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Database query and programming language are twins separated at birth: although they grew up in 
different communities and have rather different (inter)faces, they both accomplish the same task: instructing a 
computing system to locate a datum given its description (name, address), apply a certain transformation to it, 
and output/store the result. This common semantics makes it possible to "translate" between a database mindset 
and that of the "regular" programming. This paper aims to elucidate the rules of such interpretation.

This translation may be insightful for its own sake.  It shows for example that all the variety of OO 
species has sprung from different structures of underlying databases-environments, which hold the data and 
their labels. Conversely, a way queries to these databases are formulated and executed has everything to do with 
how powerful and expressive the corresponding OO system is.

There is also a practical side to this seemingly abstract topic, relevant to the  day-to-day programming. 
The unified perspective helps to evaluate tradeoffs in existing OO systems; it gives an insight into extending a 
particular framework, to be more resilient to changes in base classes, to support dynamic inheritance, virtual 
construction, etc. This extension does not necessarily mean giving up on the current programming language 
and switching over to a fad of the day. With a clear understanding that the devil is in lookups, and an idea 
which particular lookup would best suit the task at hand, one can often phrase the cooler OOP features in any 
programming language. Some languages may have had these frills already built-in, but even lowly C can easily 
bear rather intricate environments. This paper demonstrates one such system, which supports late binding and 
dynamic inheritance, and is implemented in C/C++. The paper also dwells on how the database viewpoint can 
illuminate the fragile data base problem; several solutions are discussed, including a technique of extending a 
base class of a compiled hierarchy without breaking/recompiling it. 

Thus following a particular OO system is a question of style, that is, how one writes the code, not what 
language he uses. 

Simple stuff

To see how database queries and 
programming languages are intertwined, let us 
consider the most trivial example:

x := x + 1

This innocuous statement clearly shows how and 

when a database query creeps in. For the most part, 
these are the issues for a compiler writer to deal with. 
Still, a user of the language may also want to know 
what is going on, to assess efficiency, expandability, 
correctness, or to add new functionality. Thus, the 
issues the simple statement above poses are:

- reference resolution

'x ' is obviously a reference (handle, name, label) of 
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something. The first problem is then to find what x 
stands for, and which operations it permits. 
Depending on the language (latent vs. manifest types) 
this involves searching for a declaration of x  in the 
current "scope", or locating the value of x  in the 
current environment.

In Programming Language Theory this function – 
which, given a name, finds the corresponding value – 
is usually denoted rho(x)  and called "environment". 
It is a very general formulation indeed: the meaning of 
rho(x)  spans from fetching a data from memory 
given its address or tag to (eval 'x)  in a language 
like Scheme/Lisp, to translating a name into an 
"address" (done by the compiler) and following the 
address at run time. What matters for the current 
discussion is that the reference resolution is essentially 
a database query;  capabilities of this database and the 
richness of the current "context" is what determines 
the expressive power of the resulting (OO) system.

- updating/mutating data

Modification of the current context (database) can be 
accomplished in several different ways: by mutating a 
data item in place, by updating an item out-of-place 
(become in Smalltalk), or rebinding the name to a new 
value (and garbage-collecting the old one).

- finding executable code that implements an 
operation

This is a particular case of the reference resolution: just 
as one has to find out the meaning of x  in the 
expression above, one needs to know the meaning of 
'+', the operation itself. Some systems (Lisp/Scheme) 
do not draw any distinction at all: operation resolution 
is really just a particular case of name resolution1 . 
Other frameworks consider the operation as sending 
of a message '+' to an object 'x '; the job of determining 
the meaning for '+' is thus relegated to the object. 
Often the query for '+' is done in a different database 
than the one consulted for 'x '. One reason for that is 
the database of code (operations) is persistent (as the 
body of an executable file), while the database of data 
(the run-time environment) is often not.

Pointers and databases

A hype surrounding OO databases may make 
1 "There is no distinction between 'methods' and 'instance 
variables'; a method is simply an instance variable with a 
procedural value", MzScheme Reference Manual, 
http://www.cs.rice.edu/CS/PLT/packages/doc/mzschem
e/index.htm

an impression that the database mindset and 
vocabulary somehow lack such a fundamental notion 
as pointers (references). These terms must therefore be 
deliberately introduced into databases, if databases 
and OOP are to get engaged. Pointers however are not 
an alien term for databases: in fact, pointers are very 
essential to hierarchical and network data models. For 
example, in a hierarchical database, all pieces of 
information are linked to form a (directed) tree or 
forest. To access (read/delete/modify) a particular 
item you have to walk the tree to it, given a path, a 
sequence of keys in a strict order. Just as you need to 
specify a path (sequence of directory names) to access 
a file, or a Web resource. This is hardly a surprise: file 
system and URL system are typical examples of a 
hierarchical database. Getting hold of an AOCE 
object/property by providing its path also falls into 
the same category. Indeed, AOCE, file systems, the 
URL system  – all implement a containment model, 
which is a hallmark of the hierarchical data model. 
Incidentally, this means that AOCE can be considered 
a plug-in file system.

In a network database (e.g., ADABAS), logical 
organization of information is represented by an 
arbitrary graph, not necessarily a tree. Locating data 
items entails traversing the graph's edges: pointers. 
This must be very familiar to any C/C++ programmer: 
creating data structures with pointers to other data 
structures is a fundamental C/C++ programming 
skill. This is also what an Operating System does all 
the time: For example, a process control block has 
pointers to memory control blocks, file control blocks, 
session control blocks; a file control block points back 
to the process(es) that own a file, to a device control 
block, to a cache with the read data blocks, etc. Most of 
the OS functionality is chasing and chaining all these 
pointers. The network logical model is the fastest as 
far as speed/efficiency of accessing data is concerned; 
it is little wonder OS kernel's databases are all of the 
network kind.

