
Database as-a (OO)P language
late binding, delegation, inheritance,
and the Fragile Base Class problem

Oleg Kiselyov
Computer Sciences Corporation

FNMOC, 7 Grace Hopper Ave, Stop 651 Monterey CA 93943-5501
oleg@pobox.com, oleg@acm.org, http://pobox.com/~oleg/ftp/

Database query and programming language are twins separated at birth: although they grew up in
different communities and have rather different (inter)faces, they both accomplish the same task: instructing a
computing system to locate a datum given its description (name, address), apply a certain transformation to it,
and output/store the result. This common semantics makes it possible to "translate" between a database mindset
and that of the "regular" programming. This paper aims to elucidate the rules of such interpretation.

This translation may be insightful for its own sake. It shows for example that all the variety of OO
species has sprung from different structures of underlying databases-environments, which hold the data and
their labels. Conversely, a way queries to these databases are formulated and executed has everything to do with
how powerful and expressive the corresponding OO system is.

There is also a practical side to this seemingly abstract topic, relevant to the day-to-day programming.
The unified perspective helps to evaluate tradeoffs in existing OO systems; it gives an insight into extending a
particular framework, to be more resilient to changes in base classes, to support dynamic inheritance, virtual
construction, etc. This extension does not necessarily mean giving up on the current programming language
and switching over to a fad of the day. With a clear understanding that the devil is in lookups, and an idea
which particular lookup would best suit the task at hand, one can often phrase the cooler OOP features in any
programming language. Some languages may have had these frills already built-in, but even lowly C can easily
bear rather intricate environments. This paper demonstrates one such system, which supports late binding and
dynamic inheritance, and is implemented in C/C++. The paper also dwells on how the database viewpoint can
illuminate the fragile data base problem; several solutions are discussed, including a technique of extending a
base class of a compiled hierarchy without breaking/recompiling it.

Thus following a particular OO system is a question of style, that is, how one writes the code, not what
language he uses.

Simple stuff

To see how database queries and
programming languages are intertwined, let us
consider the most trivial example:

x := x + 1

This innocuous statement clearly shows how and

when a database query creeps in. For the most part,
these are the issues for a compiler writer to deal with.
Still, a user of the language may also want to know
what is going on, to assess efficiency, expandability,
correctness, or to add new functionality. Thus, the
issues the simple statement above poses are:

- reference resolution

'x ' is obviously a reference (handle, name, label) of

Database as-a Language 1

something. The first problem is then to find what x
stands for, and which operations it permits.
Depending on the language (latent vs. manifest types)
this involves searching for a declaration of x in the
current "scope", or locating the value of x in the
current environment.

In Programming Language Theory this function –
which, given a name, finds the corresponding value –
is usually denoted rho(x) and called "environment".
It is a very general formulation indeed: the meaning of
rho(x) spans from fetching a data from memory
given its address or tag to (eval 'x) in a language
like Scheme/Lisp, to translating a name into an
"address" (done by the compiler) and following the
address at run time. What matters for the current
discussion is that the reference resolution is essentially
a database query; capabilities of this database and the
richness of the current "context" is what determines
the expressive power of the resulting (OO) system.

- updating/mutating data

Modification of the current context (database) can be
accomplished in several different ways: by mutating a
data item in place, by updating an item out-of-place
(become in Smalltalk), or rebinding the name to a new
value (and garbage-collecting the old one).

- finding executable code that implements an
operation

This is a particular case of the reference resolution: just
as one has to find out the meaning of x in the
expression above, one needs to know the meaning of
'+', the operation itself. Some systems (Lisp/Scheme)
do not draw any distinction at all: operation resolution
is really just a particular case of name resolution1 .
Other frameworks consider the operation as sending
of a message '+' to an object 'x '; the job of determining
the meaning for '+' is thus relegated to the object.
Often the query for '+' is done in a different database
than the one consulted for 'x '. One reason for that is
the database of code (operations) is persistent (as the
body of an executable file), while the database of data
(the run-time environment) is often not.

Pointers and databases

A hype surrounding OO databases may make
1 "There is no distinction between 'methods' and 'instance
variables'; a method is simply an instance variable with a
procedural value", MzScheme Reference Manual,
http://www.cs.rice.edu/CS/PLT/packages/doc/mzschem
e/index.htm

an impression that the database mindset and
vocabulary somehow lack such a fundamental notion
as pointers (references). These terms must therefore be
deliberately introduced into databases, if databases
and OOP are to get engaged. Pointers however are not
an alien term for databases: in fact, pointers are very
essential to hierarchical and network data models. For
example, in a hierarchical database, all pieces of
information are linked to form a (directed) tree or
forest. To access (read/delete/modify) a particular
item you have to walk the tree to it, given a path, a
sequence of keys in a strict order. Just as you need to
specify a path (sequence of directory names) to access
a file, or a Web resource. This is hardly a surprise: file
system and URL system are typical examples of a
hierarchical database. Getting hold of an AOCE
object/property by providing its path also falls into
the same category. Indeed, AOCE, file systems, the
URL system – all implement a containment model,
which is a hallmark of the hierarchical data model.
Incidentally, this means that AOCE can be considered
a plug-in file system.

In a network database (e.g., ADABAS), logical
organization of information is represented by an
arbitrary graph, not necessarily a tree. Locating data
items entails traversing the graph's edges: pointers.
This must be very familiar to any C/C++ programmer:
creating data structures with pointers to other data
structures is a fundamental C/C++ programming
skill. This is also what an Operating System does all
the time: For example, a process control block has
pointers to memory control blocks, file control blocks,
session control blocks; a file control block points back
to the process(es) that own a file, to a device control
block, to a cache with the read data blocks, etc. Most of
the OS functionality is chasing and chaining all these
pointers. The network logical model is the fastest as
far as speed/efficiency of accessing data is concerned;
it is little wonder OS kernel's databases are all of the
network kind.

