 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 216 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

TDS_PARAMS

Function

The token for parameter data.

Syntax
TDS_PARAMS %| Length % parameter
0xD7 1, 2 or 4 bytes |
repeat for each
Arguments

|_TD0S_PARAMS | This is the command token to send parameter data.

@l This is theactual as opposed tmaximumdata length, in
bytes, of thgparametedata If the parameter data is a fixed length data type
of standard length, e.g., ints, floats, datetimes, then therelismgth
argumentLength is either a one-byte, unsigned integer, an unsigned, two-
byte integer, or a signed, four-byte integer. The sizespigth depends on
the data types of the data.

parameter | This is the actual data for the parameter. Its length, if
variable, is indicated by the precedibgngth argument. It is in the format
specified by the client in the login request. The server always does any
translation so that the client receives data in its native format.

Comments

» This is the token that contains the parameter data described by a preceding
TDS_PARAMFMT data stream.

* See previous note.

TDS 5.0 Functional Specification 217 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

» A TDS_PARAMS token consists dfength andparameteipairs, one for each

parameter described by a precedimg_PARAMFMT token. TheLength
component doesn’'t appear if the data is a fixed data type of standard length,
e.gd, INT2, MONEY, DATETIME, etc If the data type allows nulls then the data
will always be preceded bylaength argument. Fixed length datatypes that
are not of a standard length, e g4AR andBINARY are also preceded by a
Length.

TheTDS_PARAMS token has exactly the same format asthe_Row and

TDS_KEY tokens. Three tokens are used for the same data stream to provide
data stream state information. The formats will remain the same so that client
and server code used to encode and decode the data streams can be the same.

TheTDS_PARAMS token may appear repeatedly aftames_PARAMFMT
token. ATDS_DONE must be sent after all thteEbS_PARAM tokens for a
particularTdS_PARAMFMT.

Examples

See Also

TDS_PARAMFMT, TDS_ROW, TDS_KEY

Version 3.4

218 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_RPC

Function

Describes the data stream which contains a remote procedure call request. This
token is obsolete.

Syntax
TDS_RPC Length NameLen |—{ rpc name}—| Options
0XEO

e+« | NameLen param namg | Status

repeat for

ea£7 param| °°° | DataType | MaxLen | | Precision Scale

1, 2, or 4 bytes
e| ActualLen param datg
L L
1, 2, or 4 bytes
Arguments

TDS_RPC | Thjsis the command token to send an RPC request.

@l This is the length, in bytes, of the remaininps_RPC data
stream. It is a two-byte, unsigned integer.

I@l This is length, in bytes, of the RPC name. It is a one-byte,
unsigned integer.

@l This is the name of the RPC. Its length, in bytes, is given by the
preceding argument.

TDS 5.0 Functional Specification 219 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

@El This is a bit mask which contains options related to the RPC. The
mask is a two-byte, unsigned integer. The defined options are:

Table 39: RPC Option Values

Name Value Description
TDS_RPC_UNUSED 0x0000 Option argument is not used.
TDS_RPC_RECOMPILE 0x0001 Recompile the RPC before execution.

@l This the length, in bytes, of the parameter name. It may be 0.
The argument is a one-byte, unsigned integer.

param Namq§ This the parameter name. Its length, in bytes, is given by the
preceding argument. NameLen is 0, theparam namergument will not
be included in the data stream.

@. This is a one-byte, unsigned integer which is used as a bit field. It
indicates any special status for the particular parameter being described.
The possible Status values are:

Table 40: Status Field Values

Name Value Description

TDS_RPC_STATUS_UNUSED | 0x00 | The statuss argument is not used.

TDS_RPC_OUTPUT 0x01 | This value of this parameter will be returned to the cli-
ent. It may contain an original value, but it may be
changed. Return parameters are returned using the
TDS_RETURNVALUE token.

TDS_RPC_NODEF 0x02 | This indicates that there is no default value for this
parameter. The value of this parameter is undefined.
This bit is only valid withTDS_RPC_OUTPUT.

Version 3.4 220 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

]

DataType

| This is the data type of the parameter and is a one-byte
unsigned integer. Datatypes which are fixed, standard length (1, 2, 4, or
8 bytes) are represented by a single data type byte and havaxien

or ActualLen parameters following. Variable data types are followed by
a length which gives the maximum length, in bytes, for the data type.