In a relational model, getting hold of 
necessary pieces of information may also involve 
tracing "links"/"pointers", from a row of one table to a 
row of another. However, these "pointers" are of a 
peculiar kind. While network databases typically  
store associations using regular pointers to physical 
records (blocks on disk), a relational database breaks 
these links in two halves (the from  half and the to  
half: a key and a lock) and stores the two parts 
separately. The pointer itself is "computed" 
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(reconstructed) on the fly: given a key, a database 
manager finds a lock that corresponds to it, or the 
other way around. Of course it is possible to have a 
key opening several locks, and a lock opened by 
several keys; many-to-many association is really a 
snap. Since the association (an "array of pointers" so to 
speak) is computed, it does not have to be explicitly 
stored: relational databases are rather space efficient. 
On the other hand, access requires a computation – 
table join, – which is usually done by sorting two tables 
(by key's and lock's values) and matching the records. 
This process takes time, and a lot of scratch space. 
Note that some database systems (for example, 
UniSQL) can "cache" thus computed association: 
join -ed pointers become real memory pointers 
between the corresponding objects in a Workspace . 
Therefore, repeated link chases are performed with 
utmost efficiency.

Object as a private context (namespace)

To simplify and speed up lookups of 
variables, make code more comprehensible, and 
following the universal rule "divide-and-conquer", the 
search space can be partitioned into a set of (relatively 
small, hopefully) contexts. Just as caching data for 
CPU, this technique relies on a locality principle: 
within a short interval of time or a small section of 
code, most of the queries occur within a narrow 
context. 

Objects and classes are the way to erect 
partitions in the lookup space. Although objects are 
most commonly defined as local (encapsulated) state 
plus a reference to shared code which operates on this 
state, "An equally important way to look at a class is as 
a means of establishing a namespace. A namespace is 
essentially a context for names associated with entities. 
Within each class, names of member functions are 
mapped to the code that implements those functions, 
and names of member fields are mapped to the values 
within an object of that class. Different classes can 
contain the same name, but the value of that name will 
be different because the classes are different 
namespaces."2  Note that there is a definition of objects 
that directly relates to a notion of a named, isolated 
context: "We define an object as a concept, abstraction 
or thing with crisp boundaries and meaning for the 

problem at hand  [Rumbaugh 91]" [OOFAQ].

2 Jim Waldo, "Protected Classes", Java Advisor column, 
UNIX Review, Oct 1996, p. 97-101

Implementations of objects are as varied as 
their definitions. In the most straightforward sense, an 
object is merely a "private" environment. A data item 
in this environment (collection) – an object's member – 
is represented by its tag, a name, which is used to  
look up and access the item.  Examples abound: an 
object in Perl is merely a (blessed) hash. In JavaScript, 
objects are just associative arrays of JavaScript 
variables, "properties". A single property can be 
accessed either via dot notation, or an associative 
indexing. For example,  if one has defined an object 
bestCPU  with a property maker , the property can be 
referenced as either

bestCPU.maker

or

bestCPU["maker"]

This example very clearly exposes an object as a 
separated and named lexical scope, and accessing its 
members as a query.

This straightforward implementation, coupled 
with a delegation-like inheritance (see below) is the 
easiest way of turning a foo  into a OO-foo . Other 
examples include MOPS (OO Forth), Delphi's and VB's 
property sheets, Python, Tcl/Tk,  Bob, to name just 
very few. One also has to mention in this context 
NewtonScript frames, Scheme closures, Apple Event 
objects, BMessages and other inter-process 
communication "packets". Indeed, a message from one 
(Objective-C, BeOS, MacOS, etc) entity to another is a 
small database, a collection of tagged and typed data 
items; in case of Objective C,  referencing items in this 
collection even looks similar to accessing a regular 
variable. Incidentally, a file system's directory is an 
object too.

Beyond a class: encapsulation

The previous section has shown how closely 
objects and database entities (dictionary, table, etc.) are 
related. It is interesting to trace this spiritual 
connection one generation further. Just as objects were 
introduced to cope with abundance of data by 
grouping together related items, there have emerged 
ways to manage proliferation of objects, by bundling 
them into classes and hierarchies. An embedding (has-
a) hierarchy and deriving (subclassing, is-a) hierarchy 
are the two most conceptually important and most 
frequently occurring types of hierarchy.
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The embedding hierarchy is inherent to 
hierarchical databases, which are, by one definition, 
collections of containers containing other containers. 
In a network database, embedding is represented by 
linking a parent record with all the records it "owns". 
Placing an object's body or reference inside another 
object are also the two ways of performing embedding 
in programming languages. As far as relational 
databases are concerned, tuples may not contain nor 
point to other tuples; still, embedding can be 
represented just as well. Containment of relations is 
expressed not by placement or reference, but by 
computation of a table join. "The specification of a 
class D as the domain of an attribute of another class C 
in an OODB is in essence a static representation of a 
join between the classes C and D" [UniSQL 
Whitepaper]. Granted, joins are expensive from the 
computational point of view; yet they are conducive to 
an  efficient and flexible data organization. 
Furthermore, a late binding – late pointing – inherent to 
join queries makes them immune to a fragile base class 
problem (see below).

Inheritance as a fall-back

Another way of constructing a hierarchy of 
objects is by marking common and particular traits 
(members, methods) between a pair of objects. One 
object can then be chosen as a base, reference point, 
with the other – derived – object containing only new 
and overriding members, as compared to its parent.  
This inheritance hierarchy is a difference-type 
encoding of a collection of objects, similar to a delta-
coding of sound samples, or LZ encoding of text 
strings. When a set of objects' data items is partitioned 
into a base  and difference subsets, searching an object 
for an item has to be generalized. That is, a failure to 
locate a slot with a given name/tag in an object no 
longer implies that the whole query must have failed. 
The object's parent (and its parent, etc) must be 
searched in turn. Thus inheritance introduces a 
fallback, or an ordered sequence of lookups. 

