
A Plan 9 Newbie’s Guide

Michael A. Covington !

for
Coraid, Inc.

2008 July 10

1. Introduction

1.1. What is this document?

This is a quick­start guide to the user interface of the Plan 9 operating system
based on my own experiences getting started at Coraid. For concreteness, it
describes the setup actually used at Coraid. Some knowledge of UNIX and of
commercial GUIs (Windows, MacOS, or recent Linux) is presumed.

This is not a technical guide to Plan 9. This is only a "guide for the perplexed" to
teach you just enough Plan 9 to get you started.

The information given here is not complete � my goal is to give you a useful sub­
set. Thus I will skip some menu items and commands at every stage, the ones
you do not need immediately. I assume that you will eventually read the official
documentation.

1.2. What is Plan 9?

Plan 9 is an experimental UNIX­like operating system developed by Bell Labs
and released as open­source freeware. It has requirements comparable to Win­
dows 95 (e.g., 32 MB RAM on a 486) and is often used in embedded systems.

1.3. Unicibus ipsis Unicior

That is bad Latin for, "More UNIX than the UNIXes themselves" (cf. Romanis
ipsis Romanior) and sums up what Plan 9 is like. Plan 9 is based on the same
ideas as early UNIX � simplicity, compactness, and orthogonality � but
implements some of them differently, in ways that are (I would argue) closer to

 On summer leave from the Institute for Artificial Intelligence, Universityof Georgia.
!Geoff Collyer contributed many helpful corrections to the 10 July 2008 revision.

­ 2 ­

the spirit of UNIX than normal present­day UNIX implementations. Specifically:

� Instead of NFS, SAMBA, etc., there is normally just one file­sharing protocol,
called 9P, and it is transparent to the user. You just carry your whole file
name space from one CPU to another. When you use a terminal program
such as drawterm, your local PC is mounted as subdirectories of /mnt/term
alongside whatever is already there.

� More of the OS and hardware are presented to you in the filesystem. For
example, /dev/screen is the screen, /dev/mouse is the mouse, and /dev/time is the
clock. The environment variables are "files" in /env. Control settings can be
made by writing on special files rather than through system (IOCTL) calls.

� The native character set is Unicode, encoded as UTF­8, i.e., ASCII plus multi­
byte encodings for (much of) Unicode. Some software (ported from UNIX)
still recognizes only ASCII.

� The GUI is very simple � an exemplar of how to build a GUI with the mini­
mum amount of programming and hence the maximum amount of reliability.

In general, in Plan 9 there will not be multiple ways to do the same thing. Thus
you can have more confidence that you have found the best way to do what
you’re doing. As in UNIX, a main architectural principle is orthogonal
combinations of simple features.

1.4. Gotchas

Mouse usage is obligatory. You cannot use the acme editor, for instance, without
frequently taking your hand off the keyboard.

A three­button mouse is expected. If necessary, you can simulate the middle
button by holding down Shift and pressing the right button. In general:

� The left button is for moving the cursor or selecting text;

� The middle button is for making menu choices;

� The right button is for higher­level control operations;

� The scroll wheel, if present, scrolls the text up and down.

Further details depend on the software you are running.

In this document I will call the buttons left, middle, and right, but Plan 9 nor­
mally calls them 1, 2, and 3.

On the keyboard, the ↑ and ↓ keys do not move the cursor one line up or down.
Instead, they scroll the displayed text like PgUp and PgDn but not as far. There
is no key that moves the cursor up or down one line. (The ← and → keys do

­ 3 ­

move the cursor left and right.)

The Delete key does not delete; it interrupts execution (like Ctrl­C or Break in
other operating systems). To delete text, select it and type Backspace. (On the
Macintosh, the Delete key in the main key group is Backspace, and the one near
Home and End is Delete.)

In the Acme editor, the Del menu selection does not delete the selected text � it
deletes (closes) the edit window! Use Cut to delete the selection (and copy it to
the snarf buffer).

1.5. Logging in and out

The login process is similar to UNIX. Your terminal is likely to be, itself, a work­
station running Plan 9. If you use a PC terminal program such as drawterm , be
sure to tell it the authentication server as well as the server to which you want to
log in.

There is no logout command. Just exit your application software and disconnect
or turn your workstation off.

1.6. Jargon

The following terms are not common outside the Plan 9 milieu:

chord simultaneous pressing of more than one mouse button (used in
Acme)

put save to disk.

rune a Unicode character (corresponding to one or more UTF­8 bytes)

snarf copy to the snarf buffer (comparable to the Windows clipboard)

sweep to move the mouse across text while holding down a button

zerox duplicate a window with its contents

2. The rio windowing system

When you log on to Plan 9, you are in (text) console mode, but normally your
profile, in file /usr/ username/lib/profile , will immediately launch rio, the
windowing system (which replaces an earlier windowing system called 8½).

