SUMMATIVE ASSESSMENT –I (2011) Lakdfyr ijh{kk &I 460012 MATHEMATICS / xf.kr Class – IX / & IX Time allowed: 3 hours fu/kkZfjr le; % 3 ?k.Vs Maximum Marks: 90 vf/kdre vad % 90 General Instructions: (i) All questions are compulsory. (ii) The question paper consists of 34 questions divided into four sections A,B,C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each. (iii) Question numbers 1 to 10 in section-A are multiple choice questions where you are to select one correct option out of the given four. (iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions. (v) Use of calculator is not permitted. lkekU; funsZ”k % (i) (ii) (iii) (iv) (v) lHkh iz”u vfuok;Z gSaA bl iz”u i= esa 34 iz”u gSa, ftUgsa pkj [k.Mksa v, c, l rFkk n esa ckaVk x;k gSA [k.M & v esa 8 iz”u gSa ftuesa izR;sd 1 vad dk gS, [k.M & c esa 6 iz”u gSa ftuesa izR;sd ds 2 vad gSa, [k.M & l esa 10 iz”u gSa ftuesa izR;sd ds 3 vad gS rFkk [k.M & n esa 10 iz”u gSa ftuesa izR;sd ds 4 vad gSaA [k.M v esa iz”u la[;k 1 ls 10 rd cgqfodYih; iz”u gSa tgka vkidks pkj fodYiksa esa ls ,d lgh fodYi pquuk gSA bl iz”u i= esa dksbZ Hkh loksZifj fodYi ugha gS, ysfdu vkarfjd fodYi 2 vadksa ds ,d iz”u esa, 3 vadksa ds 3 iz”uksa esa vkSj 4 vadksa ds 2 iz”uksa esa fn, x, gSaA izR;sd iz”u esa ,d fodYi dk p;u djsAa dSydqysVj dk iz;ksx oftZr gSA Section-A Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice. Page 1 of 11 1 1. The simplified form of (A) 13 2 13 5 1 13 3 is : 8 15 (B) 13 15 15 (B) 13 15 1 2 15 (C) 13 3  (D) 13 1 13 5 1 13 3 (A) 13 2. 3. 2 8 1 (D) 13 Which of the following is a polynomial in one variable : (A) 3x2x (B) (C) x3 y3 7 (D) x  (A) 3x2x (B) (C) x3 y3 7 (D) 3 x  4 1 x 3 x  4 x  1 x Which of the following is a quadratic polynomial ? (A) 3x35x4 (C) x2  1 3 x (B) x2  (C) If 53x2x27x3 (D) (x1) (x1) (A) 3x35x4 4. 2 15 (C) 13 3  1 3 x (B) (D) 53x2x27x3 (x1) (x1) x y  1, (x, y  0), then, the value of x3y3 is : y x (A) 1 (B) 1 x y  1, (x, y  0) y x (C) 0 (D) 1 2 x3y3 Page 2 of 11 (A) 1 5. (B) 1 (C) 0 1 2 (D) Value of x in the figure below is : (A) 80 (B) 40 (C) 160 (D) 20 (B) 40 (C) 160 (D) 20 x (A) 80 6. In ABC, if ABAC, B50, then A is equal to : (A) 40 (B) ABC (A) 7. 50 (C) ABAC, B50 40 80  (D) 130 A (B) 50 (C) 80 (D) 130 A square and an equilateral triangle have equal perimeters. If the diagonal of the square is 12 2 cm then area of the triangle is : (A) 24 2 cm 2 (B) 24 3 cm2 (C) 48 3 cm2 (D) 64 3 cm2 (D) 64 3 12 2 (A) 8. 24 2 2 (B) 24 3 (C) 2 48 3 2 2 The side of an isosceles right triangle of hypotenuse 5 2 cm is : (A) 10 cm (B) 8 cm (C) 5 cm (D) 3 2 cm 5 2 (A) 10 (B) 8 (C) 5 (D) 3 2 Page 3 of 11 Section-B Question numbers 9 to 14 carry two marks each. 9. If x32 2 , then find whether x x32 2 10. x 1 is rational or irrational. x 1 x Without actually calculating the cubes, find the values of 553253303. 553253303 11. If xy8 and xy15, find x2y2. xy8 12. xy15, In the given figure, if  POR and  QOR form a linear pair and ab80, then find the value of a and b.  