A particular kind of inheritance is grouping 
objects into classes, that is, "objects" that specify 
methods, data, and slots common to any object of that 
class. Individual class instances contain then only 
particular values for these slots: data or virtually 
overridden (in C++ parlance) methods. Note that in 
some OO systems, for example, Smalltalk, class 
"objects" are objects themselves: they are objects that 

construct other objects.

To represent lineage, a derived object must 
contain a reference to its parent (class), or even 
physically incorporate it. What distinguishes this from 
a regular containment hierarchy is the fact that this 
"embedding" of a parent affects the derived object's 
slot lookup procedure: the contained object/class acts 
as a default "clause". In some OO systems this 
embedding of a parent shows only in compiler tables 
describing an instance/class, with no corresponding 
run-time representation. Some other systems make a 
reference to a parent a part of an object itself, as a 
parent /_proto  slot, or a "virtual" slot – an "item 
not found " exception procedure. Self, NewtonScript, 
Lua are a few examples of such – so-called 1-level, 
single-hierarchy, or delegation – systems. Note that in 
these OO systems, the distinction between an object 
and a class is blurred: all classes are objects, any object 
may act as a class, that is, provide object instantiation 
or act as a shared parent. These systems also make it 
possible for an object to change its parent at run time 
(which is  called a dynamic inheritance).

Applications and examples

Smart defaults

This is the most trivial example of a fallback 
closure, the example that ought not even be mentioned 
if it were not for an amazing expressive power of this 
trick. It is used when a code runs into a problem, but 
not necessarily fatal condition: for example, a sought 
piece of information could not be located, or one of the 
parameters was left unspecified. In this situation, the 
code may assume some default value, crash, give a 
user the second chance to enter the parameter, or 
merely alert the user about the default value being 
used. However primitive this all seems, it does take a 
fair amount of code to handle all peculiarities, 
especially to enable a function to communicate its 
failure to its caller, so the latter can do something 
intelligent about it. This common part can easily be 
automated if, for example, a lookup function is written 
in a smart way: that is, it takes a default argument, in 
general, a default functor. Here are a few examples of 
the expressiveness of this approach (taken from 
http://pobox.com/~oleg/ftp/c++advio.READ
ME.txt )
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// Default default: crashes the program if the file
// does not exist

const int file_size = get_file_size(file_name);
...

// A smarter, custom default
struct GFS_big_default : public GFS_Default
{
  enum { def_size = (size_t)(-2) };
  size_t operator () (const char * file_name)
    { cerr << file_name << " does not exist; default size "

      << def_size << " used" << endl;
       return def_size;
    }
  };
  if( get_file_size(file_name,GFS_big_default()) ==

 GFS_big_default::def_size )
  handle_file_does_not_exist();
...
struct Ask_user_default : public GFS_Default
{
  dialog_stream& ask_user;
  Ask_user_default(const dialog_stream& ask_user_dlg) :

ask_user(ask_user_dlg) {}
  size_t operator () (const char * file_name)
    { ask_user << file_name << " does not exist; " 

<< "do you want me to create it? " << endl;
      if( ask_user.cancel() )
        throw die_die();

 else
 {
   assert( close(creat(file_name,0777)) == 0 );
   return 0;
 }

    }
  };
const int file_size = get_file_size(file_name,Ask_user_default(Alert()));

These examples clearly show the power of the 
default functor, which easily accommodates various 
strategies of handling lookup failures (in our case, 
looking up an OS property 'size' for a given file). Of 
course one could also use exceptions. However, not all 
C++ compilers support exceptions well (the HP-PA 
platform is notorious in this respect); some compilers 
impose a heavy overhead or require you to recompile 
all code with exceptions enabled. The last example in 
the snippet above – when the default value is 
"computed", which involves a dialog with a user and a 
side-effect –  is rather messy to implement with 
exceptions: once the stack is unwound, it can not be 
wound back up. The smart default approach provides 
both safety, flexibility, and yes, efficiency.

Twists and turns in falling back

The idea of a smart but single default can be 
extended to multi-level fallbacks, supported by a 
sequence of dictionaries searched in a (dynamically 
changeable) order. That is, an item is first sought in a 
top dictionary. If the lookup succeeds, the found value 
is returned. Otherwise, the next dictionary – whose 
name/reference is contained in a "dictionary path" – is 
consulted. If nothing was found, the next dictionary is 
searched in turn, etc. Only when all dictionaries 
mentioned in the path have been looked through (in 
vain), a default action (if any) is executed.
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At first glance, this system looks and feels like 
a lexical or dynamic scoping: indeed, when code refers 
to a variable 'i ', it causes the compiler/interpreter to 
consult the innermost scope (environment), falling 
back to the containing scope etc. all the way to the 
global environment of the task. However, the dynamic 
nature of the "search path" sets our hierarchical 
dictionaries apart. Dictionaries can be added or 
removed from the path at run time, which will affect 
the order fallbacks are executed. The search path can 
change even in the process of a lookup itself. For 
example, a dictionary, once entered, may sever the 
search path, thus cutting access to its "parents" and 
making its inheritance from them private. It has to be 
stressed again that because of the dynamic nature of 
the search path, no rigid parent-child relationships 
exist: hierarchies are built and torn down on the fly as 
circumstances warrant. The closest model of these 
dynamic hierarchies is a set of dictionaries in 
Forth/PostScript. As we are about to show, one does 
not need to switch to these languages to benefit from 
their dictionary framework: one can easily implement 
a similar thing in C++ (or even C), or any other 
language of choice. 

