
Pico Lisp

A Radical Approach to Application Development

Software Lab. Alexander Burger
Bahnhofstr. 24a, D-86462 Langweid

abu@software-lab.de (www.software-lab.de)
+49-(0)821-9907090

June 22, 2006

Abstract

Criteria for productive application development are considered (yet again), and
a point is made why we regard Lisp as the only language suited for that task. Pico
Lisp is presented as a successful example, used in commercial applications for many
years, and adapted to this task (arguably) better than any other Lisp.

1 Introduction

I am working as a consultant and free software developer. During the past twenty years
my partners and I worked on projects as diverse as pre-press image processing, computer
aided design, simulations, and various �nancial and business applications.

For almost all these projects we used Lisp.

My daily job is to listen to customer requests, to analyze business processes, and develop
software according to those needs.

Typically { in business applications like ERP or CRM { this is a process of permanent
change. At the beginning of a new project, neither the developer nor the customer know
for sure what is needed, nor how exactly the �nal product should look.

It will be found by an iterative process (some call it \extreme programming"): The cus-
tomer evaluates each new version, then we discuss further strategies. It is not uncommon
that unanticipated requirements may cause large parts of the project to be rewritten.
This does not necessarily imply bad planning, because the process I describe here is the
planning. In an ideal world, software development is only planning { the time spent for
actually writing code should converge towards zero.

We need a programming language which lets us directly express what we want the program
to do, in a pragmatic and 
exible way. And we believe that everything should be as simple
as possible, so that the programmer is able to understand at any time what is going on
under the hood.

Over the years, the Pico Lisp [1] system evolved from a minimalist Lisp implementation to
a dedicated application server. Please note that we are not talking of a rapid prototyping
tool. At each development step, the result is always a fully functional program, not a
prototype, growing towards the (possibly �nal) production version. Instead, you may
call it a power tool for the professional programmer, who likes to keep in control of his
evironment, and wants to express his application logic and data structures in a concise
notation.

1



First we want to introduce Pico Lisp, explain why Pico di�ers in its lower levels quite
radically from other Lisps or development systems, and then show its bene�t at the higher
levels.

2 A Radical Approach

The (Common-) Lisp community will probably not be enthusiastic about Pico Lisp, be-
cause it disposes of several traditional Lisp beliefs and dogmas. Some are just myths, but
they can cause Lisp to become too complicated, heavy and slow. The practical experi-
ence with Pico Lisp proves that a lightweight and fast Lisp is optimal for many kinds of
productive application development.

2.1 Myth 1: Lisp Needs a Compiler

This is in fact the most signi�cant myth. If you listen to Lisp discussion groups, the
compiler plays a central role. You might get the impression that it is almost a synonym
for the execution environment. People worry about what the compiler does to their code,
and how e�ective it is. If your Lisp program appears to be slow, you are supposed to get
a better compiler.

The idea of an interpreted Lisp is regarded as an old misconception. A modern Lisp needs
a compiler; the interpreter is just a useful add-on, and mainly an interactive debugging
aid. It is too slow and bloated for executing production level programs.

We believe that the opposite is true. For one thing (and not just from a philosophical
point of view) a compiled Lisp program is no longer Lisp at all. It breaks the fundamental
rule of \formal equivalence of code and data". The resulting code does not consist of S-
Expressions, and cannot be handled by Lisp. The source language (Lisp) was transformed
to another language (machine code), with inevitable incompatibilities between di�erent
virtual machines.

Practically, a compiler complicates the whole system. Features like multiple binding
strategies, typed variables and macros were introduced to satisfy the needs of compilers.
The system gets bloated, because it also has to support the interpreter and thus two
rather di�erent architectures.

But is it worth the e�ort? Sure, there is some gain in raw execution speed, and compiler
construction is interesting for academic work. But we claim that in daily life a well-
designed \interpreter" can often outperform a compiled system.

You understand that we are not really talking about \interpretation". A Lisp system
immediately converts all input to internal pointer structures called \S-Expressions". True
\interpretation" would deal with one-dimensional character codes, considerably slowing
down the execution process. Lisp, however, \evaluates" the S-Expressions by quickly
following these pointer structures. There are no searches or lookups involved, so nothing
is really \interpreted". But out of habit we'll stick to that term.