Rio tends to baffle newcomers because its initial display is a blank gray screen
(Figure 1).

­ 4 ­

To make things start happening, right­click anywhere on the gray surface and
choose New (Figure 2). Release the right mouse button, then press it again and
drag it across the screen, marking out a rectangle as you do so. Voilà � you have
a window (Figure 3). You can have as many as you want. Left­click in any win­
dow to bring it to the front.

Figure 1. Rio opening screen (in a terminal window) � yes, it’s all blank gray.

Figure 2. Right­click on New, then right­drag to create a window.

­ 5 ­

Figure 3. A window in rio.

2.1. Keyboard usage

There is no ‘job control’ or ‘cursor control’ in rio. The window and the keyboard
are simply streams of characters. In the window, a substring of the stream can
be selected (just as in any other GUI), and if the selection is zero­length, it serves
as the cursor or insertion point (again, just like any other GUI). What you type
always replaces the selected text.

The → and ← keys move the cursor left or right. Ctrl­A moves it to the begin­
ning of the line, or rather to the input point (i.e., the first place on the line that
you can type); Ctrl­E moves it to the end. Backspace deletes one character to the
left; Ctrl­U deletes from the cursor to the start of the line; Ctrl­W backspaces a
whole word instead of just one character.

2.2. It doesn’t scroll!

One of the biggest differences between rio and other kinds of console windows is
that in rio, when the output runs off the bottom of the window, the window
doesn’t scroll. Instead, the process that is writing the output will block and wait
for you to scroll down by typing ↓ or PgDn or by using the mouse.

­ 6 ­

This is like having | more built into the output of everything that sends charac­
ters to the screen. If you really don’t like this behavior, just middle­click in the
existing window and choose Scroll, or alter your profile to launch rio ­s instead of
plain rio.

2.3. Mouse usage in rio

Left­click to bring any window to the front.

Left­drag the edges or corners of any window to resize it.

If the window holds more text than you can see, then there is a scroll bar at the
left of it (Fig. 3). With the mouse on the scroll bar, you can left­click to move up,
right­click to move down, or middle­drag to move up and down. You can also
scroll with the ↑ and ↓ keys.

To make a window go away, right­click on the background, choose Delete, and
right­click on the window.

The left button is also used to select text. Click once, and you move the cursor
(which is a zero­length selection) to the place where you clicked. Double­click,
and you select the whole word. To select more than a word, click and drag. Or,
to select a string of words that are in quotes or parentheses, double­click just
inside the quote or parenthesis.

As in other GUIs, when you type, your typing will replace what is selected.

The middle button brings up the following menu:

cut Delete the selection and put it in the snarf buffer (clipboard).

paste Paste the contents of the snarf buffer at the current insertion point.

snarf Copy the selection into the snarf buffer.

plumb Send the selection to the plumber, an interprocess communication sys­
tem.

send Paste the contents of the snarf buffer into the window after the output
point (not the current selection, but the end of the text in the window)
and simulate pressing Enter. This is a quick way to send a command
to the system.

scroll Toggle whether the window automatically scrolls when more text is
written at the bottom.

­ 7 ­

2.4. Hold mode

Normally, just as in other operating systems, typed input is sent to the running
program whenever you press Enter. However, in "hold mode," many lines of
input are held for you to edit, until you give the go­ahead to process them.

In hold mode, the characters in your window turn blue. Hold mode is started
and stopped by pressing Esc. Some programs, such as mail, turn on hold mode
automatically while you type your input; when sending e­mail (for example) you
must press Esc to exit hold mode and press Ctrl­D to indicate end of file.

The right button, we have already discussed; it is mainly for creating and remov­
ing windows. For more about rio, type the command man rio, which works just
like the UNIX man command.

3. The acme full­screen editor

Inspired by Niklaus Wirth’s Oberon system, acme is a minimalist full­screen edit­
ing and development system. In operation, it looks something like Figure 4.

Figure 4. An acme editing window.

­ 8 ­

3.1. Typing in acme

Acme is more like a plain text window than you would guess. Text selection and
scrolling work just the same as in rio. There are no drop­down menus; the com­
mands at the top are executed by middle­clicking them.

The biggest difference between acme and rio is that in acme, you do not click on a
panel in order to type into it; just put the mouse cursor on it, and that’s where
your typing will go.

3.2. Quick start � how to create or edit a file

One way to start editing an existing file is to type a command such as:

acme filename.txt

Acme will open.

Make modifications, then middle­click on Put, then middle­click on Exit.

More commonly, you type acme without arguments, then right­click on directo­
ries (folders) or file names to choose what to edit.