As an example, I will demonstrate a 
client/server system to disseminate weather 
information (temperature and pressure grids, wind 
directions, etc.) to a number of clients. An earlier 
version of the system, called NODDS, has been in 
operation at a Fleet Numerical Oceanography Center 
(FNOC) at Monterey, CA for a number of years. I was 
to rewrite its server part, taking advantage of a 
different database of weather products. Thus I had to 
abide by the existing client-server protocol.

Requesting a weather product, for example, a 
temperature grid, requires quite a few parameters to 
be specified: grid's boundary, grid resolution, the 
name of a weather model used to process raw 
observations or make forecasts, the product code, 
desired units, scale factors, etc. The database required 
all these keys to retrieve the data; a user, however, 
does not need to specify every one of them: some 
values are to be inferred. The inference rules vary 
however depending on a client (for example, a user in 
Europe would like to see temperatures in degrees C, 
while degrees F may be preferred in other parts of the 
world). The defaults may also vary with a model 
(certain weather models support only certain grid 
resolutions),  a product, etc. Thus we have a hierarchy 
of configuration information – units, model name, 

region, scale factors, etc. – where each piece can be 
overridden by client's profile, client's request, or by the 
results of evaluating the request.

The dictionary system with a dynamic search 
path proved to be very useful in implementing the 
weather products server. Here are a few details. When 
the server starts up, it loads the top-level vocabulary 
and makes it default: pushes it on the top of the search 
path. This top vocabulary is rather trivial, for example:

Voc(R): TopRefVoc= "Top Reference 
Vocabulary" (
R,2D_grid= "2d_grid.voc"
)

(this is the vocabulary contents exactly as written in the 
file it is loaded from). The vocabulary is made of a 
single item, with a key "2D_grid " and the value 
which is another vocabulary, referenced by an external 
file name. This latter vocabulary is not loaded until 
required. When a request for a temperature, pressure 
or any other 2D grid is received, the 2D_grid  
vocabulary is looked up and pushed to the top: 

VocPath::push("2D_grid"); // Load 
Vocabulary of products 

This statement first looks up an item with a key 
"2D_grid " in the vocabulary path, which at the 
moment contains only the top vocabulary. The 
reference is resolved, and thus loaded 2D_grid 
vocabulary is pushed to the top of the search path. 
Here is how this vocabulary looks like:

Voc(R): 2D_grid= "2D grid products" (
S,geom_name= "global_73x144"
S,model_name= "nogaps"
S,units_name= "*"
Voc(R): W= "flaps for NMC products" (
S,model_name= "NMC"
S,return_flaps_char= "W"
)
Voc(R): A01= "Surface Pressure" (
S,units_name= "mb"
)
Voc(R): A07= "Surface Air 
Temperature" (
S,model_name= "otis"
S,units_name= "C"
)
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Voc(R): C10= "1000Mb Temperature" (
S,units_name= "C"
)
Voc(R): E34= "700Mb Relative 
Humidity" (
S,model_name= "uanva"
S,units_name= "fraction"
)
)

This vocabulary contains a few simple items (like 
"geom_name", "model_name ", "units_name ") and a 
number of embedded dictionaries for specific weather 
products. These slots tell the server that it should 
assume a default value of grid_73x144 for the grid 
geometry, default value of "nogaps " for the model 
name, etc. A client's profile,  loaded by the server after 
parsing a request, may include specializations for that 
particular client: an area the client is interested in, 
defaults for units (say, always "ft ") and for the model 
(say, some particular client is interested only in 
NORAPS data). The client profile vocabulary is placed 
in the search path ahead of the product group 
dictionary, giving defaults of a client precedence over 
the server defaults. The request for products (made of 
one or several request lines) provides further details. 
Each product has its own set of defaults (e.g., 
preferred units), which override the client or server 
defaults but can in turn be overridden by request line 
options.

For example, if a user has requested surface 
air temperatures, the corresponding subvocabulary 
(with a key "A07") is looked up and pushed at the top:

VocPath::push(cat_no);

Therefore, model_name  and units_name  slots from 
this vocabulary override the (generic) ones in the 
"parent" 2D_grid  vocabulary. If the request contained 
a "flaps " character W, the corresponding vocabulary 
"W" is loaded on the top, which changes the default for 
the model_name  to "NMC". When the time comes to 
query the database, the necessary keys are looked up 
in the resulting environment:

  
xstrncpy(szModelName,VocPath::find_st
r("model_name"),sizeof(szModelName)-
1);
 
xstrncpy(szGeomName,VocPath::find_str

("geom_name"),sizeof(szGeomName)-1);
 
xstrncpy(szParamUnits,VocPath::find_s
tr("units_name"),sizeof(szParamUnits)
-1);

In the present example, the  "model_name " would be 
"NMC" (as found in the topmost "W" vocabulary, which 
is searched first), "units_name " would be "C" (the top 
vocabulary does not have this item, but the next 
vocabulary in the path, "A07", does), and 
"geom_name" would be "global_73x144 " (found in 
the second vocabulary from the top). After the request 
is processed, all the relevant vocabularies are removed 
from the vocabulary search path:

voc_path_mark.back_off();

The server is now ready for a new request. It has to be 
stressed that the server configuration is entirely 
controlled by the vocabularies, which are loaded on 
demand from self-explanatory text files. This makes it 
easy to change the name of a weather model, units 
names, etc. by editing the files in any text editor.

The vocabulary system described above is a 
part of the c++advio  library available from 
http://pobox.com/~oleg/ftp/c++advio.READ
ME.txt . The vocabularies are clearly polymorphic: a 
vocabulary slot may contain a simple data type (int , 
double , or string, that is, const char * ),  a 
reference to another vocabulary, or  a (sub)vocabulary. 
Homogeneous vocabularies are those whose slots have 
exactly the same structure, which is reinforced when 
new entries are added.