POR 13. x2y2  QOR ab80 a b In figure, BE, BDCE and 12. Show ABC  AED. BE, BDCE 12 ABC  AED. Page 4 of 11 OR In the figure given below AC > AB and AD is the bisector of  A. Show that  ADC >  ADB. AC > AB 14. A  ADC >  ADB. AD Find the co-ordinates of the point which lies on y–axis at a distance of 4 units in negative direction of y–axis. (A) (4, 0) (B) (4, 0) y– (A) (4, 0) (C) (0, 4) (D) (0, 4) (C) (0, 4) (D) (0, 4) 4 (B) (4, 0) Section-C Question numbers 15 to 24 carry three marks each. 15. Represent 2 on the number line. 2 OR p Express 18.48 in the form of where p and q are integers, q  0. q 18.48 16. p q p q If x  5  2 6 then find the value of x 2  q 1 x2 0 . Page 5 of 11 1 x2  2 x x 52 6 17. If x  1 1  7 , then find the value of x 3  3 . x x x 1 7 x 1 x3  3 x OR Factorise : x33x210x24 x33x210x24 18. Using suitable identity evaluate (998)3. (998)3 19. In the given figure, lines AB and CD intersect at O. If AOC BOE 70 and BOD 40 , find BOE and reflex EOC . AB CD BOE O AOC BOE 70 BOD 40 EOC OR In the following figure, PQST, PQR  115andRST  130 . Find the value of x. Page 6 of 11 PQST PQR  115 RST 130 x 20. In the given figure, ABC is a triangle with BC produced to D. Also bisectors of  ABC and  ACD meet at E. Show that BEC  ABC BC BEC  E 1 BAC . 2  ABC D  ACD 1 BAC 2 21. In the given figure, sides AB and AC of ABC are extended to points P and Q respectively. Also  PBC <  QCB. Show that AC > AB. ABC  PBC <  QCB. AB AC P Q AC > AB. Page 7 of 11 22. In the given figure, ACBC,  DCA  ECB and  DBC  EAC. DBCEAC and hence DCEC. ACBC,  DCA  ECB  DBC  EAC Show that DBCEAC DCEC. 23. The degree measure of three angles of a triangle are x, y, and z. If z  xy 2 then find the value of z. x, y, 24. z xy 2 z z The perimeter of a triangular ground is 900 m and its sides are in the ratio 3 : 5 : 4. Using Heron’s formula, find the area of the ground. 900 3:5:4 Section-D Question numbers 25 to 34 carry four marks each. 25.   1  x  2 5 2  2 5 If x2y2.   1   1 x  2 5 2  2 5 2  1 and 2 1     1     y  2 5 2  2 5 2 1 then evaluate 1 y  2 5 2  2 5 2 x2y2 OR If a  3  2 3  2 and b , find the value of a2b25 ab . 3  2 3  2 Page 8 of 11 3  2 3  2 a  26. b 3  2 3  2 Rationalize the denominator of a2b25 ab 4 2  3  7 4 2  3  7 27. 4a29b22a3b. Factorize : (a) a2b22(abacbc) (b) (a) (b) 28. 4a29b22a3b. a2b22(abacbc) If (x5) is a factor of x32x213x10, find the other factors. x32x213x10 29. (x5) Factorize a7ab6. a7ab6 OR If ax3bx2x6 has x2 as a factor and leaves remainder 4 when divided by x2, find the values of a and b. ax3bx2x6 x2 a 30. (x2) 4 b In the given figure, PQR is an equilateral triangle with coordinates of Q and R as (2, 0) and (2, 0) respectively. Find the coordinates of the vertex P. Page 9 of 11 PQR Q R (2, 0) (2, 0) P 31. In the adjoining figure, the side QR of PQR is produced to a point S. If the bisectors of  PQR and  PRS meet at point T, then prove that QTR  1 QPR . 2 Page 10 of 11 PQR QR QTR  T 32.  PQR S  PRS 1 QPR . 2 In the following figure, the sides AB and AC of ABC are produced to D and E respectively. If the bisectors of  CBD and  BCE meet at O, then show that BOC  90  ABC  BCE 33. AC O D E BOC  90   CBD A 2 BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles. ABC 34. AB A . 2 BE CF RHS ABC In a triangle ABC, ABAC, E is the mid point of AB and F is the mid point of AC. Show that BFCE. ABC ABAC E AB F AC BFCE. Page 11 of 11