In a relational model, getting hold of
necessary pieces of information may also involve
tracing "links"/"pointers", from a row of one table to a
row of another. However, these "pointers" are of a
peculiar kind. While network databases typically
store associations using regular pointers to physical
records (blocks on disk), a relational database breaks
these links in two halves (the from half and the to
half: a key and a lock) and stores the two parts
separately. The pointer itself is "computed"

Database as-a Language 2

(reconstructed) on the fly: given a key, a database
manager finds a lock that corresponds to it, or the
other way around. Of course it is possible to have a
key opening several locks, and a lock opened by
several keys; many-to-many association is really a
snap. Since the association (an "array of pointers" so to
speak) is computed, it does not have to be explicitly
stored: relational databases are rather space efficient.
On the other hand, access requires a computation –
table join, – which is usually done by sorting two tables
(by key's and lock's values) and matching the records.
This process takes time, and a lot of scratch space.
Note that some database systems (for example,
UniSQL) can "cache" thus computed association:
join -ed pointers become real memory pointers
between the corresponding objects in a Workspace .
Therefore, repeated link chases are performed with
utmost efficiency.

Object as a private context (namespace)

To simplify and speed up lookups of
variables, make code more comprehensible, and
following the universal rule "divide-and-conquer", the
search space can be partitioned into a set of (relatively
small, hopefully) contexts. Just as caching data for
CPU, this technique relies on a locality principle:
within a short interval of time or a small section of
code, most of the queries occur within a narrow
context.

Objects and classes are the way to erect
partitions in the lookup space. Although objects are
most commonly defined as local (encapsulated) state
plus a reference to shared code which operates on this
state, "An equally important way to look at a class is as
a means of establishing a namespace. A namespace is
essentially a context for names associated with entities.
Within each class, names of member functions are
mapped to the code that implements those functions,
and names of member fields are mapped to the values
within an object of that class. Different classes can
contain the same name, but the value of that name will
be different because the classes are different
namespaces."2 Note that there is a definition of objects
that directly relates to a notion of a named, isolated
context: "We define an object as a concept, abstraction
or thing with crisp boundaries and meaning for the

problem at hand [Rumbaugh 91]" [OOFAQ].

2 Jim Waldo, "Protected Classes", Java Advisor column,
UNIX Review, Oct 1996, p. 97-101

Implementations of objects are as varied as
their definitions. In the most straightforward sense, an
object is merely a "private" environment. A data item
in this environment (collection) – an object's member –
is represented by its tag, a name, which is used to
look up and access the item. Examples abound: an
object in Perl is merely a (blessed) hash. In JavaScript,
objects are just associative arrays of JavaScript
variables, "properties". A single property can be
accessed either via dot notation, or an associative
indexing. For example, if one has defined an object
bestCPU with a property maker , the property can be
referenced as either

bestCPU.maker

or

bestCPU["maker"]

This example very clearly exposes an object as a
separated and named lexical scope, and accessing its
members as a query.

This straightforward implementation, coupled
with a delegation-like inheritance (see below) is the
easiest way of turning a foo into a OO-foo . Other
examples include MOPS (OO Forth), Delphi's and VB's
property sheets, Python, Tcl/Tk, Bob, to name just
very few. One also has to mention in this context
NewtonScript frames, Scheme closures, Apple Event
objects, BMessages and other inter-process
communication "packets". Indeed, a message from one
(Objective-C, BeOS, MacOS, etc) entity to another is a
small database, a collection of tagged and typed data
items; in case of Objective C, referencing items in this
collection even looks similar to accessing a regular
variable. Incidentally, a file system's directory is an
object too.

Beyond a class: encapsulation

The previous section has shown how closely
objects and database entities (dictionary, table, etc.) are
related. It is interesting to trace this spiritual
connection one generation further. Just as objects were
introduced to cope with abundance of data by
grouping together related items, there have emerged
ways to manage proliferation of objects, by bundling
them into classes and hierarchies. An embedding (has-
a) hierarchy and deriving (subclassing, is-a) hierarchy
are the two most conceptually important and most
frequently occurring types of hierarchy.

Database as-a Language 3

The embedding hierarchy is inherent to
hierarchical databases, which are, by one definition,
collections of containers containing other containers.
In a network database, embedding is represented by
linking a parent record with all the records it "owns".
Placing an object's body or reference inside another
object are also the two ways of performing embedding
in programming languages. As far as relational
databases are concerned, tuples may not contain nor
point to other tuples; still, embedding can be
represented just as well. Containment of relations is
expressed not by placement or reference, but by
computation of a table join. "The specification of a
class D as the domain of an attribute of another class C
in an OODB is in essence a static representation of a
join between the classes C and D" [UniSQL
Whitepaper]. Granted, joins are expensive from the
computational point of view; yet they are conducive to
an efficient and flexible data organization.
Furthermore, a late binding – late pointing – inherent to
join queries makes them immune to a fragile base class
problem (see below).

Inheritance as a fall-back

Another way of constructing a hierarchy of
objects is by marking common and particular traits
(members, methods) between a pair of objects. One
object can then be chosen as a base, reference point,
with the other – derived – object containing only new
and overriding members, as compared to its parent.
This inheritance hierarchy is a difference-type
encoding of a collection of objects, similar to a delta-
coding of sound samples, or LZ encoding of text
strings. When a set of objects' data items is partitioned
into a base and difference subsets, searching an object
for an item has to be generalized. That is, a failure to
locate a slot with a given name/tag in an object no
longer implies that the whole query must have failed.
The object's parent (and its parent, etc) must be
searched in turn. Thus inheritance introduces a
fallback, or an ordered sequence of lookups.