A Lisp program as an S-Expression forms a tree of executable nodes. The code in these
nodes is typically written in optimized C or assembly, so the task of the interpreter is
simply to pass control from one node to the other. Because many of those built-in lisp
functions are very powerful and do a lot of processing, most of the time is spent in the
nodes. The tree itself functions as a kind of glue.

A Lisp compiler will remove some of that glue, and replace some nodes with primitive
or 
ow functionality directly with machine code. But because most of the time is spent
in built-in functions anyway, the improvements will not be as dramatic as for example
in a Java byte code compiler, where each node (a byte code) has just a comparatively

2



primitive functionality.

Of course, the compilation itself is also quite time-consuming. An application server often
executes single-pass Lisp source �les on the 
y, and immediately discards the code when
it is done. In these cases, either the inherently slower interpreter of a compiler-based Lisp
system, or the additional time spent by the compiler will noticeable degrade the overall
performance.

Pico Lisp's internal structures were designed for convenient interpretation from the begin-
ning. Though it is completely written in C, and was not specially optimized for speed, a
lack of performance was never an issue: The �rst commercial production system written
in Pico Lisp was an image processing, retouch, and page layout program for the printing
and pre-press industry, in 1988, on a Mac II with a 12 MHz CPU and 8 MB of RAM. No
Lisp compiler, of course, just the low level pixel manipulations and bezier routines were
written in C. Even then, on a hardware hundreds of times slower than today's, nobody
complained about the performance.

Just out of interest I installed CLisp the other day, and compared it with Pico Lisp for
some simple benchmarks. Of course, the results are not meant to re
ect the usefulness of
either system as an application server, but they give a rough indication about the relative
performances.

First I tried the simple recursive �bonacci function:

(defun fibo (N)

(if (< N 2)

1

(+

(fibo (- N 1))

(fibo (- N 2)) ) ) )

When called as (fibo 30), I get the following execution times (on a 266 MHz Pentium-I
notebook):

Pico (interpreted) 12 sec
CLisp interpreted 37 sec
CLisp compiled 7 sec

The CLisp interpreter is about three times slower, the compiler roughly twice as fast as
Pico Lisp.

However, the �bonacci function is not a good example of a typical Lisp program. It
consists only of primitive 
ow and arithmetic functions, is easy for a compiler to optimize,
and might be written directly in C if it were time-critical (in that case, it would take only
0.2 sec).

Therefore, I went to the other extreme, with a function doing extensive list processings:

(defun tst ()

(mapcar

(lambda (X)

(cons

(car X)

(reverse (delete (car X) (cdr X))) ) )

'((a b c a b c) (b c d b c d) (c d e c d e) (d e f d e f)) ) )

When called1 one million times, I got:

1For a Pico Lisp version, replace defun with de and lambda with quote

3



Pico (interpreted) 31 sec
CLisp interpreted 196 sec
CLisp compiled 80 sec

Now the CLisp interpreter is more than six times slower, but to my surprise the compiled
code is still 2.58 times slower than Pico Lisp.

Perhaps CLisp comes with a particularly slow Lisp compiler? And probably the code can
be sped up using some tricks. But still these results leave a lot of doubt whether the
overhead for a compiler can be justi�ed. Fiddling around with compiler optimization is
the last thing I want to do when I'm concerned about the application logic, and when the
user anyway doesn't notice any delays.

2.2 Myth 2: Lisp Needs Plenty of Data Types

The �bonacci function in the above benchmark can probably be sped up by declaring the
variable N to some integer. But this shows how much Lisp got in
uenced by the demands
of compiler support. A compiler can produce more e�cient code when data types are
statically declared. Common Lisp supports a whole zoo of types, including various integer,
�xed/
oating point, or rational number types, characters, strings, symbols, structs, hash
tables, and vectored types in addition to lists.

Pico Lisp, on the other hand, supports only three built-in data types { numbers, symbols
and lists { and can get along with them remarably well. A Lisp system works faster with
fewer data types, because fewer options have to be checked at runtime. There may be
some cost for less e�cient memory usage, but fewer types can also save space because
fewer tag bits are required.

The main reason for using only three data types is simplicity, an advantage which by far
outweighs the speed and space considerations.