A vocabulary of vocabularies contains all full-
fledged vocabularies: that is, every dictionary is 
always contained in some other (parent) vocabulary, 
which in many cases is the Vocabulary of 
vocabularies. Note, a vocabulary can be referenced 
from many different dictionaries.  A vocabulary path 
is a list of dictionaries to search for a named slot in, in 
order of appearance in the path. Vocabularies can be 
referred to from within other dictionaries by special 
items, vocabulary references. A reference either points 
to a vocabulary (when the reference is completely 
"resolved") or merely holds the name of the referred 
vocabulary, which is to be looked up when needed (a 
lazy reference). The reference may also contain a file 
name, from which the vocabulary would be loaded 
when it fails to be located otherwise.
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Vocabularies support all the basic functions: 
lookup, insert, delete, traverse. Looking up a slot (or a 
slot value) is the main function, and exists in many 
varieties. There is a function to look up a slot in the 
current dictionary, in all vocabularies in the path (the 
top dictionary in the path is searched first, the 
vocabulary underneath is search only if the lookup in 
the top dictionary failed, etc).

Note, the vocabulary objects and their slots are 
somewhat unusual C++ objects. They do not offer any 
public constructor or destructor. A vocabulary can 
only be created by a special friend function, which 
automatically inserts the newly made dictionary into 
the vocabulary of vocabularies, and puts it on the top 
of the vocabulary path (which makes the new 
vocabulary current). By the same token, the only way 
to make a new vocabulary item object is to call a 
special friend function. This function allocates object's 
memory off the heap, fills it in, and inserts the new 
item into the current vocabulary. Therefore, an item or 
a vocabulary cannot exist by themselves, not being a 
part of some dictionary. A user can get hold of only 
references to a vocabulary or a slot, but never of the 
objects themselves.

I would also like to briefly mention a more 
primitive system (implemented earlier in plain C), 
which provides a uniform way to specify a variety of 
parameters and values for a complex project. The most 
common way of passing parameters to a module – via 
command-line options – is probably the worst 
solution, as anyone who ever took a look at gcc  
command-line arguments could testify to. A much 
better approach is to use a global database of project 
options (something like a pool dictionary in 
Smalltalk), available to all project's functions/modules 
via a simple lookup interface. The database is loaded 
at start-up from a simple configuration file, whose 
name is the only parameter passed to the root module. 
The following are two examples of the configuration 
files, from two real projects: 

Header = H2O
Write_to =real_water1.dat;No
Molar_mass = 18.02
;
P_min = 1               ; Lower bound
Pressures = 
1,100,500,700,1000,1500,2000,3000,700
0,10000 ; pressure range
;

T_min = 303.15 ; Min temperature 
value
T_max = 353.15 ; Max temperature 
value
;
Delta_p = 10;0.5 ; Grid mesh
Delta_t = 0.01
;
Mixing_factor = 0.96  ; Mixing factor

And

; Configuration file for CLEAN
;
Input_spectrum = /tmp/aaa
;
Cleaned_spectrum = 
/tmp/cleaned_re.dat
Remainder_spectrum = /tmp/rem_re.dat
;
Dead_time   = 4  ; Dead time in ms
Freq_range  = 1  ; Freq. range for 
the spectrum, kHz
Noise_level = 6  ; in abs units (in 
units of the spectrum)
;
Window_half = 3  ; Window half-width 
for the deconvolution algorithm
Gamma = 0.5      ; Scale factor for 
the deconvolution algorithm
Large_step = 10  ; Size for the large 
iteration step
Max_no_steps = 1000 ; Maximal no. of 
steps to perform
Print_level = C     ; D-detailed, C-
concise, N-nothing

The configuration files have a very straightforward 
structure: merely a list of parameter names and their 
values. Everything after a semicolon is a comment. 
Note, that parameters may have an array of values: as 
in

Pressures = 
1,100,500,700,1000,1500,2000,3000, 
7000,10000

For one thing, the configuration files are more 
informative than command-line options. The root 
module is also spared the trouble of validating every 
option passed to it: this is the job of the immediate 
consumer of a particular parameter. Adding, deleting, 
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or changing the meaning of  parameters will not 
therefore require the root module be recompiled. 
Another important advantage of this global 
configuration database is that the program, having 
finished calculations, can dump its configuration at 
the beginning of its output files. When the results are 
to be processed further by some other code, this code 
can easily find out the value of any parameter of the 
originating calculation. Putting the configuration 
along with the results also makes the output files self-
documented.

Fragile Base-Class problem

In a nutshell, the "fragile base-class (FBC) 
problem" is what requires client programs to be 
recompiled whenever the class library on which they 
depend is modified. The FBC problem is a lookup 
problem; more precisely, a lookup cache-coherence 
problem. This problem arises whenever a reference 
resolution, identifier lookup, or any other query is 
performed non-atomically, while the database is being 
concurrently modified.  Especially problem-prone are 
the multi-stage lookups that "cache" the results of their 
intermediate steps, providing no mechanisms to flush 
or update this cache should the underlying 
environment gets altered. Given below are a number 
of classical as well as lesser known examples of the 
FBC problems. These examples hopefully show that 
the problem is more pervasive than it appears to be.