To create a file, type acme without any arguments. Middle­click on New. The
cursor will go to the beginning of the third menu line; type the filename there,
then middle­click on Put. The typing area is selected by the pointer position, so
if the cursor moves from the third menu line, move it back.

3.3. Columns and panels (acme windows)

Acme is normally divided into two columns of panels ("windows"). As a begin­
ner, you may want to get rid of the second (right­hand) column. To do so,
middle­click the word Delcol above it.

New panels may not pop up where you want them. You can move them around
by left­dragging the square that is at the upper left corner of each panel, just to
the left of its name.

The menus ("tags") at the top of the left column are in three rows: one for all of
Acme, one for the left column, and one for the current panel (Fig. 5).

And here’s what all the menu items do:

Main menu

Newcol Create another column of panels.

Kill Interrupt currently executing command(s).

Putall Save all open files to disk.

­ 9 ­

Figure 5. Menus (tags) at the top left of acme.

Dump Write the state of Acme to a file so it can be resumed.

Exit Leave Acme.

Column menu

New Create another panel (window) in this column.

Cut Delete the selected text from the screen and place it in the snarf
buffer.

Paste Copy the snarf buffer into the text at the insertion point.

Snarf Copy the selected text into the snarf buffer (from anywhere in the
column).

Sort Arrange the panels in order by their names.

Zerox Create a copy of the current panel (thus giving you two windows
into the same file).

Delcol Delete this whole column of panels.

Panel menu

filename The name of the file being edited. You can type over it to specify
that the next Put will use a different filename.

Del Delete the whole panel (not the selection!). If the contents are
"dirty" (need saving), you will get a warning, but a second Del
will succeed.

Snarf Copy the selected text into the snarf buffer (from within this panel
only).

­ 10 ­

Undo Undo the most recent editing change.

Put Save the file to disk. (Not shown if the file doesn’t need saving.)

Look Search (requires an argument; see below). Other commands can
go here.

Figure 6. Browsing files in acme.

3.4. Browsing files and directories

If you start acme with no command line argument, the second column will
become a browse window for selecting files and directories, as shown in Fig. 6.
Right­click on any file to open it in the editor, or on any directory to explore it.

3.5. Editing commands

In the menu at the top of each panel, after the character  (the bar), you can type
a command. The command "Look" is usually provided there by default. There
are two ways to use it:

� You can type an argument after it, and then drag across "Look" and the argu­
ment with the middle mouse button;

­ 11 ­

� You can execute "Look" without an argument, in which case it will use the
selected text in the editing panel as its argument.

Either way, "Look" means "find the next occurrence of this text and select it."

You can type other commands after the bar. In particular, if you type

Edit s/abc/def/g

you change all occurrences of abc to def throughout the selection (not through­
out the file). To do a search­and­replace throughout the file, type

Edit ,s/abc/def/g

where the comma denotes an unlimited range of lines.

Any command from the editor sam can be typed in acme this way.

3.6. Mouse usage

A quicker way to find the next occurrence of a word is to right­click the word
itself. To do this to a phrase that contains a space, you can either right­sweep the
phrase (drag across it while holding down the right button), or select it (by left­
dragging) and then right­click on it.

The use of the left and middle buttons has already been described. (The left but­
ton selects text in all of the ways that work in rio.) Much more information about
acme, including the use of mouse­button "chords" (combinations), is described in
man acme.

4. Communicating with personal computers

To access a Plan 9 system from a Linux, Windows, or MacOS system, you will
run a terminal emulator called drawterm, available from
/sys/src/cmd/unix/drawterm or http://swtch.com . Normally, you will
write a script to start drawterm with the right CPU server and authentication
server as arguments, such as:

drawterm -c minooka.coraid.com -a tyty.coraid.com

Under Windows, add start /w at the beginning of the command to give
drawterm its own window.

When drawterm launches, it will complain that it "cannot chdir to" a directory on
your PC. That is not a problem.

Drawterm acts like the console of a Plan 9 system; you can create windows in the
usual way. In addition, drawterm mounts the root directory of the (first) hard
disk of your PC into /mnt/term in addition to whatever is already mounted there.
That enables you to copy files back and forth between Plan 9 and the PC

­ 12 ­

transparently.

The Windows version of drawterm has a known problem � you can read and
write the PC’s hard disk but not list its directories. Thus

lc /mnt/term/Windows

will not show anything, but you can still read and write particular files on the PC
by name. To sort this out, try a Plan 9 command such as

date >/mnt/term/myfile.txt

and see where myfile.txt ends up.

5. Reading documentation

The man command works as in UNIX, but you do not have to specify paging or
pipe to more because the Plan 9 screen does not scroll.