MaxLen

]

| This is the maximum length, in bytes, of the preceding
DataType. The size dflaxLen depends on the data type. If the
preceding DataType is a fixed length data type of standard leagjh,
intl, int2, datetimeetc, there is ndVlaxLen argument.

Precision

H

| This is the precision associated with numeric and decimal
data types. Itis only in the data stream if the parameter is a numeric or
decimal data type.

Scale

H

| This is the scale associated with numeric and decimal data
types. Itis only in the data stream if the parameter is a numeric or decimal
data type.

ActualLen

;

This is the actual length, in bytes, of the followipgram
datafield. The size ofactualLen depends on the data typdf the
preceding DataType is a fixed length data type of standard leagjh,
intl, int2, datetime etc, there is nActualLen argument.

param data

;

| This is the actual parameter data. Its length, if variable, is
indicated by the precedir&ctualLen argument. Itis in the native format
of the client machine. For example, if the client is running on a SUN and
the server on a VAX, the representation of the INT4 data type has
different byte ordering. The server always does any byte swapping so
that the client receives the data in native format.

Comments
» This token is used by a client to make an RPC request to a server.
» Currently, only onaDS_RPC token per request is allowed.

» RPC return parameters for tmes_RPC token are returned using the
TDS_RETURNVALUE token.

*. See previous hote.

TDS 5.0 Functional Specification 221 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

* Note that the total length of the RPC information is limited to 64k-1. Because
of this, this token has been replaced bytbs_DBRPC token. It should not

be used in any new products.

» TheTDS_RPC token should be used by clients only if theS_REQ_PARAM
capability bit is false.

Examples

See Also
TDS_RETURNVALUE, TDS_DBRPC.

Version 3.4 222 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_RETURNSTATUS

Function

Describes the token which is used to return status information to a client.

Syntax

TDS_RETURNSTATUS ydue
0x79

Arguments

TDS_RETURNSTATUS I This is the token used to return status infor-
mation.

value

This is the value of the return status. It is a four-byte, signed
integer. Note that the value may notrogl.

Comments

* Thisis the token that is used to return a status code to a client.

* When a remote procedure call is executed on a server, a return status value
may be returned.

* Only oneTDS_RETURNSTATUS per RPC is allowed.
Examples

See Also
TDS_RETURNVALUE

TDS 5.0 Functional Specification 223 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 224 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_RETURNVALUE

Function

Return parameter information to a client.

Syntax

TDS_RETURNVALUE P| Lerigth NameLen param namg
OXAC

Status |—>|UserType DataType

MaxLen Precision Scale
|| —
1, 2, or 4 bytes

1, 2, or 4 bytes

Arguments

| TDS_RETURNVALUE I This is the token that indicates that is used to return
parameter information to a client.

Length | This is the length, in bytes, of the remaining
TDS_RETURNVALUE data stream. It is a two-byte, unsigned integer.
NameLen

|

I This is length, in bytes, of the name, if any, of the return
parameter. It is a one-byte, unsigned integer.

param name

;

I This is the name of the return parameter. Its length, in bytes,
is given by the preceding argumentNameLen is 0, then thgparam
namefield is omitted from the data stream.

TDS 5.0 Functional Specification 225 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

@. This is a one-byte, unsigned integer which is used as a bit field. It
indicates any special status for the particular parameter being described.

The possible Status values are:

Table 41: Status Values

Name Value Description

TDS_PARAM_UNUSED 0x00 The status field is not used.

0x08 This indicates that the return value was origi-
nally sent to the server as an output parame-

ter in an RPC.

UserType | This is the user-defined data type, if any, for the returned
value. Itis a signed, four-byte integer. If there isUgerType for return

valueUserType will be 0.

@l This is the datatype of the return value and is a one-byte
unsigned integer. Datatypes which are fixed, standard length (1, 2, 4, or

8 bytes) are represented by a single datatype byte and hawexien or
Actual Len arguments following. Variable datatypes are followed by a
length which gives the maximum length, in bytes, for the datatype.