A particular kind of inheritance is grouping
objects into classes, that is, "objects" that specify
methods, data, and slots common to any object of that
class. Individual class instances contain then only
particular values for these slots: data or virtually
overridden (in C++ parlance) methods. Note that in
some OO systems, for example, Smalltalk, class
"objects" are objects themselves: they are objects that

construct other objects.

To represent lineage, a derived object must
contain a reference to its parent (class), or even
physically incorporate it. What distinguishes this from
a regular containment hierarchy is the fact that this
"embedding" of a parent affects the derived object's
slot lookup procedure: the contained object/class acts
as a default "clause". In some OO systems this
embedding of a parent shows only in compiler tables
describing an instance/class, with no corresponding
run-time representation. Some other systems make a
reference to a parent a part of an object itself, as a
parent /_proto slot, or a "virtual" slot – an "item
not found " exception procedure. Self, NewtonScript,
Lua are a few examples of such – so-called 1-level,
single-hierarchy, or delegation – systems. Note that in
these OO systems, the distinction between an object
and a class is blurred: all classes are objects, any object
may act as a class, that is, provide object instantiation
or act as a shared parent. These systems also make it
possible for an object to change its parent at run time
(which is called a dynamic inheritance).

Applications and examples

Smart defaults

This is the most trivial example of a fallback
closure, the example that ought not even be mentioned
if it were not for an amazing expressive power of this
trick. It is used when a code runs into a problem, but
not necessarily fatal condition: for example, a sought
piece of information could not be located, or one of the
parameters was left unspecified. In this situation, the
code may assume some default value, crash, give a
user the second chance to enter the parameter, or
merely alert the user about the default value being
used. However primitive this all seems, it does take a
fair amount of code to handle all peculiarities,
especially to enable a function to communicate its
failure to its caller, so the latter can do something
intelligent about it. This common part can easily be
automated if, for example, a lookup function is written
in a smart way: that is, it takes a default argument, in
general, a default functor. Here are a few examples of
the expressiveness of this approach (taken from
http://pobox.com/~oleg/ftp/c++advio.READ
ME.txt)

Database as-a Language 4

// Default default: crashes the program if the file
// does not exist

const int file_size = get_file_size(file_name);
...

// A smarter, custom default
struct GFS_big_default : public GFS_Default
{
 enum { def_size = (size_t)(-2) };
 size_t operator () (const char * file_name)
 { cerr << file_name << " does not exist; default size "

 << def_size << " used" << endl;
 return def_size;
 }
 };
 if(get_file_size(file_name,GFS_big_default()) ==

 GFS_big_default::def_size)
 handle_file_does_not_exist();
...
struct Ask_user_default : public GFS_Default
{
 dialog_stream& ask_user;
 Ask_user_default(const dialog_stream& ask_user_dlg) :

ask_user(ask_user_dlg) {}
 size_t operator () (const char * file_name)
 { ask_user << file_name << " does not exist; "

<< "do you want me to create it? " << endl;
 if(ask_user.cancel())
 throw die_die();

 else
 {
 assert(close(creat(file_name,0777)) == 0);
 return 0;
 }

 }
 };
const int file_size = get_file_size(file_name,Ask_user_default(Alert()));

These examples clearly show the power of the
default functor, which easily accommodates various
strategies of handling lookup failures (in our case,
looking up an OS property 'size' for a given file). Of
course one could also use exceptions. However, not all
C++ compilers support exceptions well (the HP-PA
platform is notorious in this respect); some compilers
impose a heavy overhead or require you to recompile
all code with exceptions enabled. The last example in
the snippet above – when the default value is
"computed", which involves a dialog with a user and a
side-effect – is rather messy to implement with
exceptions: once the stack is unwound, it can not be
wound back up. The smart default approach provides
both safety, flexibility, and yes, efficiency.

Twists and turns in falling back

The idea of a smart but single default can be
extended to multi-level fallbacks, supported by a
sequence of dictionaries searched in a (dynamically
changeable) order. That is, an item is first sought in a
top dictionary. If the lookup succeeds, the found value
is returned. Otherwise, the next dictionary – whose
name/reference is contained in a "dictionary path" – is
consulted. If nothing was found, the next dictionary is
searched in turn, etc. Only when all dictionaries
mentioned in the path have been looked through (in
vain), a default action (if any) is executed.

Database as-a Language 5

At first glance, this system looks and feels like
a lexical or dynamic scoping: indeed, when code refers
to a variable 'i ', it causes the compiler/interpreter to
consult the innermost scope (environment), falling
back to the containing scope etc. all the way to the
global environment of the task. However, the dynamic
nature of the "search path" sets our hierarchical
dictionaries apart. Dictionaries can be added or
removed from the path at run time, which will affect
the order fallbacks are executed. The search path can
change even in the process of a lookup itself. For
example, a dictionary, once entered, may sever the
search path, thus cutting access to its "parents" and
making its inheritance from them private. It has to be
stressed again that because of the dynamic nature of
the search path, no rigid parent-child relationships
exist: hierarchies are built and torn down on the fly as
circumstances warrant. The closest model of these
dynamic hierarchies is a set of dictionaries in
Forth/PostScript. As we are about to show, one does
not need to switch to these languages to benefit from
their dictionary framework: one can easily implement
a similar thing in C++ (or even C), or any other
language of choice.

As an example, I will demonstrate a
client/server system to disseminate weather
information (temperature and pressure grids, wind
directions, etc.) to a number of clients. An earlier
version of the system, called NODDS, has been in
operation at a Fleet Numerical Oceanography Center
(FNOC) at Monterey, CA for a number of years. I was
to rewrite its server part, taking advantage of a
different database of weather products. Thus I had to
abide by the existing client-server protocol.

