
1

18 May 2000 Franz Inc. 1

Coming Soon to Allegro CL,
Streams: Faster, Simpler, and

International
Charles A. Cox

Franz Inc.

References: [1] http://www.franz.com/support/docs/simple-stream.htm
[2] [Future] Allegro CL 6.0 Documentation

18 May 2000 Franz Inc. 2

Outline

• � Introduction �
• International Character Support

– Unicode

– External-Formats
• Unicode ⇔ External-Formats

• Dynamism

• Composability

• Bivalent Streams
– Background

– ANSI Common Lisp Support
Issues

– Allegro CL Simple Streams

• Allegro CL Simple Streams
Description

– ‘Gray’-Streams Replacement

– User Level / Strategy Level /
Device Level

• Conclusion
– Performance Results

18 May 2000 Franz Inc. 3

Introduction

• Highlight upcoming Allegro CL 6.0 changes.

• Changes are partly user-visible.

• Changes diverge (slightly) from ANSI
Specification.

18 May 2000 Franz Inc. 4

Introduction (cont.)

• Goals:
– Integrate International Character support into streams;

in particular, to allow dynamic external-format
switching.

– To simplify low-level streams implementation, thereby
speeding up basic functionality.

– To meet the needs of modern Internet and
Interoperability applications.

18 May 2000 Franz Inc. 5

International Character Support

• Background:
– Asian language characters require more than

the 8-bits traditionally allocated for (C)
programming language representation.

– Various “multi-byte” representations exist.
• ASCII characters occupy 8-bits each.

• Adjacent non-ASCII characters occupy several 8-bit
bytes.

18 May 2000 Franz Inc. 6

International Character Support
(cont.)

54 6f 6b 79 6f 20 69 73 20   93 8c 8b 9e

Ç    Ç    Ç    Ç   Ç    Ç   Ç    Ç    Ç            Ç          Ç
T      o      k     y     o  <sp>  i      s   <sp>               

Example: ‘Tokyo is ’

Shift-JIS:

ASCII characters occupy 1 octet each.

Japanese characters occupy 2 octets each.



2

18 May 2000 Franz Inc. 7

International Character Support
(cont.)

• Problems with using “multi-byte”
representations internally.
– Several Different encodings exist for same

character set (eg, Japanese has EUC, JIS, Shift-
JIS, etc.)

– Random character indexing is difficult.

18 May 2000 Franz Inc. 8

International Character Support
(cont.)

• Example:

– “Tokyo is ”

Shift-JIS: 54  6f  6b  79  6f  20  69  73  20  93  8c  8b  9e

EUC:       54  6f  6b  79  6f  20  69  73  20  c5  ec  b5  f3

JIS:          54  6f  6b  79  6f  20  69  73  20  1b  24  42  45
                                                       6c 35 7e

T    o    k    y     o  <sp>  i     s   <sp>           
↓     ↓    ↓     ↓     ↓     ↓    ↓     ↓     ↓     ↓            ↓

18 May 2000 Franz Inc. 9

International Character Support
(cont.)

• International Allegro CL (IACL), first
release 1990, represents Lisp characters
internally using exactly 16-bits each.

• Unix IACL 5.0.1 uses Process-Code,
Japanese-centric.

• Windows IACL 5.0.1 uses Unicode.

• IACL 6.0, all platforms, use Unicode.

10

Unicode Representation

• Standard, fixed-width, uniform encoding for
written characters and text.

• Includes technical symbols and characters
for the major scripts of the world.

• Unicode encoding treats alphabetic
characters, ideographic characters, and
symbols identically. — No escape sequence
or control code used to specify any
character in any language.

18 May 2000 Franz Inc. 11

Unicode Representation (cont.)

• Example:

– “Tokyo is ”

Unicode: 0054 006f 006b 0079 006f 0020 0069 0073 0020 6771 4eac

↓      ↓       ↓       ↓      ↓      ↓       ↓      ↓       ↓      ↓      ↓

T     o       k       y     o   <sp>     i      s    <sp>      

12

Unicode Representation (cont.)

• Unicode is a 16-bit superset of “Latin-1”,
which itself is an 8-bit superset of ASCII.
– First 256 characters of Unicode are the Latin-1

characters.

• Other 8-bit character encodings have
different encodings in Unicode.
– Example: “Latin Capital Letter L With Stroke”

• Latin-2 (ISO 8859-2) Value: #xa3

• Unicode Value: #x0141



3

18 May 2000 Franz Inc. 13

Unicode Representation (cont.)

• Unicode Allocation (Partial Description):

00
00

20
00

3 0
0 0

50
00

A
00

0

B
00

0

E
00

0

FF
F F

G
en

er
al

Sc
ri

pt
s

Sy
m

bo
ls

C
JK

 M
is

c

C
JK

Id
eo

gr
ap

hs

H
an

gu
l

18 May 2000 Franz Inc. 14

Unicode Representation (cont.)