I@l This is the maximum length, in bytes, of the preceding
DataType. The size dflaxLen depends on the data type. If the

preceding DataType is a fixed length data type of standard leagjh,
intl, int2, datetimeetc, there is ndVlaxLen argument in this data

stream.

Precision | this is the precision associated with numeric and decimal
data types. Itis only in the data stream if the parameter is a numeric or

decimal data type.

El This is the scale associated with numeric and decimal data
types. Itis only in the data stream if the parameter is a numeric or decimal

data type.

TDS_PARAM_RETURN

Version 3.4 226 TDS 5.0 Functional Specification

Sybase Confidential

TDS 5.0 Reference Pages

@l This is the actual length, in bytes, of the followipgram

dataargument. The size dfctualLen depends on the data type. If the
preceding DataType is a fixed length datatype of standard leaggh,
intl, int2, datetimeetc, there is nActualLen argument in this data
stream.

@; This is the actual data for the parameter. Its length, if variable, is

indicated by the precedirctualLen argument. Itis in the native format
of the client machine. For example, if the client is running on a SUN and
the server on a VAX, the representation of the INT4 data type has
different byte ordering. The server always does any byte swapping so
that the client receives the data in native format.

Comments

This is the token that is used by a server to return a value to the client.

When remote procedure calls (stored procedures) are executed, the param-
eters may be designated@asgputor return parameters. This data stream is
used to return a description of the return parameter and the value of the
return parameter to the client application.

There may be multiple return values per RPC. There is a separate
TDS_RETURNVALUE data stream for each parameter returned.

Return parameters are sent in the order in which they were defined in the
procedure.

TheMaxLen andActualLen components don't appear if the return value

is a fixed data type of standard lengéhg.,INT2, MONEY, DATETIME.

Parameters that are fixed length data types that are not of a standard length,
€.g, CHAR andBINARY includeMaxLen andActualLen.

TheTDS_RETURNVALUE data stream limits the total length of return
parameters to 64K-1. Because of this restriction this token has been
replaced with th@DS_PARAMFMT/PARAMS tokens to return parameters
to a client.

TheTDS_RETURNVALUE token should only be used to return parameters
to a client if theTDS_RES_NOPARAM capability bit is true.

This token is obsolete and should not be used in any new products.

TDS 5.0 Functional Specification 227 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Examples

See Also
TDS_RPC

Version 3.4 228 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_ROW

Function

A row of data.

Syntax
T0s ROW || Length || data
0xD1 . 0,1, or 4 bytes |
repeat for each column
Arguments

@l This is the token that is used to send row data.

@l This is theactual as opposed tmaximumdata length, in bytes,
of the followingdata If the following column data is a fixed length data
type of standard length, e.g., ints, floats, datetimes, then theré.ength
argumentLength is either a one-byte, unsigned integer, an unsigned, two-
byte integer, or a signed, four-byte integer. The sizespigth depends on
the data type of the data.

@l This is the actual data for the column data. Its length, if variable,
is indicated by the preceding Length argument. It is in the format
specified in the login record of the client request. The server always does
any translation so that the client receives data in its expected format.

Comments

* This is the token that contains the data for one row.

* A TDS_ROWFMT token was used to describe the data sent imtise ROW
token.

TDS 5.0 Functional Specification 229 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

* A TDS_ROW token consists dfength and data pairs, one for each column
described by a precedingps_ROWFMT token. TheLength argument
doesn't appear if the data is a fixed length data type of standard length, e.g.,
INT2, MONEY, DATETIME, etc. If the data type allows nulls then the data will
always be preceded by.@ngth argument. Fixed length data types that are
not of a standard length, e.@HAR andBINARY are also preceded by a

Length.
* TheTDS_ROW token has exactly the same format asthe_PARAMS and
TDS_KEY tokens.

» A separataDsS_ROW token is used for each row in a result set.

Examples

See Also
TDS_ROWFMT

Version 3.4 230 TDS 5.0 Functional Specification

Sybase Confidential TDS 5.0 Reference Pages

TDS_ROWFMT

Function

The token for describing the data type, length, and status of row data.

