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Basic Vector Space Search Engine Theory 
 
LA 2600 – January 2, 2004  - presented by Vidiot 

Overview: 
A Vector Space Search Engine uses very simple techniques from matrix algebra 
to compare documents based on word frequency. 
 
The first major component of a vector space search engine is the concept of a 
term space.  Simply put, a term space consists of every unique word that 
appears in a collection of documents.     
 
The second major component of a vector space search engine is term counts.  
Term counts are simply records of how many times each term occurs in an 
individual document.  This is usually represented as a table, as in the illustration 
below.   
 
By using the term space as a coordinate space, and the term counts as 
coordinates within that space, we can create a vector for each document.  In 
order to understand how we create these vectors, let’s look at a simple example.  
You’re probably familiar with Cartesian Coordinates; plotting points along X, Y, 
and Z axes.  Similarly, in the case of a term space containing three unique terms 
we would refer to these axes as the term1, term2, and term3 axes.  (In vector 
space search theory these axes are usually referred to as dimensions.)  By 
counting how many times each term appears in a document, and plotting the 
coordinates along each term dimension, we can determine a point in the term 
space that corresponds to the document.  Using this point we can then create a 
vector for the document back to the origin.   
 
Once we have plotted the vector of a document through the term space, we can 
then calculate the magnitude of the vector.  Think of the magnitude as the length 
of the line between the documents point in the term space and the origin of the 
term space (at coordinates (0,0,0) in our example).  These vector magnitudes will 
allow us to compare documents by calculating the cosign of the angle between 
them.  For example, identical documents will have a cosign of 1, documents 
containing similar terms will have positive decimal cosigns, and documents with 
nothing in common will have cosigns of zero. 

A Simple Example: 
In this tutorial we’ll go through the entire indexing and search process using a 
simple three dimensional example that is easy to envision.  
 
To begin, lets assume we have a collection of three documents.  Each document 
contains combinations of the words cat, dog, and mouse.  The words cat, dog, 
and mouse are the term space.  Thus we can say that each document has 
coordinates along the cat, dog, and mouse dimensions.  These coordinates are 



 2

determined by how many times each term appears in the document.  For 
example, document 1 below would have a “cat-dog-mouse vector” of (3,1,4). 
 

 
Note that the Pythagorean Theorem formula will continue to apply no matter how 
many dimensions we are working with.  For example, if we had a term space with 
1,000 unique words, and thus 1,000 dimensions, the formula would continue to 
be a2+b2+c2+d2 +e2…etc., 995 more times until we reach our answer.    
 
Also, the astute observer may have noticed that different documents can have 
the exact same vector magnitudes.  For example, two different documents with 
vectors of (1,2,3) and (3,2,1) would both have a vector magnitude of 3.74165.  
This is not a contradiction.  As we will see, relevancy scores of documents are 
based on the dimensionality of the query term that is searched for, thus 
documents with identical vector magnitudes can return very different query 
results.  In other words, just because two lines are the same length, it doesn’t 
necessarily mean that they are pointing to the same angle within the term space. 

Querying: 
To query the document collection index, we project the vector of our query into 
the vector space, and then calculate the cosign of the angle between the query 
and each of the other documents in the collection.  In English, this means we 
project the query vector into the vector space, and then see what other document 
vectors are nearby. 
 
For example, if the query term is “mouse”, then the “cat-dog-mouse vector” would 
be (0,0,1).  The magnitude of our query vector would then be: 

            _________     ____      _ 
  �Q� = �(02)+(02)+(12) = �0+0+1 = �1 = 1     

 

 
 
We calculate the magnitude of the vector for 
each document using the Pythagorean 
Theorem, but in this case we have more than 
two dimensions, so the formula would be: 
                a2+b2+c2=d2   
          __________        _________    __ 
�V1� = �(32)+(12)+(42) = �9 + 1 + 16 = �26 = 5.09901 
               __________       _________     __ 
�V2� = �(12)+(22)+(52) = �1 + 4 + 25 = �30 = 5.47722 
               __________       ________       __ 
�V3� = �(22)+(32)+(02) = �4 + 9 + 0   = �15 = 3.87298 

 
NOTE:  The two vertical bars on each side of 
the vector variable mean “the magnitude of”.   
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NOTE: A simple optimization while coding is to check if the query term is in the term 
space, and if so, then �Q� will always = 1, but this only works with a single search 
term.  For multiple search terms, count how many are within the term space, and take 
the square root of the count.  Because query terms are not represented as values less 
than 1, the solution to �Q� will always be the square root of a whole number.  But this 
assumes that each term appears only once in each query, which is not necessarily a 
good assumption because of word stemming which I will discuss shortly. 
 

