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Some Useful Integrals of Exponential Functions 
Michael Fowler 
 
We’ve shown that differentiating the exponential function just multiplies it by the constant in the 
exponent, that is to say,  
 

.ax axd e ae
dx

=  

 
Integrating the exponential function, of course, has the opposite effect: it divides by the constant 
in the exponent:  
 

1 ,ax axe dx e
a

=∫  

 
as you can easily check by differentiating both sides of the equation.  
 
An important definite integral (one with limits) is 
 

0

1 .axe dx
a

∞
− =∫  

 
Notice the minus sign in the exponent: we need an integrand that decreases as x goes towards 
infinity, otherwise the integral will itself be infinite. 
 
To visualize this result, we plot below e-x and e-3x. Note that the green line forms the hypotenuse 
of a right-angled triangle of area 1, and it is very plausible from the graph that the total area 
under the e-x curve is the same, that is, 1, as it must be. The e-3x  curve has area 1/3 under it, (a = 
3).  
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Now for something a bit more challenging: how do we evaluate the integral  
 

( ) 2

?axI a e dx
∞

−

−∞

= ∫  

 
(a has to be positive, of course.)  The integral will definitely not be infinite: it falls off equally 
fast in both positive and negative directions, and in the positive direction for x greater than 1, it’s 
smaller than e-ax, which we know converges. 
 
To see better what this function looks like, we plot it below for a = 1 (red) and a = 4 (blue).  
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Notice first how much faster than the ordinary exponential e-x this function falls away. Then note 
that the blue curve, a = 4, has about half the total area of the a = 1 curve. In fact, the area goes as 
1/ a . The green lines help see that the area under the red curve (positive plus negative) is 
somewhat less than 2, in fact it’s 1.77π =  approximately. 
 
But—it’s not so easy to evaluate!  There is a trick: square it. That is to say, write 
 

( )( ) 2 22 ax ayI a e dx e dy
∞ ∞

− −

−∞ −∞

= ∫ ∫  

 
Now, this product of two integrals along lines, the x-integral and the y-integral, is exactly the 
same as an integral over a plane, the (x, y) plane, stretching to infinity in all directions.  We can 
rewrite it 
 

2 2 2 2 2ax ay ax ay are dx e dy e e dxdy e dxdy
∞ ∞ ∞ ∞ ∞ ∞

− − − − −

−∞ −∞ −∞ −∞ −∞ −∞

= =∫ ∫ ∫ ∫ ∫ ∫  

 
where ,  r is just the distance from the origin (0, 0) in the (x, y) plane. The plane is 
divided up into tiny squares of area dxdy, and doing the integral amounts to finding the value of 

for each tiny square, multiplying by the area of that square, and adding the contributions 
from every square in the plane. 

2 2r x y= + 2

2are−

 
In fact, though, this approach is no easier than the original problem—the trick is to notice that 
the integrand has a circular symmetry: for any circle centered at the origin (0, 0), it has the 
same value anywhere on the circle.  To exploit this, we shouldn’t be dividing the (x, y) plane up 

2are−
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into little squares at all, we should be dividing it into regions having all points the same distance 
from the origin.  

 
 
These are called “annular” regions: the area between two circles, both centered at the origin, the 
inner one of radius r, the slightly bigger outer one having radius r + dr.  We take dr to be very 
small, so this is a thin circular strip, of length 2πr (the circumference of the circle) and breadth 
dr, and therefore its total area is 2πrdr (neglecting terms like dr2, which become negligible for dr 
small enough).   
 
So, the contribution from one of these annular regions is , and the complete integral 
over the whole plane is:  

2

2are rπ− dr

 

( )( ) 22

0

2 .arI a eπ
∞

−= ∫ rdr  

 
This integral is easy to evaluate: make the change of variable to u = r2, du = 2rdr giving 
 

( )( )2

0

auI a e du
a
ππ

∞
−= =∫  

so taking square roots 
 

( ) 2

.axI a e dx
a
π∞

−

−∞

= =∫  
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Some Integrals Useful in the Kinetic Theory of Gases 
We can easily generate more results by differentiating I(a) above with respect to the constant a! 
 
Differentiating once: 
 

2 22 1
2

ax axd de dx x e dx
da da a a a

π π∞ ∞
− −

−∞ −∞

= − = = −∫ ∫  

so we have 
 

22 1
2

axx e dx
a a

π∞
−

−∞

=∫  

 
and differentiating this result with respect to a gives 
 

24
2

3 .
4

axx e dx
a a

π∞
−

−∞

=∫  

 
The ratio of these two integrals comes up in the kinetic theory of gases in finding the average 
kinetic energy of a molecule with Maxwell’s velocity distribution. 
 
 

2

2

4

2

2

3
34 .

21
2

ax

ax

x e dx
a a

a
x e dx

a a

π

π

∞
−

−∞
∞

−

−∞

= =
∫

∫
 

 
 
Finding this ratio without doing the integrals: 
It is interesting to note that this ratio could have been found with much less work, in fact without 
evaluating the integrals fully, as follows: 
 
Make the change of variable 2 2y ax= , so dy adx=  and  
 

( )2 23/ 22 2ax y 3/ 2x e dx a y e dy Ca
∞ ∞

−− −

−∞ −∞

= =∫ ∫ −  

 
where C is a constant independent of a, because a has completely disappeared in the integral 
over y.  (Of course, we know / 2C π= , but that took a lot of work.)  Now, the integral with x4 
in place of x2 is given by differentiating the x2 integral with respect to a, and multiplying by  -1, 
as discussed above, so, differentiating the right hand side of the above equation, the x4 integral is 
just ( ) , and the C cancels out in the ratio of the integrals.  5/ 23 / 2 Ca−
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However, we do need to do the integrals at one point in the kinetic theory: the overall 
normalization of the velocity distribution function is given by requiring that  
 

23 2 / 2

0 0

1 ( ) 4 mv kTf v dv A v eπ
∞ ∞

−= =∫ ∫  

 
and this in fact determines A, using the results we found above, giving  
 

2
3/ 2

2 / 2( ) 4 .
2

mv kTmf v v e
kT

π
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 

One last trick… 
We didn’t need this in the kinetic theory lecture, but is seems a pity to review exponential 
integrals without mentioning it. 
 
It’s easy to do the integral  

( ) 2

, ax bxI a b e e dx
∞

−

−∞

= ∫  

It can be written  
 

( ) ( ) ( )2 22 2 2/ 2 / 2/ 4 / 4 / 4, /a x b a a x b ab a b a b aI a b e e dx e e dx e aπ
∞ ∞

− − − −

−∞ −∞

= = =∫ ∫  

 
where to do the last step just change variables from x to y = x - b/2a. 
 
This can even be used to evaluate for example  
 

2

cosaxe bx
∞

−

−∞
∫ dx  

 
by writing the cosine as a sum of exponentials.  
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