Syntax
TDS_ROWFMT Lerjgth # Cols | NameLength column namP
OXEE
* ¢ | Status user type DataType |—{ Length A Precision %| Scale
0, 1, or 4 bytes
s« | LocaleLen locale infd—| Class|DLen |+ ClassID
repeat for each column
Arguments

TDS_ROWFMT] This iss the token used to send a description of row data.

@l This length specifies the number of bytes remaining in the data
stream. It is an unsigned, two-byte integer. |

@l This argument contains the number of columns which are being
described. Itis an unsigned, two-byte integer.

NameLength| Thisisthe length of the column name which follows. Since
column names may beJLL, ColLength may be 0. IfColLength is 0, no
col nameargument followsColLength is a one-byte unsigned integer.

__colname | This is the name of the column being described. It's length is
described by the preceding parameter. Column names are optional.

TDS 5.0 Functional Specification 231 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Status | Thisfield is used to describe any non-datatype characteristics for
the data. A column may have more than one status biSsatus is an
unsigned, one-byte integer. The valid values are:

Table 42: Valid Status Values

Name Value Description

TDS_ROW_HIDDEN 0x01 | Thisis a hidden column. It was not listed in
the target list of the select statement. Hidden
fields are often used to pass key information
back to a client. For example: select a, b from
table T where columns b and c are the key
columns. Columns a, b, and c may be
returned and ¢ would have a status of
TDS_ROW_HIDDEN|TDS_ROW_KEY.

TDS_ROW_KEY 0x02 | This indicates that this column is a key.

TDS_ROW_VERSION 0x04 This column is part of the version key for a
row. It is used when updating rows through
cursors.

TDS_ROW_UPDATABLE 0x10 | This column is updatable. It is used with cur-
sors.

TDS_ROW_NULLALLOWED 0x20 | This column allows nulls.

TDS_ROW_IDENTITY 0x40 | This column is an identity column.

TDS_ROW_PADCHAR 0x80 | This column has been padded with blank
characters.

or not.
Usertype | thisis the user-defined data type of the data. It is a signed,

four-byte integer.

Version 3.4 232 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

DataType | Thisis the data type of the data and is a one-byte unsigned
integer. Datatypes which are fixed, standard length (1, 2, 4, or 8 bytes) are
represented by a single data type byte and ha\teength argument.

Variable data types are followed by a length which gives the maximum
length, in bytes, for the datatype.

The rest of the fields in the repeating datatype descriptions are as described in the Format

description for the corremataType see section on page 109 |
engtn | This is the maximum length, in bytes, DataType. The size of

Length depends on the data type. If the preceddadaType is a fixed
length data type of standard lengélyg, intl, int2, datetimeetc, there is
noLength argument. It the preceding typaéextorimage then the format

is a four-byte length argument, followed by a two-byte object name length,
and finally the object name.

Precision

|

This is the precision associated with numeric and decimal
data types. Itis only in the data stream if the column is a numeric or
decimal data type.

Scale

|

| This is the scale associated with numeric and decimal data
types. Itis only in the data stream if the column is a numeric or decimal
data type.

LocaleLen

H

| This is the length of the localization information which
follows. Itis a one-byte, unsigned integer which may be 0. If the length is
0, no localization information follows.

locale info

;

| This is the localization information for the column. Itis
character string whose length is givenlbycaleLen.

H

Class|DLen | This is the 2-byte length of the ClassID, if any, which
follows. This length field is only present if timmtaType is TDS_BLOB.

ClassID_| This is the class identification information for BLOB types.
Its length in bytes is given by the preceding ClassIDLen value. If
ClassIDLen is missing because thisis nota TDS_BLOB data format, or if
ClassIDLen is 0, then this field is absent.

|

TDS 5.0 Functional Specification 233 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Comments

This is the token used to provide a description of data. It is just like the old
TDS_COLNAME andTDS_COLFMT tokens except that it provides the
column name an8tatus argument for eacBataType.

This data stream is used to descrilpss_ROW data sentin response to a non-
cursor or cursoselect .

The information iNTDS_ROWFMT is used to decode th@®S_ROW token.

TheTbs_ROWFMT token has exactly the same format as the

TDS_PARAMFMT token. Two tokens are used for the same data stream in

order to provide state information. The formats will remain the same so that
client and server code used to encode and decode the tokens can be the same.