Requesting a weather product, for example, a
temperature grid, requires quite a few parameters to
be specified: grid's boundary, grid resolution, the
name of a weather model used to process raw
observations or make forecasts, the product code,
desired units, scale factors, etc. The database required
all these keys to retrieve the data; a user, however,
does not need to specify every one of them: some
values are to be inferred. The inference rules vary
however depending on a client (for example, a user in
Europe would like to see temperatures in degrees C,
while degrees F may be preferred in other parts of the
world). The defaults may also vary with a model
(certain weather models support only certain grid
resolutions), a product, etc. Thus we have a hierarchy
of configuration information – units, model name,

region, scale factors, etc. – where each piece can be
overridden by client's profile, client's request, or by the
results of evaluating the request.

The dictionary system with a dynamic search
path proved to be very useful in implementing the
weather products server. Here are a few details. When
the server starts up, it loads the top-level vocabulary
and makes it default: pushes it on the top of the search
path. This top vocabulary is rather trivial, for example:

Voc(R): TopRefVoc= "Top Reference
Vocabulary" (
R,2D_grid= "2d_grid.voc"
)

(this is the vocabulary contents exactly as written in the
file it is loaded from). The vocabulary is made of a
single item, with a key "2D_grid " and the value
which is another vocabulary, referenced by an external
file name. This latter vocabulary is not loaded until
required. When a request for a temperature, pressure
or any other 2D grid is received, the 2D_grid
vocabulary is looked up and pushed to the top:

VocPath::push("2D_grid"); // Load
Vocabulary of products

This statement first looks up an item with a key
"2D_grid " in the vocabulary path, which at the
moment contains only the top vocabulary. The
reference is resolved, and thus loaded 2D_grid
vocabulary is pushed to the top of the search path.
Here is how this vocabulary looks like:

Voc(R): 2D_grid= "2D grid products" (
S,geom_name= "global_73x144"
S,model_name= "nogaps"
S,units_name= "*"
Voc(R): W= "flaps for NMC products" (
S,model_name= "NMC"
S,return_flaps_char= "W"
)
Voc(R): A01= "Surface Pressure" (
S,units_name= "mb"
)
Voc(R): A07= "Surface Air
Temperature" (
S,model_name= "otis"
S,units_name= "C"
)

Database as-a Language 6

Voc(R): C10= "1000Mb Temperature" (
S,units_name= "C"
)
Voc(R): E34= "700Mb Relative
Humidity" (
S,model_name= "uanva"
S,units_name= "fraction"
)
)

This vocabulary contains a few simple items (like
"geom_name", "model_name ", "units_name ") and a
number of embedded dictionaries for specific weather
products. These slots tell the server that it should
assume a default value of grid_73x144 for the grid
geometry, default value of "nogaps " for the model
name, etc. A client's profile, loaded by the server after
parsing a request, may include specializations for that
particular client: an area the client is interested in,
defaults for units (say, always "ft ") and for the model
(say, some particular client is interested only in
NORAPS data). The client profile vocabulary is placed
in the search path ahead of the product group
dictionary, giving defaults of a client precedence over
the server defaults. The request for products (made of
one or several request lines) provides further details.
Each product has its own set of defaults (e.g.,
preferred units), which override the client or server
defaults but can in turn be overridden by request line
options.

For example, if a user has requested surface
air temperatures, the corresponding subvocabulary
(with a key "A07") is looked up and pushed at the top:

VocPath::push(cat_no);

Therefore, model_name and units_name slots from
this vocabulary override the (generic) ones in the
"parent" 2D_grid vocabulary. If the request contained
a "flaps " character W, the corresponding vocabulary
"W" is loaded on the top, which changes the default for
the model_name to "NMC". When the time comes to
query the database, the necessary keys are looked up
in the resulting environment:

xstrncpy(szModelName,VocPath::find_st
r("model_name"),sizeof(szModelName)-
1);

xstrncpy(szGeomName,VocPath::find_str

("geom_name"),sizeof(szGeomName)-1);

xstrncpy(szParamUnits,VocPath::find_s
tr("units_name"),sizeof(szParamUnits)
-1);

In the present example, the "model_name " would be
"NMC" (as found in the topmost "W" vocabulary, which
is searched first), "units_name " would be "C" (the top
vocabulary does not have this item, but the next
vocabulary in the path, "A07", does), and
"geom_name" would be "global_73x144 " (found in
the second vocabulary from the top). After the request
is processed, all the relevant vocabularies are removed
from the vocabulary search path:

voc_path_mark.back_off();

The server is now ready for a new request. It has to be
stressed that the server configuration is entirely
controlled by the vocabularies, which are loaded on
demand from self-explanatory text files. This makes it
easy to change the name of a weather model, units
names, etc. by editing the files in any text editor.

The vocabulary system described above is a
part of the c++advio library available from
http://pobox.com/~oleg/ftp/c++advio.READ
ME.txt . The vocabularies are clearly polymorphic: a
vocabulary slot may contain a simple data type (int ,
double , or string, that is, const char *), a
reference to another vocabulary, or a (sub)vocabulary.
Homogeneous vocabularies are those whose slots have
exactly the same structure, which is reinforced when
new entries are added.

A vocabulary of vocabularies contains all full-
fledged vocabularies: that is, every dictionary is
always contained in some other (parent) vocabulary,
which in many cases is the Vocabulary of
vocabularies. Note, a vocabulary can be referenced
from many different dictionaries. A vocabulary path
is a list of dictionaries to search for a named slot in, in
order of appearance in the path. Vocabularies can be
referred to from within other dictionaries by special
items, vocabulary references. A reference either points
to a vocabulary (when the reference is completely
"resolved") or merely holds the name of the referred
vocabulary, which is to be looked up when needed (a
lazy reference). The reference may also contain a file
name, from which the vocabulary would be loaded
when it fails to be located otherwise.