To view man pages elegantly converted to PostScript, use the ­P option, as in:

man -P lc

To view PostScript, PDF, JPEG, and numerous other graphical formats, use page,
as in:

page myfile.pdf

Page has a middle­button menu for advancing to the next page, etc.

6. Creating documentation with troff

The classic UNIX troff program is available in Plan 9 and understands UTF­8­
encoded Unicode (normal Plan 9 text). Here I give only a quick conceptual ori­
entation to troff, with references to fuller documentation.

6.1. Running troff

Troff ­ms input files normally have names ending in .ms , indicating use of the
troff ­ms macros. A typical command to run troff (at Coraid) is:

troff -ms -mpictures myfile.ms | dpost -f | ps2pdf > myfile.pdf

That is: load the ms and mpictures macro packages and process myfile.ms, then
pipe it to dpost (which converts it to PostScript), then pipe it to the PDF con­
verter.

­ 13 ­

6.2. Kinds of troff markup

The input to troff is a text file annotated with several kinds of commands, among
them:

(1) Lowercase two­letter commands native to troff, such as .bp at the beginning
of a line

(2) Uppercase two­letter commands supplied by a macro package, such as .PP
at the beginning of a line.

(3) Special inline codes starting with \ and occurring anywhere in the text.

The second type is predominant; you will mostly use codes defined in the "ms"
macro package, summarized in man ms and documented in tutorial form in:

Lesk, M. E. (1978), Typing documents on the UNIX system: using the ­ms macros with
troff and nroff, reprinted in various places.

The source file for this document is a useful set of troff examples.

6.3. Some important but un­obvious codes

\" marks a comment from its position to the end of the line.

However, blank lines are significant. To completely comment out a line, begin it
with: .\"

Here are some commonly used inline codes:

\c (at end of line): ignore line break.

\- dash or minus sign (longer than hyphen). See man kbd for how to type an
em dash or up­arrow directly.

\ required space (typed as \ followed by a space); joins words to be treated as
a single word.

\(ua up­arrow (many other special character codes resemble this one).

\fR switch immediately to roman type.

\fI switch immediately to italic type.

\fB switch immediately to bold type.

\f(BI switch immediately to bold italic type.

The normal way to switch to italics, boldface, etc., is to use ms macros such as .I ,

­ 14 ­

.B , .R (italics, bold, roman). These are used in three ways. First, you can start a
block of text with .I and end it with .R , like this:

.I
This text will be
set in italics.
.R
Now we are back to roman.

Second, you can write the macro with one word right after it (or multiple words
joined with backslash­space):

We will have just one
.I word
in italics.

Third, you can add a second argument, which is something (typically a punctua­
tion mark) that should immediately follow the italicized word but be set in
roman type, with no intervening space:

Did you say
.I bonjour ?
I thought so.

To learn more about troff, see the manual pages for troff, ms, and man, and
/sys/doc/troff.ps , then perhaps use the documentation and tutorials that
are abundant on the World Wide Web.

7. Programming in C

7.1. How to run the compiler

Plan 9 supports a slightly extended version of Standard C. Here’s a sample pro­
gram, which we’ll call myfirst.c:

#include <u.h>
#include <libc.h>

void
main(void)
{

print("Greetings, earthlings!\n");
exits(0);

}

The names of the compiler and linker depend on the CPU architecture. For the
386, they are 8c and 8l. (That’s a lowercase L, not a digit 1.)

To compile, link, and run myfirst.c, do this:

­ 15 ­

minooka# 8c myfirst.c
minooka# 8l -o myfirst myfirst.8
minooka# myfirst
Greetings, earthlings!

Note that the first step creates myfirst.8; the second step would create 8.out if it
were not told to create myfirst instead; and in the third step, you do not have to
write ./myfirst because in Plan 9, your current directory is already in your
search path.

7.2. About u.h

In the sample program, the line

#include <u.h>

defines architecture­dependent types and macros such as uintptr and va_start,
plus abbreviations such as vlong used by the standard system header files, and
should thus always be included before any other header files. To learn more
about this and other headers, see man 2 intro.

7.3. For more information

To learn more about the C compiler, and especially its Unicode­compatible i/o
system, see /sys/doc/comp.ps and /sys/doc/compiler.ps on your Plan 9 system.

7.4. The low road: pcc

If all you want to do is compile a UNIX program to run under Plan 9, and you
aren’t interested in maximum performance, you can use the POSIX­compatible C
compiler, pcc. In this situation you will use UNIX headers such as stdio.h and
functions such as printf, leave out any mention of u.h, and compile and run your
program this way:

minooka# pcc -o mysecond mysecond.c
minooka# mysecond
Hello, world!

This uses APE, the POSIX­compliant subsystem of Plan 9.

­ end ­