TheTDS_COLNAME andTDS_COLFMT tokens are no longer supported with
TDS 5.0.

Examples

See Also

Data typesTDS_ROWFMT2, TDS_ROW, TDS_PARAMFMT |

Version 3.4

234 TDS 5.0 Functional Specification |

Sybase Confidential

TDS 5.0 Reference Pages

TDS_ROWFMT2

Function

The token for describing the data type, length, and status of row data.

Syntax
TDS_ROWFMT?2 Length 4 # Cols LabelLen column labef—-
0x61
cee ‘ CatalogLen catalog namH Schemalen schema name F
«es | TableLen table name || ColumnLen column name
«+o Status user type DataType || Length |+ Precision |- Scale
0, 1, or 4 bytes
«++ | LocaleLen locale inf—| Class|DLen ClassID
repeat for each column
Arguments

| TDS_ROWFMT2

Length

stream

This is the token used to send a description of row data.

| This length specifies the number of bytes remaining in the data
. Itis an unsigned, four-byte integer.

#Cols

To describe the next 10 arguments we will look at an example. Suppose that from the pubs

| This argument contains the number of columns which are being
described. Itis an unsigned, two-byte integer.

tabase one issued the following query:
SELECT au_fname AS “FIRST NAME” FROM dbo.authors

TDS 5.0 Functional Specification 235

P da-

Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

LabelLen This is the length of the column label which follows. Since

column labels may beuLL, LabelLength may be 0. IfLabelLength is
0, nocolumn labelargument followsLabelLength is a one-byte
unsigned integer.

column labe] This is the name of the column being described. It's length is

described by the preceding parameter. Column labels are optional. In the
example above this value would be “FIRST NAME”, and the LabelLen
value would be 10.

| CatalogLen

This is the length of the catalog name which follows. If

CatalogLength is 0, the catalog name field will be absent. It is an unsigng¢d
one-byte unsigned integer.

| catalog namd This is the name of the catalog (database) that the table wifh

this column is in. In the example above this value would be “pubs2” and
the CatalogLength value would be 5.

| Schemalen

This is the length of the schema name which follows. If it

is 0, noschema namargument followslt is a one-byte unsigned integer.

| schema nam This is the name of the schema (owner) of the table

containing the column being described. In the example above this valug
would be “dbo”, and the SchemalLength value would be 3.

_TableLen This is the length of the table name which follows. Itis a

one-byte unsigned integer.

_table name | This is the name of the table containing the column being

ColumnLen | This is the length of the column name which follows. It is a

described. In the example above this value would be “authors”, and the
TableLength value would be 7.

one-byte unsigned integer.

| column nam4 This is the actual name of the column being described. In thi

example above this value would be “au_fname”, and the ColumnLen valyie
would be 8.

Version 3.4

236 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

-Stai, This field is used to describe any non-datatype characteristics for
the data. A column may have more than one status biSsatus is an
unsigned, four-byte bit field. The valid values are: |

Table 43: Valid Status Values

Name Value Description

TDS_ROW_HIDDEN 0x01 | Thisis a hidden column. It was not listed in
the target list of the select statement. Hidden
fields are often used to pass key information
back to a client. For example: select a, b from
table T where columns b and c are the key
columns. Columns a, b, and c may be
returned and ¢ would have a status of
TDS_ROW_HIDDEN|TDS_ROW_KEY.

TDS_ROW_KEY 0x02 | This indicates that this column is a key.

TDS_ROW_VERSION 0x04 This column is part of the version key for a
row. It is used when updating rows through
cursors.

TDS_ROW_UPDATABLE 0x10 | This column is updatable. It is used with cur-
sors.

TDS_ROW_NULLALLOWED 0x20 | This column allows nulls.

TDS_ROW_IDENTITY 0x40 | This column is an identity column.

TDS_ROW_PADCHAR 0x80 | This column has been padded with blank
characters.

or not.
Usertype | thisis the user-defined data type of the data. It is a signed,

four-byte integer.

TDS 5.0 Functional Specification 237 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

DataType | Thisis the data type of the data and is a one-byte unsigned
integer. Datatypes which are fixed, standard length (1, 2, 4, or 8 bytes) are
represented by a single data type byte and ha\teength argument.