Database as-a Language 7

Vocabularies support all the basic functions:
lookup, insert, delete, traverse. Looking up a slot (or a
slot value) is the main function, and exists in many
varieties. There is a function to look up a slot in the
current dictionary, in all vocabularies in the path (the
top dictionary in the path is searched first, the
vocabulary underneath is search only if the lookup in
the top dictionary failed, etc).

Note, the vocabulary objects and their slots are
somewhat unusual C++ objects. They do not offer any
public constructor or destructor. A vocabulary can
only be created by a special friend function, which
automatically inserts the newly made dictionary into
the vocabulary of vocabularies, and puts it on the top
of the vocabulary path (which makes the new
vocabulary current). By the same token, the only way
to make a new vocabulary item object is to call a
special friend function. This function allocates object's
memory off the heap, fills it in, and inserts the new
item into the current vocabulary. Therefore, an item or
a vocabulary cannot exist by themselves, not being a
part of some dictionary. A user can get hold of only
references to a vocabulary or a slot, but never of the
objects themselves.

I would also like to briefly mention a more
primitive system (implemented earlier in plain C),
which provides a uniform way to specify a variety of
parameters and values for a complex project. The most
common way of passing parameters to a module – via
command-line options – is probably the worst
solution, as anyone who ever took a look at gcc
command-line arguments could testify to. A much
better approach is to use a global database of project
options (something like a pool dictionary in
Smalltalk), available to all project's functions/modules
via a simple lookup interface. The database is loaded
at start-up from a simple configuration file, whose
name is the only parameter passed to the root module.
The following are two examples of the configuration
files, from two real projects:

Header = H2O
Write_to =real_water1.dat;No
Molar_mass = 18.02
;
P_min = 1 ; Lower bound
Pressures =
1,100,500,700,1000,1500,2000,3000,700
0,10000 ; pressure range
;

T_min = 303.15 ; Min temperature
value
T_max = 353.15 ; Max temperature
value
;
Delta_p = 10;0.5 ; Grid mesh
Delta_t = 0.01
;
Mixing_factor = 0.96 ; Mixing factor

And

; Configuration file for CLEAN
;
Input_spectrum = /tmp/aaa
;
Cleaned_spectrum =
/tmp/cleaned_re.dat
Remainder_spectrum = /tmp/rem_re.dat
;
Dead_time = 4 ; Dead time in ms
Freq_range = 1 ; Freq. range for
the spectrum, kHz
Noise_level = 6 ; in abs units (in
units of the spectrum)
;
Window_half = 3 ; Window half-width
for the deconvolution algorithm
Gamma = 0.5 ; Scale factor for
the deconvolution algorithm
Large_step = 10 ; Size for the large
iteration step
Max_no_steps = 1000 ; Maximal no. of
steps to perform
Print_level = C ; D-detailed, C-
concise, N-nothing

The configuration files have a very straightforward
structure: merely a list of parameter names and their
values. Everything after a semicolon is a comment.
Note, that parameters may have an array of values: as
in

Pressures =
1,100,500,700,1000,1500,2000,3000,
7000,10000

For one thing, the configuration files are more
informative than command-line options. The root
module is also spared the trouble of validating every
option passed to it: this is the job of the immediate
consumer of a particular parameter. Adding, deleting,

Database as-a Language 8

or changing the meaning of parameters will not
therefore require the root module be recompiled.
Another important advantage of this global
configuration database is that the program, having
finished calculations, can dump its configuration at
the beginning of its output files. When the results are
to be processed further by some other code, this code
can easily find out the value of any parameter of the
originating calculation. Putting the configuration
along with the results also makes the output files self-
documented.

Fragile Base-Class problem

In a nutshell, the "fragile base-class (FBC)
problem" is what requires client programs to be
recompiled whenever the class library on which they
depend is modified. The FBC problem is a lookup
problem; more precisely, a lookup cache-coherence
problem. This problem arises whenever a reference
resolution, identifier lookup, or any other query is
performed non-atomically, while the database is being
concurrently modified. Especially problem-prone are
the multi-stage lookups that "cache" the results of their
intermediate steps, providing no mechanisms to flush
or update this cache should the underlying
environment gets altered. Given below are a number
of classical as well as lesser known examples of the
FBC problems. These examples hopefully show that
the problem is more pervasive than it appears to be.

Let us consider the following C code fragment
that uses the standard stdio facilities:

FILE * fp = fopen("/dev/tty","r");
char buffer[120];
if(fgets(buffer,
 sizeof(buffer)-1,fp) == 0)
 if(ferror(fp))
 handle_error();

In most common stdio implementations, ferror()
is a macro or an inline function, for example,

#define ferror(file) ((file)
 ->state.error)

as in Metrowerks' CW 11 MSL. Thus the second if()
statement in the code above would be compiled as

check the byte located at fp+13

(or, in PowerPC assembly)

lbz r0,13(r31)

cmpwi r0,0
beq *+12
bl .handle_error__Fv

Now imagine that the vendor of the standard C library
has decided to enhance his product. For example, he
now wants to support very large files, bigger than
4Gb; or he resolved to pack the error flag in one bit,
rather than devoting a whole byte to it. Thus the
vendor has changed the __file_state structure
from

typedef struct {
unsigned int io_state : 3;
unsigned int free_buffer : 1;
unsigned char eof;
unsigned char error;

} __file_state;

to

typedef struct {
unsigned int io_state : 3;
unsigned int free_buffer : 1;

 unsigned int reserved : 2;
unsigned int eof : 1;
unsigned int error : 1;

} __file_state;

Linking this new library with the compiled
code fragment above creates a problem: the error
field is now a bit rather than a byte, and is located at
fp +11. The old version of the ferror() function
inlined in the compiled code would now check a
wrong field, which has nothing to do with the file
status. In contrast, fgets() continues to work just
fine. The compiled fragment contains a reference to
fgets() rather than the function itself, and the code
passes it a pointer to the FILE structure. Both
references will be resolved late, using the new version
of the library: the function's body would be located
during linking, and the FILE structure will be "looked
up" only at the run time, by fopen() . Function
ferror() on the other hand has been located early, at
the compile time. This eager binding saves time when
linking and running the code, but causes a problem
when the underlying data structure changes.