• Asian Language encodings such as JIS-X0208
for Japanese also have different values in
Unicode.
– Example: Hiragana Letter A ( )

• JIS-X0208: #x2422

• Unicode: #x3042

15

External Formats

• Unicode ⇔ External Encoding.
– Allegro CL uses External-Formats to convert

character encodings between Unicode and
external multi-byte encodings such as ISO
8859-*, EUC, JIS, and Shift-JIS.

– Several External-Formats are included with
Allegro CL 6.0.

– Users can define new encodings.
• Definitions are as macros so that conversions take

place in-line.  (We want I/O to be fast!) 18 May 2000 Franz Inc. 16

External Formats (cont.)

• Examples:

– “Tokyo is ”

      EUC: 54  6f  … b5  f3 :euc ext-fmt Unicode: 0054 … 4eac
#\T … #\

Shift-JIS: 54  6f  … 8b  9e :shiftjis ext-fmt

         JIS: 54  6f  … 35  7e :jis ext-fmt

18 May 2000 Franz Inc. 17

Unicode ⇔ External Encoding
(cont.)

• Every stream has an associated external-
format.

• The external-format is what does the [octets
⇔ Lisp characters] conversions.
– The Lisp read-char operation may actually

input several 8-bit bytes to create a single
Unicode character.  Similarly, write-char may
output several 8-bit bytes to represent a multi-
byte character.

18 May 2000 Franz Inc. 18

Unicode ⇔ External Encoding
(cont.)

• Users can view/test effect of external-formats
using string-to-octets/octets-to-string
operators.

• Example:

> (string-to-octets " " :external-format :shiftjis)
#(147 140 139 158 0)
5

> (string-to-octets " " :external-format :euc)
#(197 236 181 254 0)
5



4

18 May 2000 Franz Inc. 19

External Formats (cont.)

• Dynamism
– New in Allegro CL 6.0:  A stream's external-

format can be changed dynamically.
•  (setf (stream-external-format stream) external-fmt)

• Useful if a socket is being used to transmit/receive
characters with multiple encodings.

– Compiler used at runtime to build high-speed
inline external-format convertors.

• Convertors can be pre-compiled.

18 May 2000 Franz Inc. 20

External Formats (cont.)

• Composibility
– Composed External Format is a special type of

external-format which translates between
sequences of characters.

– Can be used to construct/deconstruct Unicode
composed characters such as accented
characters or ligature characters.

18 May 2000 Franz Inc. 21

External Formats (cont.)

• Example:

octets

external-format-base wrapping external-format

Lisp characters (Unicode)

composed external-format

18 May 2000 Franz Inc. 22

Composed External Formats

• Example:  #\newline
– Windows Text Convention:  Each line ends

with two Ascii characters ‘carriage return’
(Ascii 13) and ‘line feed’ (Ascii 10).

– ‘Base Level’ external formats convert these to
#\return and #\linefeed.

– ‘Composed Level’ external format converts
#\return #\linefeed combination to/from
#\newline.

18 May 2000 Franz Inc. 23

Composed External Formats
(cont.)

• Example: #\newline (cont.)
– :crlf-latin1-base external-format is

composed of :crlf and :latin1-base.

                    :latin1-base             :crlf

… 13 10 …  ⇔  … #\return #\linefeed … ⇔ … #\newline …

:crlf-latin1-base
external
octets

Lisp
characters

18 May 2000 Franz Inc. 24

Outline
• Introduction

• International Character Support
– Unicode

– External-Formats
• Unicode ⇔ External-Formats

• Dynamism

• Composability

• � Bivalent Streams �
– Background

– ANSI Common Lisp Support
Issues

– Allegro CL Simple Streams

• Allegro CL Simple Streams
Description

– ‘Gray’-Streams Replacement

– User Level / Strategy Level /
Device Level

• Conclusion
– Performance Results



5

18 May 2000 Franz Inc. 25

Bivalent Streams

• Background
– With growth of the Internet and the World

Wide Web (specifically, the HTTP protocol), it
is desirable to use socket streams for both
binary and textual data.  Such a stream is called
a “bivalent” stream.

26

Bivalent Streams (cont.)

• Example:

Octets character stream Lisp Characters

Octets binary stream Binary elements

Octets bivalent stream
Lisp Characters

Binary elements

read-char

read-byte

read-
char

read-byte

18 May 2000 Franz Inc. 27

Bivalent Streams (cont.)

• ANSI Common Lisp Support Issues
– ANSI Common Lisp specifically distinguishes

character and binary streams.
• Character Stream: Created by open with
:element-type ’character [default].