Variable data types are followed by a length which gives the maximum
length, in bytes, for the datatype.

The rest of the fields in the repeating datatype descriptions are as described in the Format

description for the corremataType see section on page 109 |
engtn | This is the maximum length, in bytes, DataType. The size of

Length depends on the data type. If the preceddadaType is a fixed
length data type of standard lengélyg, intl, int2, datetimeetc, there is
noLength argument. It the preceding typaéextorimage then the format

is a four-byte length argument, followed by a two-byte object name length,
and finally the object name.

|

Precision

This is the precision associated with numeric and decimal
data types. Itis only in the data stream if the column is a numeric or
decimal data type.

Scale

|

| This is the scale associated with numeric and decimal data
types. Itis only in the data stream if the column is a numeric or decimal
data type.

LocaleLen

H

| This is the length of the localization information which
follows. Itis a one-byte, unsigned integer which may be 0. If the length is
0, no localization information follows.

locale info

;

| This is the localization information for the column. Itis
character string whose length is givenlbycaleLen.

H

Class|DLen | This is the 2-byte length of the ClassID, if any, which
follows. This length field is only present if timmtaType is TDS_BLOB.

ClassID_| This is the class identification information for BLOB types.
Its length in bytes is given by the preceding ClassIDLen value. If
ClassIDLen is missing because thisis nota TDS_BLOB data format, or if
ClassIDLen is 0, then this field is absent.

|

Comments

It is much like therbs_ROWFMT token, with the following changes

Version 3.4 238 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

- The Length field is 4 bytes long to allow for wider tables

—+
(7]

- The Status byte has been expanded to 4 bytes (most of the original 8 bj
had been used up).

- Additional namelen/name pairs have been added to complete the
description of each column. The data containetis_ ROWFMT
contains only a single “column name” field. That value would be setto the
“alias” from the select query (selecblumnAS alias ...) if the AS clause
or T/SQL equivalent were used. If there was no alias then the value woJld
be the actual name of the column in the table being selected. If the colurpn
is the result of an expression and there is no alias, then the value was
returned as NULL. With TDS_ ROWFMT?2 this information has been
enhanced as {catalog, schema, table, column-name, column-label}.
Addition of this information makes it possible to implement JDBC and
ODBC standards compliant client software.

¢ The “column name” field from TDS_ROWFMT has changed names to
“column label”. The new item called “column name” in TDS_ROWFMT2
corresponds to the underlying column name if there is one. Any of these 5
fields may be left empty (but every attempt should be made to fill them in
correctly for the sake of standards compliance).

» This data stream is used to descriips_ROW data sentin response to a non-
cursor or cursoselect .

* The information inTfDS_ROWFMT?2 is used to decode th®S_ROW token.

Examples

See Also

Data typesTDS_ROW, TDS_PARAMFMT

TDS 5.0 Functional Specification 239 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 240 TDS 5.0 Functional Specification |

Sybase Confidential TDS 5.0 Reference Pages

TDS_TABNAME

Function

The datastream for naming tables referenced in a result set.

Syntax
TDS_TABNAME Lerigth NameLength table name
| |
OxA4 repeat for each table name
Arguments

| TDS_TABNAME

This is the token used to send table names.

Length | This is the total length of the remaining®s_TABNAME data
stream. It is a two-byte, unsigned integer.

|_NameLength | This is the length, in bytes, of the name of a table.

:

table namel This is the table name. It's length is given by the preceding
argument.

Comments

» Thisis the token sent by a server to the client when it wishes to list the tables
that are referenced in a result set. The name of each table which has columns
in the select list will be returned using this token.

* Views names are never returned, only the underlying table names.

* This token is always preceded byas_ROWFMT token. It is always
followed by aTDS_COLINFO token.