The Fragile Base Class problem is most
evident in C++. To illustrate it, let us consider the
following transaction_ofstream class, which
adds commit/backoff functionality to the regular C++

Database as-a Language 9

file stream:

class transaction_ofstream: public
strstream
{
 filebuf * output_buffer;
public:
 transaction_ofstream(const char *
file_name)
 : output_buffer(new
 filebuf(file_name,ios::out)) {}
 void backoff(void)
 {seekoff(0,ios::beg);}
 void commit(void)
 { output_buffer->xsputn(str(),
 pcount());
 output_buffer->sync();
 backoff(); freeze(0); }
};

This transaction_ofstream redirects all
incoming information into a memory buffer; it is
when the user commits() that all the accumulated
data are written into a destination file. Suppose now
that the vendor of the C++ stream library has decided
to make the library thread-safe, and added a mutex
lock to the strstream class. This obviously compels
recompilation of the entire code that implements and
uses transaction_ofstream . Indeed, the
commit() method above gets hold of the
output_buffer data item as the contents of a word
of memory located at &(this->output_buffer) ,
that is, at this+sizeof(strstream) : derived class'
data members are appended to base class' ones in any
instance of the class. Adding new data members (the
mutex, in our example) to the base strstream class
changes the sizeof(strstream) , hence altering the
offset to the output_buffer in the
transaction_ofstream object's layout. Thus every
method that depends on the derived class' layout must
be recompiled to take into account the modified
offsets. Note, the commit() method above does not
use the mutex lock, the field added to the base class;
nevertheless this method must be recompiled, because
the new field changed offsets to those data members
that the commit() method uses.

This problem is not limited to C++, it lurks
everywhere a (name) lookup is performed "early". For
example, consider an application that dynamically

links to a (shared) standard C library, libc.so .
Suppose that the application at some point calls a
library function printf() . Since the compiler cannot
know where this function's code will be located in
memory when the application runs, the compiler
generates a dummy instruction, for example,

call 0

with 0 in place of the actual call address. In the object
module's external dictionary, the compiler leaves a
note for the linker to replace this placeholder 0 with
the correct address of the printf() function. When
building the executable file, the linker may be tempted
to perform the following optimization, especially if
prodded by the user, for example, by an option 'ld -
b' on Solaris 2.5. The linker can scan the dictionary of
the shared library libc.so and find out that
printf() 's code starts at an offset, say, 0x7000 from
the beginning of the library. The linker then instructs a
run-time loader to map the shared library file into the
process virtual space starting at, say, 0x40000000 ;
the dummy call instruction above will be corrected
by the linker as

call 0x40007000

Thus, the reference to printf() becomes resolved at
link time, requiring no scanning through the shared
library or object code adjustments when the
application runs. This optimization carries with it a
price tag: suppose an operating system vendor has
modified the shared library, for example, to add a few
new functions. Suppose the code of printf() itself
remained intact; however, its offset in the new version
of libc.so changed, from 0x7000 to 0x7010 .
Obviously, our application must be relinked:
otherwise, the instruction call 0x40007000 would
miss its target, the beginning of printf() . It has to be
stressed again that even if the application code does
not use the newly added libc.so functionality, even if
printf() itself is unchanged, the application still has
to be rebuilt: no matter how incidental changes are,
they have rendered the early resolved address of
printf() invalid.

Other examples were the over-eagerness can
hurt include using absolute IP addresses rather than
host names in internet applications. This certainly
saves the trouble of performing a DNS lookup; on the
other hand, if a host is moved to a different address
(different network), the application would have to be
rebuilt. By the same token, using absolute port
numbers (rather than resolving service names with
getservbyname()) saves CPU cycles but leaves the

Database as-a Language 10

application vulnerable if the port mapping changes.
Even referring to a document by its URL is a shortcut,
easily broken when the document moves. More
reliable is a lazy, indirect locator that either refers to
the document through a glossary, or contains a search
engine query to be executed on demand, yielding the
document's current location at that moment.

"Precompiled" database queries is yet another
example of jumping the gun. Normally, SQL queries
are compiled right before they are executed. For
example, when a database manager receives a query

SELECT Job, Avg(Salary) FROM Employee
WHERE Salary > 50000 AND DOB > 3/5/53
GROUP BY Job;

it first checks a database schema for a table Employee :
suppose, the table does contain the attribute Job as
column #2 of the table, Salary as column #3, and
DOB as column #5. The database system then scans
through the Employee table in storage, checking these
three columns and creating the answer. The query
compilation stage – looking up attribute names in the
database schema and translating them into table
column numbers, among other things – can be
performed in advance. The compiled query can then
be executed several times. However, if the Employee
table is changed, for example, some attributes have
been added so that DOB becomes column #7, the
precompiled query would give the wrong result. The
original query (in the source form) will not be affected
by these changes: the database manager will find the
new column number for the DOB attribute when it
consults the schema. In fact, the original query can be
executed as long as the table Employee still contains
columns Job , Salary and DOB, no matter how the
table layout has been modified. This late binding is
one of the main advantages of the non-procedural
nature of SQL, which allows for independence of data
manipulation from data layout.