To calculate the cosign between the query and a document vector, we divide the 
Dot Product of the query vector and the document vector, by the magnitude of 
the query vector multiplied by the magnitude of the document vector.   
 

   Q   *   V  1 _       
             �Q�x�V1� 
 
The Dot Product is the sum of the term counts for each document and the 
corresponding query term counts multiplied together.   For example, if we were to 
search for the term “mouse”, the coordinates for the Query would be (0,0,1) 
because the words cat and dog do not appear and the word mouse appears 
once is the third dimension of the term space.  Document 1 in our example 
collection would have a vector of (3,1,4) based on the term counts listed in the 
table above.  If we wanted to calculate the Dot Product between the Query and 
Document 1 we would make the following calculation: 
 

 
 
Now we divide the Dot Product of 4, by the product of the query and document 
magnitudes, to get the cosine value.  As we saw earlier the magnitude of the 
vector of Document 1 is 5.09901, and the magnitude of the Query vector = 1.  
Thus the cosign value is 4 divided by 5.09901. 
 
Let’s try it out.  The cosign of the angle between the query for “mouse”, and 
Document 1 would be calculated by: 

 
   Q    *   V  1      =  ( 0x3) + ( 0x1) + (1x4)   =       4        =  0.78446 

             �Q� x �V1�     1      x     5.09901           5.09901 
 
NOTE: If a document doesn’t contain any relevant search terms from the query, the Dot 
Product will be zero, because zero divided by any value is still zero, thus the cosign will 
also be zero.  This is good to remember while writing efficient code.  

 
If we performed this calculation for the other two documents we would get the 
following cosigns:  
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Doc 1  = 0.78446 
Doc 2  = 0.91287 
Doc 3  = 0.00000 

 
By arranging the documents in descending order according to the cosigns, as so: 

 
Doc 2  = 0.91287 
Doc 1  = 0.78446 
Doc 3  = 0.00000 

 
…we can see that document 2 is the most relevant to the query of “mouse”, and 
a quick glance at our term counts table above will confirm this.  Document 1 is 
slightly less relevant, and Document 3 is completely irrelevant, because it doesn’t 
contain any instances of the word “mouse”. 
 
An easy way to think of this is that the closer the cosign value is to 1, the more 
relevant the document is.  If the cosign is zero, then the documents are 
orthogonal in the term space and are not related. 

Collection Indexing Process 
The process of indexing a collection is specific to the type of documents being 
indexed.  Vector Space search technology can be used on any type information 
that can be represented in a structured fashion, so it will work equally well on 
text, images, cryptographic keys, or even DNA.  However, custom parsers must 
be constructed to handle the information in a regulated fashion, and can often be 
optimized to make the indexing process more efficient. 
 
As an example, let’s assume we want to index a small website.   
 
First each HTML document must be pre-processed, and then indexed as part of 
a collection.  (Collections can only be indexed as a whole.  Adding additional files 
to a collection after it has been indexed changes the dimensionality of the term 
space and negates the stored document vector magnitudes.)   
 
We begin by stripping out all the HTML content because is contains no semantic 
content.  We can also strip out any formatting such as line breaks and carriage 
returns so that we are left with a simple block of text. 
 