» This token is only used for browse mode.
Examples

See Also

TDS_ROWFMT, TDS_COLINFO

TDS 5.0 Functional Specification 241 Version 3.4

TDS 5.0 Reference Pages Sybase Confidential

Version 3.4 242 TDS 5.0 Functional Specification

	TDS 5.0 Functional Specification
	1. Overview
	2. Protocol Data Units
	2.1. Protocol Data Unit Header
	2.2. Protocol Data Unit Data

	3. Client Protocol Data Units
	3.1. Dialog Establishment
	3.2. Language Commands
	3.3. Cursor Commands
	3.4. Database Remote Procedure Calls (RPC)
	3.5. Attentions
	3.6. Dynamic SQL Commands
	3.7. Message Commands

	4. Server Protocol Data Units
	4.1. Dialog Establishment Acknowledgment
	4.2. Row Results
	4.3. Return Status
	4.4. Return Parameters
	4.5. Response Completion
	4.6. Error Information
	4.7. Attentions Acknowledgments
	4.8. Cursor Status
	4.9. Message Responses

	5. Protocol Data Unit Definition
	5.1. Tokenless Stream
	5.2. Token Stream
	5.2.1. Zero Length - 110xxxxx
	5.2.2. Fixed Length - xx11xxxx
	5.2.3. Variable Length - any other pattern

	Introduction

	6. Cursors Support
	6.1. SQL Server Cursor Support
	6.2. Support of Foreign Cursors (Open Server)
	6.3. Cursors and TDS
	6.3.1. Client Cursor Requests
	6.3.2. Cursor results
	6.3.2.1. Setting “current” cursor row
	6.3.2.2. Matching cursor results to a particular cursor.

	7. Dynamic SQL Support
	8. Extended Error Data
	9. Additional Data Types
	10. Wide Result support
	10.1. TDS Header File
	10.2. Options and Capabilities
	10.3. TDS Protocol Data Unit Changes
	New TDS Tokens
	New TDS Packet Types
	New TDS Datatypes
	Changed TDS Datastreams
	TDS Datastreams No Longer Supported
	New Features for 5.0

	11. Cancel Protocol
	12. Cancels and Cursors
	Canceling Operations

	13. Event Notification Capabilities
	14. Pre-5.0 Event Notification Protocol
	15. 5.0 Event Notification Protocol
	Event Notifications
	Examples
	Command-Based Cursor Operations
	Example — Language-based Cursor Operations

	16. Identity Column Options
	17. Bulk Copy Support
	Identity Columns

	18. Data Types
	19. Login Record Support
	20. Security Messages
	21. Security Protocols
	22. Bulk Copy Support
	Security Support
	TDS 5.0 Reference Pages
	TDS Token List

	TDS_ALTFMT
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_ALTNAME
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_ALTROW
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CAPABILITY
	Function
	Syntax
	Arguments
	Comments
	Protocol Description
	Capabilities
	See Also

	TDS_COLINFO
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CONTROL
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CURCLOSE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CURDECLARE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CURDECLARE2
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CURDELETE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CURFETCH
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CURINFO
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CUROPEN
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_CURUPDATE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS Datatypes
	Description
	Usertypes
	Syntax
	See Also

	TDS_DBRPC
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_DONE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_DONEPROC, TDS_DONEINPROC
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_DYNAMIC
	Function
	Syntax
	Arguments
	Comments
	Protocol Examples
	See Also

	TDS_DYNAMIC2
	Function
	Syntax
	Arguments
	Comments

	TDS_EED
	Function
	Syntax
	Arguments
	Comments
	Protocol Examples
	See Also

	TDS_ENVCHANGE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_ERROR
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_EVENTNOTICE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_INFO
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_KEY
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_LANGUAGE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	Login Record
	Description
	Syntax
	Comments
	Fields
	Remote Password Array Format
	See Also

	TDS_LOGINACK
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_LOGOUT
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_MSG
	Function
	Arguments
	Comments
	Examples
	See Also

	Message Buffer Header
	Function
	Syntax
	Arguments
	Comments
	Examples

	TDS_OFFSET
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_OPTIONCMD
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_ORDERBY
	Function
	Syntax
	Arguments
	Comments
	Example
	See Also

	TDS_ORDERBY2
	Function
	Syntax
	Arguments
	Comments
	Example
	See Also

	TDS_PARAMFMT
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_PARAMFMT2
	Function
	Syntax
	Arguments

	TDS_PARAMS
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_RPC
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_RETURNSTATUS
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_RETURNVALUE
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_ROW
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_ROWFMT
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_ROWFMT2
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

	TDS_TABNAME
	Function
	Syntax
	Arguments
	Comments
	Examples
	See Also