Fortifying derivation trees

The obvious (and probably sole) solution to
the Fragile Base-Class problem is to eschew shortcuts
and be lazy, putting off resolving names as late as
possible. This may be relatively straightforward to
follow in some cases: use demand/lazy linking as
often as possible (not letting the linker take shortcuts
in resolving external names in shared libraries);
precompile only those SQL queries that are absolutely

critical to performance; try to use symbolic internet
service names (rather than hard-wired port numbers)
and query a portmapper: the latter is default in Sun's
RPC system. The use of symbolic host names (rather
then dot IP addresses) has become the standard
practice already. In case of URL, being lazy may mean,
at the very least, using relative URLs, especially to
references within the site. Better yet, one really ought
to take advantage of link glossaries if a web site is
maintained by Frontier, NetFusion, GlobeTrotter, etc.
packages. The best solution would be using of
Universal Resource Names, which describe resources
without explicitly naming them; the URN proposal is
presently being considered by IETF.

Incidentally, lazy does not necessarily mean
inefficient: for example, a dynamic linking technique
called "load-time code generation" eliminates not only
the FBC problem, but also the run-time overhead
typical of dynamic linking. This technique uses a so-
called slim-binary object code representation, which is
usually 2.5-3 times more compact, and also allows for
the last-minute tweaking (e.g., instruction scheduling)3
. These slim binaries are used extensively in an
Oberon/F system.

The advice of binding late is much harder to
follow in C/C++ etc. environments, which are
designed to use static binding of variable/function/
method names, manifest types, and to resolve as many
symbols at compile time as possible. Although the late
binding is not explicitly provided by the language, it
always can be emulated: for example, by getenv() ,
querying a resource, an .INI file, etc. The system of
nested dictionaries discussed in a previous section is
yet another example of demand binding implemented
and used in C/C++.

However "static" the C/C++ environment may
look like, it does offer some tools for dynamic binding.
Indeed, the late binding occurs whenever a data item
is accessed indirectly, either via a call to a function, or a
handle. In the former case, one explicitly calls some
sort of a lookup/getter/setter function that finds or
computes the value. The result of this lookup may be
cached. Incidentally, this is precisely how most of
dynamic linking schemes work: a call to a function in a
shared library is represented by a promise to invoke
this function. When the promise is called, the
operating system would look up the address of the

3 M.Franz, "Dynamic Linking of Software Components",
Computer, March 1997, pp.74-81

Database as-a Language 11

function and transfer the control to its code. The OS
will also cache the found address: hence the next call
to the function will invoke the function's body
directly. The same technique can be used with data
members. Thus if you do not want to bother making a
promise yourself, simply put the necessary
data/functions in a dynamically loadable segment,
and let the dynamic linker/loader do the job for you.

To an extent, the Fragile Base-Class problem
in C++ can be alleviated (if not completely solved) by
indirection, along with some discipline. Indeed, the
main reason a modification of a base class compels
recompilation of all derived classes is because a
derived class object contains the base class object as its
header, with derived object's data following. Thus any
change in the base object size alters the offsets of the
derived object's data within the object, the offsets that
derived class' methods use to access the data.
However, if the base object's body is placed
somewhere else in memory, with the derived object
containing merely a reference (pointer) to it, then no
matter how the base object shrinks or expands, the
derived object's layout will remain the same. Using
the example of transaction_ofstream above, if a
C++ stream library vendor has shipped a new version
of the library with an enhanced class filebuf (e.g.,
supporting 64-bit file offsets), the
transaction_ofstream class (and any code that
uses it) does not have to be recompiled. One has to
take a special care though to manipulate the filebuf
object only through appropriate methods, rather than
using known offsets to publicly accessible data.
Otherwise, one runs into the same problem as the one
described in the previous section, dealing with
ferror() and a changed FILE structure. This
problem will not occur however if new members are
added at the end of an indirectly referenced "base"
object: obviously, this procedure does not alter any
offset to the existing data. As was mentioned above,
the discipline is important.

"Deriving" an object from another one by
merely pointing to it is a rather weak form of
inheritance: indeed, none of the base object's methods
will apply to thus "derived" object. One has to re-
declare all needed base class methods in the "derived"
class to forward appropriate messages to the base
object. This forwarding (which Microsoft calls
"aggregation") is the cornerstone of Microsoft's COM
architecture. The discipline is needed here as well: to
make the aggregation as general as possible, a

"derived" class should declare the base class reference
as the pointer to an abstract class. The derived class
constructor should initialize the pointer by calling a
factory, which returns the pointer to an object
implementing the abstract class functionality.
Therefore, no matter how this implementation
changes, the derived class itself does not have to be
recompiled.

One does not have to give up inheritance to
use indirection: with virtual classes, one can get both.
When an object is virtually inherited, it does not
become a part of the derived object, only a pointer to it
does. The compiler takes care of initializing the base
object, calling destructors, forwarding all the relevant
messages, and accessing object's public data via that
pointer. This works exactly as the forwarding above,
yet looks and feels just like the regular inheritance.
Harking back to the transaction_ofstream
example above, if the C++ library vendor inserts the
mutex lock into an ios class (which is virtually
inherited by all other C++ stream classes), none of the
code that implements or uses the
transaction_ofstream needs to be recompiled.
Thus indirection cures the FBC problem caused by
addition of new data members to a base class. The
situation is more complex when a base class is
endowed with new virtual functions: the layout of a
vtable is very difficult to control. For example, if one
adds a new data item at the end of a class declaration,
he can be sure this will not affect the layout of any of
the old class members. This is not the case with virtual
methods: often vtable entries are arranged in the
lexicographic order of the virtual function names.
Therefore, addition of a new virtual function to a class
may affect vtable offsets for many or all old virtual
methods, in a way that is difficult predict or control.