Let us consider the following C code fragment 
that uses the standard stdio  facilities:

FILE * fp = fopen("/dev/tty","r");
char buffer[120];
if( fgets(buffer,
          sizeof(buffer)-1,fp) == 0 )
  if( ferror(fp) )
    handle_error();

In most common stdio  implementations, ferror()  
is a macro or an inline function, for example, 

#define ferror(file) ((file)
          ->state.error)

as in Metrowerks' CW 11 MSL. Thus the second if()  
statement in the code above would be compiled as

check the byte located at fp+13

(or, in PowerPC assembly)

lbz      r0,13(r31)

cmpwi    r0,0
beq      *+12
bl       .handle_error__Fv

Now imagine that the vendor of the standard C library 
has decided to enhance his product. For example, he 
now wants to support very large files, bigger than 
4Gb; or he resolved to pack the error  flag in one bit, 
rather than devoting a whole byte to it. Thus the 
vendor has changed the __file_state  structure 
from

typedef struct {
unsigned int  io_state : 3;
unsigned int  free_buffer : 1;
unsigned char eof;
unsigned char error;

} __file_state;

to

typedef struct {
unsigned int io_state : 3;
unsigned int free_buffer : 1;

  unsigned int reserved : 2;
unsigned int eof : 1;
unsigned int error : 1;

} __file_state;

Linking this new library with the compiled 
code fragment above creates a problem: the error  
field is now a bit rather than a byte, and is located at 
fp  +11. The old version of the ferror()  function 
inlined in the compiled code would now check a 
wrong field, which has nothing to do with the file 
status. In contrast, fgets()  continues to work just 
fine. The compiled fragment contains a reference to 
fgets()  rather than the function itself, and the code 
passes it a pointer to the FILE  structure. Both 
references will be resolved late, using the new version 
of the library:  the function's body would be located 
during linking, and the FILE  structure will be "looked 
up" only at the run time, by  fopen() . Function 
ferror()  on the other hand has been located early, at 
the compile time. This eager binding saves time when 
linking and running the code, but causes a problem 
when the underlying data structure changes. 

The Fragile Base Class problem is most 
evident in C++. To illustrate it, let us consider the 
following transaction_ofstream  class, which 
adds commit/backoff functionality to the regular C++ 
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file stream: 

class transaction_ofstream: public 
strstream
{
  filebuf * output_buffer;
public:
  transaction_ofstream(const char * 
file_name)
   : output_buffer(new 
      filebuf(file_name,ios::out)) {}
  void backoff(void)
   {seekoff(0,ios::beg);}
  void commit(void)
   { output_buffer->xsputn(str(),
                        pcount());
     output_buffer->sync(); 
     backoff(); freeze(0); }  
};

This transaction_ofstream  redirects all 
incoming information into a memory buffer;  it is 
when the user commits()  that all the accumulated 
data are written into a destination file. Suppose now 
that the vendor of the C++ stream library has decided 
to make the library thread-safe, and added a mutex 
lock to the strstream  class. This obviously compels 
recompilation of the entire code that implements and 
uses transaction_ofstream . Indeed, the 
commit()  method above gets hold of the 
output_buffer  data item as the contents of a word 
of memory located at &(this->output_buffer) , 
that is, at this+sizeof(strstream) : derived class' 
data members are appended to  base class' ones in any 
instance of the class. Adding new data members (the 
mutex, in our example) to the base strstream class 
changes the sizeof(strstream) , hence altering the 
offset to the output_buffer  in the 
transaction_ofstream  object's layout. Thus every 
method that depends on the derived class' layout must 
be recompiled to take into account the modified 
offsets. Note, the commit()  method above does not 
use the mutex lock, the  field added to the base class; 
nevertheless this method must be recompiled, because 
the new field changed offsets to those data members 
that the commit()  method uses.

This problem is not limited to C++, it lurks 
everywhere  a (name) lookup is performed "early". For 
example, consider an application that dynamically 

links to a (shared) standard C library, libc.so . 
Suppose that the application at some point calls a 
library function printf() . Since the compiler cannot 
know where this function's code will be located in 
memory when the application runs, the compiler 
generates a dummy instruction, for example,

call 0

with 0 in place of the actual call address. In the object 
module's external dictionary, the compiler leaves a 
note for the linker to replace this placeholder 0 with 
the correct address of  the printf()  function. When 
building the executable file, the linker may be tempted 
to perform the following optimization, especially if 
prodded by the user, for example, by an option 'ld -
b' on Solaris 2.5. The linker can scan the dictionary of 
the shared library libc.so  and find out that 
printf() 's code starts at an offset, say, 0x7000  from 
the beginning of the library. The linker then instructs a 
run-time loader to map the shared library file into the 
process virtual space starting at, say, 0x40000000 ; 
the dummy call  instruction above will be corrected 
by the linker as

call 0x40007000

Thus, the reference to printf()  becomes resolved at 
link time, requiring no scanning through the shared 
library or object code adjustments when the 
application runs. This optimization carries with it a 
price tag: suppose an operating system vendor has 
modified the shared library, for example, to add a few 
new functions. Suppose the code of printf()  itself 
remained intact; however, its offset in the new version 
of libc.so  changed, from 0x7000  to 0x7010 . 
Obviously, our application must be relinked: 
otherwise, the instruction call 0x40007000  would 
miss its target, the beginning of printf() . It has to be 
stressed again that even if the application code does 
not use the newly added libc.so  functionality, even if 
printf()  itself is unchanged, the application still has 
to be rebuilt: no matter how incidental changes are, 
they have rendered the early resolved address of 
printf()  invalid.

Other examples were the over-eagerness can 
hurt include using absolute IP addresses rather than 
host names in internet applications. This certainly 
saves the trouble of performing a DNS lookup; on the 
other hand, if a host is moved to a different address 
(different network), the application would have to be 
rebuilt. By the same token, using absolute port 
numbers (rather than resolving service names with 
getservbyname() ) saves CPU cycles but leaves the 
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application vulnerable if the port mapping changes. 
Even referring to a document by its URL is a shortcut, 
easily broken when the document moves. More 
reliable is a lazy, indirect locator that either refers to 
the document through a glossary, or contains a search 
engine query to be executed on demand, yielding the 
document's current location at that moment. 

