
A Self-Hosting Evaluator using HOAS
A Scheme Pearl

Eli Barzilay
Northeastern University

eli@barzilay.org

Abstract

We demonstrate a tiny, yet non-trivial evaluator that is powerful
enough to run practical code, including itself. This is made possible
using a Higher-Order Abstract Syntax (HOAS) representation —
a technique that has become popular in syntax-related research
during the past decade. With a HOAS encoding, we use functions
to encode binders in syntax values, leading to an advantages of
reflecting binders rather than re-implementing them.

In Scheme, hygienic macros cover problems that are associated
with binders in an elegant way, but only when extending the lan-
guage, i.e., when we work at the meta-level. In contrast, HOAS is a
useful object-level technique, used when we need to represent syn-
tax values that contain bindings — and this is achieved in a way
that is simple, robust, and efficient. We gradually develop the code,
explaining the technique and its benefits, while playing with the
evaluator.

1. Introduction

Higher-Order Abstract Syntax (HOAS) is a technique for repre-
senting syntax with bindings using functions. This is a form of re-
flection in the sense that binders in the object level are represented
using binders in the meta level. The result is simple (no need for so-
phisticated substitution mechanisms), robust (the meta-level is our
language, which better implement scope correctly), and efficient
(as it is part of the core implementation).

HOAS has been in use for a while now [13], a good overview is
given by Hofmann [9], and in [1, Section 4.7]. However, it is more
popular in the strictly typed world than it is in Scheme. In part,
this may be due to Scheme’s hygienic macro facility, which allows
hooking new kinds of syntactic constructs into the language in a
way that respects lexical scope. Using a high level macro system
means that Schemers rarely need to represent syntax directly —
instead, they work at the meta-level, extending the language itself.
This is unfortunate, as HOAS can be a useful tool for syntax-related
work. Furthermore, it is possible to formalize HOAS in a way
that is more natural in a dynamically-typed language than it is in

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

statically-typed ones, which corresponds to a HOAS formalization
in Nuprl [3] that builds on the predicative nature of its type theory
[2, 1, 12].

The purpose of this Scheme pearl is to demonstrate the use of
HOAS in Scheme, with the goal of making this technique more
accessible to Schemers1. As demonstrated below, using macros in
Scheme facilitates the use of HOAS, as there is no need for an ex-
ternal tool for translating concrete syntax into HOAS representa-
tions. In itself, HOAS is a representation tool for object-level val-
ues, not for meta-level work where bindings are directly accessible
in some way. It is, however, used in some meta-linguistic systems
for implementing syntactic tools2. For example, it could be used as
the underlying term representation in a language-manipulating tool
like PLT’s Reduction Semantics [11].

2. A Toy Evaluator

The presentation begins with a simple evaluator. Our goal is to
evaluate a Lambda-Calculus-like language using reductions, so we
need a representation for lambda abstractions and applications. To
make this example more practical, we also throw in a conditional
if special form, make it handle multiple arguments, and use call-
by-value. A common evaluator sketch for such a language is3:

(define (ev expr)
(cond [(not (pair? expr)) expr]

[(eq? ’if (car expr))
(ev (if (ev (cadr expr)) (caddr expr) (cadddr expr)))]

[else (ev (let ([f (ev (car expr))])
(substitute (body-of f)

(args-of f)
(map ev (cdr expr)))))]))

where an application is always assumed to have an abstraction in
its head position, and the args-of and body-of functions pull out
the corresponding parts. As expected, the main issue here is imple-
menting a proper substitution function. Common approaches in-
clude using symbols and renaming when needed, or using symbols
‘enriched’ with lexical binding information (‘colors’).

1 The presentation is loosely based on a comp.lang.scheme post from Octo-
ber 2002.
2 It might be possible that HOAS can be used for implementing a low-
level macro facility that the high-level hygienic macro system builds on.
HOAS should not be confused with current low-level syntactic systems like
syntactic closures or syntax-case.
3 Note that details like error checking are omitted, and that we use atomic
Scheme values such as booleans and numbers to represent themselves.

119



On the other hand, we can use a higher-order abstract syntax
representation for our language, which will make things easier to
handle than raw S-expressions. For this, we represent an abstraction
using a Scheme function, and bound occurrences are represented as
bound occurrences in the Scheme code. For example,

(lambda (x y) (if x x y))
is represented by

(lambda (x y) (list ’if x x y))
— and substitution is free as it is achieved by applying the Scheme
function.