It is possible however to fortify at least a
significant chunk of the derivation tree, even against
additions of virtual functions to a base class. This
technique requires some discipline in building a
hierarchy, but in return guarantees that only the top-
most class needs to be recompiled to take into account
modifications made to a base class. The rest of the
hierarchy (which may have been compiled to a set of
separate libraries) may be used as it is. Let us consider
a transaction_fofstream class, which is almost
the same as transaction_ofstream of the previous
section:

class transaction_fofstream: virtual
public strstream

Database as-a Language 12

{
... the same as transaction_ofstream
above
};

only it inherits virtually from the strstream class.
We also assume that str() etc. methods of the
strstream class have been declared virtual: all this
virtuality is very important. Let us suppose that the
strstream , filebuf and the other iostream classes
are compiled in a library iostreams.LIB (which
usually comes with a C++ compiler itself). Suppose we
compile the transaction_fofstream class in a
separate library transactions.LIB . A user can
then use this class by incorporating it in his own
hierarchy, as in

class MyTransaction: public
transaction_fofstream
{

};

Now assume that a vendor of the C++ stream library
has decided to enhance the library with multi-
threading. To this end, he added a mutex to the
strstream class to enable a thread to obtain an
exclusive access to a strstream . To make the design
more flexible, the vendor also added a virtual function
to operate this mutex lock, so that a derived class
would be able to take an advantage of knowing that
control has entered or about to enter a critical section.
Rather than modifying the existing strstream class,
the vendor ought to create a new, extended version of
it. This is the discipline one has to stick to:

class strstream_v2 : virtual public
strstream
{
 pthread_mutex_t mutex;
public:
 strstream_v2(void) {
pthread_mutex_init(&mutex,
pthread_mutexattr_default); }
 virtual ~strstream_v2(void) {
pthread_mutex_destroy(&mutex); }
 virtual void lock(const bool
onoff)

{ assert((onoff ?
pthread_mutex_lock :
pthread_mutex_unlock)(&mutex) == 0);
}
 char *str(void) { lock(true);

return strstream::str(); }
void freeze(const bool n = true)
{ if(n) lock(true),
strstream::freeze(true);
 else strstream::freeze(false),
lock(false); }
 bool frozen(void) const;
};

The vendor has compiled this strstream _v2
patch, along with the original strstream in a new
version of iostreams.LIB , which he now
distributes. Since the original strstream version is
present in the library as it has been, the old code
continues to compile, link, and run. If a user however
wants to take advantage of the new functionality, he
can update his class as

class MyTransaction: virtual public
strstream_v2, public
transaction_fofstream
{

};

Obviously MyTransaction can now use
lock() , the new feature brought in by
strstream _v2. Slightly less evident is that a message
freeze() sent to a MyTransaction would be
delivered to the strstream _v2 object rather than to
the original base strstream . But what is truly
remarkable is that when transaction_fofstream
applies the str() and freeze() methods to the
strstream, in the process of commit -ing a
MyTransaction , the message is actually intercepted
and handled by strstream _v2. Therefore, when
MyTransaction is being committed, the strstream
is locked until the data are written into the file. The
strstream _v2 effectively supplants the original
strstream beneath transaction_fofstream ,
pulling off a substitution of a base class in an existent
hierarchy, without breaking it, or requiring it to be
recompiled. The user merely needs to change a top
level class to take advantage of new features in the
enhanced version of iostreams.LIB . The old
transactions.LIB library can be used as it is: it
does not have to be recompiled. Thus the presented
approach allows one to bypass recompilation for a
rather long limb of the derivation tree, when a base
class is extended with new data members, overridden
virtual methods, or even with new virtual functions. If

Database as-a Language 13

the vendor decides to enhance the strstream class
further, he ought to create a new class strstream _v3
virtually derived from strstream _v2. Granted, after
a few more steps, this patching will become too messy
to be useful; furthermore, chasing pointers in long
chains of virtual tables slows the code down. Sooner
or later, the vendor has to collect all the patches and
roll them in a new version of strstream , which
would require recompilation of all derived classes.
Still, it is better to have to recompile the entire code
one time in a few years rather than a few times a year,
and still be able to take advantage of incremental
enhancements.

Additional References

Object-Orientation FAQ
http://iamwww.unibe.ch:80/~scg/OOinfo/FA
Q/oo-faq-S-1.1.html
A treasure trove of definitions for object, class,
inheritance, etc.

Encapsulating a C++ Library
by Mark Linton, 1992 USENIX C++ Conference
Proceeding, (pp. 57-66; ISBN 1-880446-45-6)

Object-Relational
The Unification of object and relational database
technology
A UniSQL Whitepaper by Dr. Won Kim
http://www.unisql.com/tech_spot/tech_spo
t.html

SOM, COM, and Fragile Base Classes
http://www.byte.com/art/9405/sec6/art1.h
tm
The article explains what a Fragile Base Class Problem
is all about, mentioning a Microsoft's way of dealing
with it (by doing away with inheritance as being "too
powerful" and using aggregation instead). The article
then concentrates on how an Oberon/F system
handles the FBC problem, by emulating delegation via
callbacks. Incidentally, a distinction between types
and classes (and correspondingly, subtyping vs.
subclassing) is well explained.

http://iamwww.unibe.ch/~scg/OOinfo/FAQ/o
o-faq-S-1.10.html#S-1.10
On dynamic inheritance, and one-level systems (Self,
NewtonScript) where an object can serve as a class,
and objects can change their parents on the fly.

Towards Tractable Algebras for Bags, by Stephane
Grumbach and Tova Milo, Journal of Computer and
System Sciences, 1996, v.52, pp.570-588.
This rather technical and dry mathematical paper
proves (among many others) a theorem that an algebra
of nested bags along with a fixed-point operator is
Turing complete, that is, can simulate every
computable query. Thus a database IS-A (OO)P

language.

Database as-a Language 14