"Precompiled" database queries is yet another 
example of jumping the gun. Normally, SQL queries 
are compiled right before they are executed. For 
example, when a database manager receives a query 

SELECT Job, Avg(Salary) FROM Employee 
WHERE Salary > 50000 AND DOB > 3/5/53 
GROUP BY Job;

it first checks a database schema for a table Employee : 
suppose, the table does contain the attribute Job  as 
column #2 of the table, Salary  as column #3, and 
DOB as column #5. The database system then scans 
through the Employee  table in storage, checking these 
three columns and creating the answer. The query 
compilation stage –  looking up attribute names in the 
database schema and translating them into table 
column numbers, among other things – can be 
performed in advance. The compiled query can then 
be executed several times. However, if the Employee  
table is changed, for example, some attributes have 
been added so that DOB becomes column #7, the 
precompiled query would give the wrong result. The 
original query (in the source form) will not be affected 
by these changes: the database manager will find the 
new column number for the DOB attribute when it 
consults the schema. In fact, the original query can be 
executed as long as the table Employee  still contains 
columns Job , Salary  and DOB, no matter how the 
table layout has been modified. This late binding is 
one of the main advantages of the non-procedural 
nature of SQL, which allows for independence of data 
manipulation from data layout.

Fortifying derivation trees

The obvious (and probably sole)  solution to 
the Fragile Base-Class problem is to eschew shortcuts 
and be lazy, putting off resolving names as late as 
possible. This may be relatively straightforward to 
follow in some cases: use demand/lazy linking as 
often as possible (not letting the linker take shortcuts 
in resolving external names in shared libraries); 
precompile only those SQL queries that are absolutely 

critical to performance; try to use symbolic internet 
service names (rather than hard-wired port numbers) 
and query a portmapper: the latter is default in Sun's 
RPC system. The use of symbolic host names (rather 
then dot IP addresses) has become the standard 
practice already. In case of URL, being lazy may mean, 
at the very least, using relative URLs, especially to 
references within the site. Better yet, one really ought 
to take advantage of  link glossaries if a web site is 
maintained by Frontier, NetFusion, GlobeTrotter, etc. 
packages. The best solution would be using of 
Universal Resource Names, which describe  resources 
without explicitly naming them; the URN proposal is 
presently being considered by IETF.

Incidentally, lazy does not necessarily mean 
inefficient: for example, a dynamic linking technique 
called "load-time code generation" eliminates not only 
the FBC problem, but also the run-time overhead 
typical of dynamic linking. This technique uses a so-
called slim-binary object code representation, which is 
usually 2.5-3 times more compact, and also allows for 
the last-minute tweaking (e.g., instruction scheduling)3 
. These slim binaries are used extensively in an 
Oberon/F system.

The advice of binding late is much harder to 
follow in C/C++ etc. environments, which are 
designed to use static binding of variable/function/ 
method names, manifest types, and to resolve as many 
symbols at compile time as possible. Although the late 
binding is not explicitly provided by the language, it 
always can be emulated: for example, by getenv() , 
querying a resource, an .INI  file, etc. The system of 
nested dictionaries discussed in a previous section is 
yet another example of  demand binding implemented 
and used in C/C++.

However "static" the C/C++ environment may 
look like, it does offer some tools for dynamic binding. 
Indeed, the late binding occurs whenever a data item  
is accessed indirectly, either via a call to a function, or a 
handle. In the former case, one  explicitly calls some 
sort of a lookup/getter/setter function that  finds or 
computes the value. The result of this lookup may be 
cached. Incidentally, this is precisely how most of  
dynamic linking schemes work: a call to a function in a 
shared library is represented by a promise to invoke 
this function. When the promise is called, the 
operating system would look up the address of the 

3 M.Franz, "Dynamic Linking of Software Components", 
Computer, March 1997, pp.74-81
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function and transfer the control to its code. The OS 
will  also cache the found address: hence the next call 
to the function will invoke the function's body 
directly. The same technique can be used with data 
members. Thus if you do not want to bother making a 
promise yourself, simply put the necessary 
data/functions in a dynamically loadable segment, 
and let the dynamic linker/loader do the job for you.

To an extent, the Fragile Base-Class problem 
in C++ can be alleviated (if not completely solved) by 
indirection, along with some discipline. Indeed, the 
main reason a modification of a base class compels 
recompilation of all derived classes is because a 
derived class object contains the base class object as its 
header, with derived object's data following. Thus any 
change in the base object size alters the offsets of the 
derived object's data within the object, the offsets that 
derived class' methods use to access the data. 
However, if the base object's body is placed 
somewhere else in memory, with the derived object 
containing merely a reference (pointer) to it, then no 
matter how the base object shrinks or expands, the 
derived object's layout will remain the same.  Using 
the example of transaction_ofstream  above, if a  
C++ stream library vendor has shipped a new version 
of the library with an enhanced class filebuf   (e.g., 
supporting 64-bit file offsets), the  
transaction_ofstream class (and any code that 
uses it) does not have to be recompiled. One has to 
take a special care though to manipulate the filebuf  
object only through appropriate methods, rather than 
using known offsets to publicly accessible data. 
Otherwise, one runs into the same problem as the one 
described in the previous section, dealing with 
ferror()  and a changed FILE  structure. This 
problem will not occur however if new members are 
added at the end of an indirectly referenced "base" 
object: obviously, this procedure does not alter any 
offset to the existing data. As was mentioned above, 
the discipline is important.

"Deriving" an object from another one by 
merely pointing to it is a rather weak form of 
inheritance: indeed, none of the base object's methods 
will apply to thus "derived" object. One has to re-
declare all needed base class methods in the "derived" 
class to forward appropriate messages to the base 
object. This forwarding (which Microsoft calls 
"aggregation") is the cornerstone of Microsoft's COM 
architecture. The discipline is needed here as well: to 
make the aggregation as general as possible, a 

"derived" class should declare the base class reference 
as the pointer to an abstract class. The derived class 
constructor  should initialize the pointer by calling a 
factory, which returns the pointer to an object 
implementing the abstract class functionality. 
Therefore, no matter how this implementation 
changes, the derived class itself does not have to be 
recompiled.