At the lowest level, in fact, Pico Lisp consists of only a single data type, the cell,
which is used internally to construct numbers, symbols and lists. A small number or a
minimal symbol occupies only a single cell in memory, growing dynamically on demand.
This memory model also allows for e�cient garbage collection and completely avoids
fragmentation (as would be the case, for example, with vectors).

At the higher levels it is always possible to emulate other data types using these three
primitive types. So we emulate trees by lists, and strings, classes and objects by symbols.
As long as we observe no performance problems why should we make it more complicated?

2.3 Myth 3: Dynamic Binding is Bad

Pico Lisp employs a straightforward implementation of dynamic, shallow binding: The
content of a symbol's value cell is saved when a lambda body or binding environment
is entered, then set to its new value. Upon return, the original value is restored. As a
result, the current value of a symbol is determined dynamically by the history and state
of execution, not by static inspection of the lexical environment.

For an interpreted system, this is probably the simplest and fastest strategy. Looking
up the value for a symbol does not require any searches (just access to the value cell),
and all symbols (local or global) are treated uniformly. A compiler, on the other hand,
can produce more e�cient code for lexical bindings, so compiled Lisps usually complicate
things by supporting several several types of binding strategies.

Dynamic binding is a very powerful mechanism. The current value of any symbol can
be accessed from any place, both the symbol and its value are always the \real thing",
physically existent, not something that it just \looks like" (as is the case with lexical

4



binding, and { to some degree in Pico Lisp { the use of transient symbols (see below)).

Unfortunately, power is not available without danger. The programmer must be familiar
with the underlying principles to use their advantages and avoid their pitfalls. As long
as we stick to the conventions recommended by Pico Lisp, the risks can be minimized,
however.

We can see two types of situation where the results of a computation involving dynamic
binding may come out unexpected for the programmer:

� A symbol is bound to itself and we try to modify the symbol's value

� The funarg problem, when a symbol's value got dynamically modi�ed by pass-
through code that is invisible in the current source environment.

Both situations are defused when we resort to transient symbols in such cases.

Transient symbols are symbols in Pico Lisp which look like strings (and are often used as
such2), and which are interned only temporarily during execution of a single source �le
(or just a part of it). Thus, they have a lexical scope, comparable to static identi�ers in
C programs, though their behavior is still completely dynamic, because they are normal
symbols in all other respects.

So the rules are simple: Whenever a function has to modify the value of a passed-in symbol,
or to evaluate (directly or indirectly) a passed-in Lisp expression, its parameters should
be written as transient symbols. Actual experience shows, however, that these cases are
rare in the top levels of application development, and occur mostly in the support libraries
and system tools.

2.4 Myth 4: Property Lists are Bad

Properties are a nice, clean way to associate information with symbols in addition to the
value/function cell. They are extremely 
exible, because the amount and type of data is
not statically �xed.

Most people seem to believe that property lists are too ancient and primitive to be used
today. More advanced data structures should be used instead. While this is true in some
cases, depending on the total number of properties in a symbol, the break-even point
might be higher than expected.

Previous versions of Pico Lisp experimented with hash tables and self-adjusting binary
trees to store properties, but we found the plain list simply to be more e�ective. We must
take into account the net e�ect of the total system, and the overhead both for maintaining
many internal data types (see above) and more complicated lookup algorithms is often
larger than that involved with simple linear lookup. And when we are also concerned
about memory e�ciency, the advantages of property lisps are clearly winning.

Pico Lisp implements properties in lists of key-value pairs. The only concession to speed
optimization is a last-recently-used scheme, accelerating repeated accesses a little, but we
have no concrete evidency whether this was actually necessary.

Another argument against properties is their alleged global scope. This is true to the same
extend as an item in a C-structure, or an instance variable in a Java object, is global.

A property in a global symbol is global, of course, but in typical application programming
properties are stored in anonymous symbols, objects or database entities, all of which are
accessible only in a well-de�ned context. Therefore, a property named ``color'' can be
used with a certain meaning in one context, and with a completely di�erent meaning in
another, without any interference.

2perhaps an unfortunate design decision

5



3 The Application Server

On top of that simple Pico Lisp machine we developed a vertically structured application
server. It uni�es a database engine (based on Pico's implementation of persistent objects
as a �rst class data type) and an abstracted GUI (generating, for example, HTML and
generic Java Applets).