Next, we remove stop words from the text.  Stop words are words that occur 
commonly in the English language, but don’t add any semantic value to the text 
as a whole.  For example, words like “the”, “and”, “of”, and “or” are irrelevant to 
the actual semantic meaning of the document but would artificially enlarge the 
term space, and thus the processing time, if they were left in.  Also adverbs such 
as “quickly” (or anything typically ending in “ly”) can be removed because they 
don’t add any additional semantic value. 
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Next, we stem the remaining terms in the document.  Stemming consists of 
reducing English word to their root word forms.  For example, the words “runner”, 
“running”, and “runs” would all be stemmed to the word “run.”  The Porter 
Stemming Algorithm is typically used for this purpose.  This further reduces the 
term space while maintaining semantic content. 
 
After we have finished with these three steps we are left with (hopefully) the 
minimal number of terms required to contain the semantic meaning of the original 
document. 
 
No we can begin indexing the collection by building the term space and 
calculating the vector magnitude of each document. 
 
 
 
 
 
 

Step 1 – Strip out HTML, punctuation, and line breaks to leave only blocked textual 
content. 
Step 2 – Remove stop words (such as “the”) to reduce the size of the term space. 
Step 3 – Stem the remaining terms to further reduce the size of the term space while 
maintaining semantic content.   For example, “runner” and “running” will both be 
stemmed to “run”.   The Porter stemming algorithm is commonly used for this purpose. 
Step 4A – Populate the term space with one unique instance of each term, from every 
document, that spans across the entire collection so that all possible terms are included.  
Store the results. 
Step 4B – Count and record how many times each relevant term appears in each 
document. 
Step 4C – Calculate and record the vector magnitude, �Vn�, for each document. 
 

NOTE: It is important to keep in mind that how the parser divides up information 
will affect the search results.  For example, if you were indexing the contents of a 
book, the indexing time and search results would differ greatly depending on 
whether you broke the text up by chapter, page, or paragraph.  You will need to 
experiment to find the optimal partitions within particular data. 

Vector Space Search Engine Limitations: 
Despite how cool Vector Space search technology is, it does have some serious 
limitations. 
 
First, it is VERY calculation intensive, and therefore quite slow.  Because of all 
the floating-point mathematics, it requires lots and lots of processor time, which 
kills performance.  High performance requires large systems with code optimized 
to run calculations exclusively in RAM.  Hopefully, this will become less of a 
barrier as processor speeds continue to increase. 

Step 1 
Strip HTML & 
Formatting 

Step 2 
Remove Stop Words 

Step 3 
Stem Terms 

Step 4 – Create Collection  Index 
• Create term space 
• Create document term counts 
• Calculate document vector magnitudes 
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Second, dynamic collections will (usually) require re-indexing each time a new 
document is added.  This is because every time you introduce a new term into 
the term space, you are adding another dimension to the matrix, and all existing 
documents must be re-indexed so that their vectors are relevant to the new 
dimensionality.  This is perhaps the most serious barrier to the widespread 
adoption of this technology because it makes real time availability of search 
results next to impossible. 
 
Third, it requires additional mathematical transformation of the collection matrix in 
order to detect additional connections between documents with Latent Semantic 
Indexing.  LSI allows us to find additional connections between documents on a 
semantic level.  It is outside the scope of this document, but it is an important 
next-step in Vector Space search technology, and another barrier to real time 
usability.  

Resources and Additional Reading 
• http://www.perl.com/pub/a/2003/02/19/engine.html - Excellent article about 

building a vector space search engine including open source PERL code.  
• http://www.chuggnutt.com/stemmer.php - Open source implementation of 

the Porter stemming algorithm in PHP  
• http://www.nitle.org/semantic_search.php - Open source Latent Semantic 

Indexing package written in Perl. Very much in Beta, not yet suitable for 
production.  

• http://lsi.argreenhouse.com/- Closed source online Latent Semantic 
Indexing demo by Telecordia Technologies  

•  "Using Linear Algebra for Information Retrieval" - Berry, M. W.; Dumais, 
S. T.; and O'Brien, G. W. 1995.  

• "Indexing by latent semantic analysis." Journal of the Society for 
Information Science, 41(6), 391-407. --- first technical Latent Semantic 
Indexing paper; good background.  

• "Enhancing Performance in Latent Semantic Indexing Retrieval" - Susan 
Dumais, TM-ARH-017527 Technical Report, Bellcore, 1990  

 
 