One does not have to give up inheritance to 
use indirection: with virtual classes, one can get both. 
When an object is virtually inherited, it does not 
become a part of the derived object, only a pointer to it 
does. The compiler takes care of initializing the base 
object, calling destructors, forwarding all the relevant 
messages, and accessing object's public data via that 
pointer. This works exactly as the forwarding above, 
yet looks and feels just like the regular inheritance.  
Harking back to the transaction_ofstream  
example above, if the C++ library vendor inserts the 
mutex lock into an ios  class (which is virtually 
inherited by all other C++ stream classes), none of the 
code that implements or uses the 
transaction_ofstream  needs to be recompiled. 
Thus indirection cures the FBC problem caused by 
addition of new data members to a base class. The 
situation is more complex when a base class is 
endowed with new virtual functions: the layout of a 
vtable  is very difficult to control. For example, if one 
adds a new data item at the end of a class declaration, 
he can be sure this will not affect the layout of any of 
the old class members. This is not the case with virtual 
methods: often vtable  entries are arranged in the 
lexicographic order of the virtual function names. 
Therefore, addition of a new virtual function to a class 
may affect vtable offsets for many or all old virtual 
methods, in a way that is difficult predict or control.

It is possible however to fortify at least a 
significant chunk of the derivation tree, even against 
additions of virtual functions to a base class. This 
technique requires some discipline in building a 
hierarchy, but in return guarantees that only the top-
most class needs to be recompiled to take into account 
modifications made to a base class. The rest of the 
hierarchy (which may have been compiled to a set of 
separate libraries) may be used as it is. Let us consider 
a transaction_fofstream  class, which is almost 
the same as transaction_ofstream  of the previous 
section:

class transaction_fofstream: virtual 
public strstream
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{
... the same as transaction_ofstream 
above
};

only it inherits virtually from the strstream  class. 
We also assume that str()  etc. methods of the 
strstream  class have been declared virtual: all this 
virtuality is very important. Let us suppose that the 
strstream , filebuf  and the other iostream classes 
are compiled in a library iostreams.LIB  (which 
usually comes with a C++ compiler itself). Suppose we 
compile the transaction_fofstream  class in a 
separate library transactions.LIB .  A user can 
then use this class by incorporating it in his own 
hierarchy, as in

class MyTransaction: public 
transaction_fofstream
{
 ....
};

Now assume that a vendor of the C++ stream library 
has decided to enhance the library with multi-
threading. To this end, he added a mutex to the 
strstream  class to enable a thread to obtain an 
exclusive access to a strstream . To make the design 
more flexible, the vendor also added a virtual function 
to operate this mutex lock, so that a derived class 
would be able to take an advantage of knowing that 
control has entered or about to enter a critical section. 
Rather than modifying the existing strstream  class, 
the vendor ought to create a new, extended version of 
it. This is the discipline one has to stick to:

class strstream_v2 : virtual public 
strstream
{
  pthread_mutex_t mutex;
public:
    strstream_v2(void) {
pthread_mutex_init(&mutex, 
pthread_mutexattr_default); }
    virtual ~strstream_v2(void) { 
pthread_mutex_destroy(&mutex); }
   virtual void lock(const bool 
onoff)

{ assert( (onoff ? 
pthread_mutex_lock : 
pthread_mutex_unlock)(&mutex) == 0); 
}
   char *str(void) { lock(true); 

return strstream::str(); }
void freeze(const bool n = true)
{ if(n) lock(true), 
strstream::freeze(true);
  else strstream::freeze(false), 
lock(false); }
    bool frozen(void) const;
};

The vendor has compiled this strstream _v2 
patch, along with the original  strstream in a new 
version of iostreams.LIB , which he now 
distributes.  Since the original strstream version is 
present in the library as it has been, the old code 
continues to compile, link, and run. If a user however 
wants to take advantage of the new functionality, he 
can update his class as

class MyTransaction: virtual public 
strstream_v2, public 
transaction_fofstream
{
 ....
};

Obviously MyTransaction  can now use 
lock() , the new feature brought in by 
strstream _v2. Slightly less evident is that a message 
freeze()  sent to a MyTransaction  would be 
delivered to the strstream _v2 object rather than to 
the original base strstream . But what is truly 
remarkable is that when transaction_fofstream  
applies the str()  and freeze()  methods to the 
strstream,  in the process of commit -ing a 
MyTransaction , the message is actually intercepted 
and handled by strstream _v2.  Therefore,  when 
MyTransaction  is being committed, the strstream  
is locked until the data are written into the file. The 
strstream _v2 effectively supplants the original 
strstream  beneath  transaction_fofstream , 
pulling off a substitution of a base class in an existent 
hierarchy, without breaking it, or requiring it to be 
recompiled. The user merely needs to change a top 
level class to take advantage of new features in the 
enhanced version of iostreams.LIB . The old 
transactions.LIB library can be used as it is: it 
does not have to be recompiled. Thus the presented 
approach allows one to bypass recompilation for a 
rather long limb of the derivation tree, when a base 
class is extended with new data members, overridden 
virtual methods, or even with new virtual functions. If 
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the vendor decides to enhance the strstream  class 
further, he ought to create a new class strstream _v3 
virtually derived from strstream _v2. Granted, after 
a few more steps, this patching will become too messy 
to be useful; furthermore, chasing pointers in long 
chains of virtual tables slows the code down. Sooner 
or later, the vendor has to collect all the patches and 
roll them in a new version of strstream , which 
would require recompilation of all derived classes. 
Still, it is better to have to recompile the entire code 
one time in a few years rather than a few times a year, 
and still be able to take advantage of incremental 
enhancements.
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