• Binary Stream: Created by open with :element-
type being a valid array element type, eg,
’float, or ’(unsigned-byte 8), or
’(signed-byte 3), etc.

18 May 2000 Franz Inc. 28

Bivalent Streams (cont.)

• ANSI Support Issues (cont.)
– Note: ANSI Common Lisp defines a byte as a

contiguous set of bits in an integer.  Not
necessarily 8-bits wide.

– read-byte/ write-byte may cause
several octets (8-bit bytes) to be read/written.

– We use octet to denote an 8-bit byte.

18 May 2000 29

Bivalent Streams (cont.)

• ANSI Support Issues (cont.)
– File-Position Issues:

• ANSI Common Lisp specifies that read-byte/
write-byte advance the file-position pointer
exactly by “one”.  Thus, as defined by ANSI, the
file-position pointer does not necessarily correspond
to the stream octet position.

• Example:
– Binary Stream with element-type (unsigned-byte 16):

Each read-byte/write-byte advances file-position
pointer by two octets.

18 May 2000 Franz Inc. 30

Bivalent Streams (cont.)

• Allegro CL Simple Streams
– The only element-type is octet.

• When :element-type is not specified in call to
open, then an Allegro CL Simple Stream is created.

• When :element-type is specified in call to open,
then a backward-compatible (gray) stream is
created.



6

18 May 2000 Franz Inc. 31

Bivalent Streams (cont.)

• Every Allegro CL Simple Stream is
bivalent.
– read-byte/write-byte operates in terms of

octets (one octet per read/write).

– File-Position is in terms of octets.

• read-char/write-char may advance the
file-position by more than one in the case of
multi-byte external-formats.

32

Bivalent Streams (cont.)

• File-Position Issues Example:

… o o o o o o o o o
o o o o o o o o o …

octets

read-byte advances by one octet.

read-char advances by at least
one octet.  Actual amount depends
on number of octets used for
multi-byte representation.

18 May 2000 Franz Inc. 33

Outline
• Introduction

• International Character Support
– Unicode

– External-Formats
• Unicode ⇔ External-Formats

• Dynamism

• Composability

• Bivalent Streams
– Background

– ANSI Common Lisp Support
Issues

– Allegro CL Simple Streams

• � Allegro CL Simple
Streams Description �

– ‘Gray’-Streams Replacement

– User Level / Strategy Level /
Device Level

• Conclusion
– Performance Results

18 May 2000 Franz Inc. 34

Allegro CL Simple Streams
Description

• ‘Gray’-Streams Replacement.

– Background

• Shortly after the ANSI Common Lisp
standardization process, Allegro CL included an
implementation of the “Gray Proposal” [for David
N. Gray, then of Texas Instruments].

35

‘Gray’-Streams Replacement
(cont.)

• Background (cont.)
– Streams are CLOS objects.  Input/Output

operations are implemented as methods.

• Problems with Gray Streams
– Gray Streams distinguish input and output

directions per class.
• Forces combination and mixins in order to model

the three different modes (eg, input only, output
only, and input/output) for the various stream
classes. 18 May 2000 Franz Inc. 36

Problems with Gray Streams
(cont.)

• Gray streams methods, which defined the
specific streams implementation, are
defined immediately below the Common
Lisp streams interface level.
– The CLOS dispatch is performed at higher level

than is necessary, thus creating inefficient
instruction paths not easily optimizable.

– The implementation interface of Gray streams
overlaps in behavior.



7

18 May 2000 Franz Inc. 37

Problems with Gray Streams
(cont.)

• Example stream-read-char-no-hang :
– The straightforward implementation is to call
stream-read-char after a call to stream-
listen.

– Subclassing a stream, however, can result in a
version which does not perform this listen/read
combination.

18 May 2000 Franz Inc. 38

Problems with Gray Streams
(cont.)

• Example stream-read-char-no-hang
(cont.):
– Further sublcassing of the stream is not

possible without having the source since
it is otherwise not possible to know
whether to define method for stream-
read-char-no-hang, stream-read-char,
stream-listen, or perhaps all three.

39

Allegro CL Simple Streams
Description (cont.)

User Level              Strategy Level               Device Level

Lisp functionality

Control-character
processing

External-format
processing

Buffering

Device layer
18 May 2000 Franz Inc. 40

Allegro CL Simple Streams
(cont.)

• User Level
– read-char, read-sequence, write-byte,

etc.

• Device Level
– Specializable to stream connection type.

– Level that calls the Operating System and
performs buffering.

– Not intended to be called directly.

18 May 2000 Franz Inc. 41

Conclusions

• Performance Results (Preliminary):
– write-byte test:  2X speedup

– Simple Streams Bivalent over Allegro CL 5.0.1
Gray Bivalent (socket streams only): 3X
speedup.

– Character I/O: Time about same, but includes
new functionality (character based external-
format processing).