The crucial element in that uni�ed system is a Lisp-based markup language, which is used
to implement the individual application modules.

Whenever a new database view, an editor mask, a document, a report or some other
service is requested from the application server, a Lisp source �le is loaded, and executed
on the 
y. This is similar to a request for an URL, followed by sending a HTML �le, in
a traditional web server. The Lisp expressions evaluated in that course, however, usually
have the side e�ect of building and handling an interactive user interface.

These Lisp expressions describe the layout of GUI components, their behavior in response
to user actions, and their connection and interaction with database objects. In short, they
contain the complete speci�cation of that application module. To make this possible, we
found it important to strictly adhere to the Locality Principle, and to use the mechanisms
of \Pre�x Classes" and \Relation Maintenance Daemons" (the latter two are described
elsewhere, see [2]).

3.1 Locality Principle

As we said, business application development is a process of permanent change. The
Locality Principle proved to be of great help for the maintenance of such projects. It
demands that all relevant information concerning a single module should be kept together
in a single place. It allows for the programmer to keep a single focus of attendance.

This sounds quite obvious, of course, but opposed to this, current software design metholo-
gies recommend to encapsulate behavior and data, and hide them from the rest of the
application. This usually results in a system where the application logic is written in some
place (source �le), but the functions, classes and methods implementing the functionality
are de�ned somewhere else. To be sure, in general this is a good recommendation, but
it gives a lot of problems in a permanently changing environment: Context switches and
modi�cations have to be done simultaneously in several places. If a feature is obsolete,
some modules may become obsolete too, but we often forget to remove them.

So we think that the optimal way is to build an abstracted library of functions, classes, and
methods { as general-purpose as possible, and virtually constant over time and between
individual applications { and to use that to build a tailored markup language with high
expressive power to actually write the applications.

That language should have a compact syntax and allow the description of all static and
dynamic aspects of the application. Locally, in one single place. Without need to de�ne
behavior in separate class �les.

3.2 Lisp

And this is the main reason why we said in the beginning that Lisp is the only language
suitable for us. Only Lisp allows a uniform treatment of code and data, and this is
the foundation of the Pico Lisp application programming model. It makes heavy use of
functional bodies and evaluatable expressions, mixed freely with static data and passed
around { and stored in { the internal runtime data structures.

To our knowledge, this is not possible with any other programming language, at least not

6



with similar simplicity and elegance. To a certain degree it might be done in scripting
languages, using interpretable text strings, but only rather limited and clumsy. And
{ as described above { compiler-dependent Lisp systems might be a bit too heavy and
in
exible. In order for all these data structures and code fragments to work together
smoothly, Pico Lisp's dynamic shallow binding strategy is of great advantage, because
expressions can be evaluated without the need of binding environment setup.

Another reason is Lisp's ability to directly manipulate complex data strucures like symbols
and nested lists, without having to explicitly declare, allocate, initialize, or de-allocate
them. This also contributes to the compactness and readability of the code and gives
expressive power to the programmer, letting him do things in-line { at the snap of a �nger
{ where other languages would require him to program a separate module.

Additionally, as Pico Lisp makes no formal distinction between database objects and
internal symbols, all these advantages apply to database programming as well, resulting
in a direct linkage of GUI and database operations in the same local scope, using identical
syntax.

4 Conclusion

The Lisp community seems to su�er from a paranoia of \ine�cient" Lisp. This is probably
due to the fact that for decades they had to defend their language against claims like \Lisp
is slow" and \Lisp is bloated".

Partly, this used to be true. But on today's hardware raw execution speed doesn't matter
for many practical applications. And in those cases where it does, just coding a few critical
functions in C usually solves the problem.

Now let's turn our focus to more practical aspects. Some people might be surprised how
small and fast a supposedly \ancient" Lisp system can be. So we should be careful not to
make Lisp really \bloated" by overloading the core language with more and more features,
but dare to employ simple solutions which give their full 
exibility to the programmer.

Pico Lisp can be seen as a proof of \Less may be More".

References

[1] Pico Lisp Download, http://www.software-lab.de/down.html

[2] A Unifying Language for Database And User Interface Development, A.Burger 2002,
http://www.software-lab.de/dbui.html

7