3. Creating HOAS Representations

Given that our representation of lambda abstractions uses Scheme
lambda expressions, we need some facility to create such represen-
tation while avoiding the possible confusion when using lambda
for different purposes. The common approach for creating such rep-
resentations is to use a preprocessor that translates concrete syntax
into a HOAS value. In Scheme, this is easily achieved by a macro
that transforms its body to the corresponding representation:

;; Translates simple terms into a HOAS representation
;; values, which are:
;; Term = atom ; literals
;; | (list ’if Term Term Term) ; conditionals
;; | (Term ... -> Term) ; abstractions
;; | (list Term ...) ; applications
(define-syntax Q

(syntax-rules (lambda if)
[(Q (lambda args b)) (lambda args (Q b))]
[(Q (if x y z)) (list ’if (Q x) (Q y) (Q z))]
[(Q (f x ...)) (list (Q f) (Q x) ...)]
[(Q x) x]))

A few interaction examples can help clarify the nature of these
values:

> (Q 1)
1
> (Q (+ 1 2))
(#<primitive:+> 1 2)
> (Q (if 1 2 3))
(if 1 2 3)
> (Q (lambda (x) (+ x 1)))
#<procedure>

The last one is important — the lambda expression is represented
by a Scheme procedure, which, when applied, returns the result of
substituting values for bound identifiers:

> (define foo (Q (lambda (x) (+ x 1))))
> (foo 2)
(#<primitive:+> 2 1)

Using the representations that the ‘quoting’ macro Q creates, a
complete substitution-based evaluator is easily written:

;; ev : Term -> Val
;; evaluate an input term into a Scheme value
(define (ev expr)

(cond [(not (pair? expr)) expr]
[(eq? ’if (car expr))
(ev (if (ev (cadr expr)) (caddr expr) (cadddr expr)))]

[else (ev (apply (ev (car expr))
(map ev (cdr expr))))]))

Note that the underlined apply expression invokes the Scheme
procedure which performs the substitution that is needed for the
beta-reduction: it is a ‘Term→Term’ function. The result of this

application expression is therefore a piece of (post-substitution)
syntax that requires further evaluation.

In addition, this is a simple substitution-based evaluator —
no environments, identifier lookups, or mutation. Scheme values
are used as self-evaluating literals (some achieved by a Scheme
identifier reference), including Scheme procedures that are exposed
as primitive values. Specifically, the last cond clause is used for
both primitive function applications and beta reductions — this
leads to certain limitations and possible errors, so it is fixed below.

It is easy to confuse the current representation as a trick; after
all, we represent abstractions using Scheme abstractions, and beta-
reduce using Scheme applications — sounds like we end up with a
simple meta-circular Scheme evaluator that inherits Scheme’s fea-
tures. This is not the case, however: Scheme applications achieves
nothing more than substitution. To demonstrate this, the evaluator
can easily be changed to use a lazy evaluation regimen if it avoids
evaluating abstraction arguments. This requires a distinction be-
tween strict and non-strict positions. For simplicity, we only distin-
guish primitive functions (all arguments are strict) and abstractions
(no arguments are strict) using MzScheme’s primitive?4 predi-
cate:

;; ev* : Term -> Val
;; evaluate an input term into a Scheme value, lazy version
(define (ev* expr)

(cond [(not (pair? expr)) expr]
[(eq? ’if (car expr))
(ev* ((if (ev* (cadr expr)) caddr cadddr) expr))]

[else (ev* (let ([f (ev* (car expr))])
(apply f (if (primitive? f)

(map ev* (cdr expr))
(cdr expr)))))]))

And the result is a lazy language, where we can even use the call-
by-name fixpoint combinator:

> (ev (Q ((lambda (x y z) (if x y z))
#t (display "true\n") (display "false\n"))))

true
false
> (ev* (Q ((lambda (x y z) (if x y z))

#t (display "true\n") (display "false\n"))))
true
> (ev* (Q (((lambda (f)

((lambda (x) (f (x x)))
(lambda (x) (f (x x)))))

(lambda (fact)
(lambda (n)

(if (zero? n) 1 (* n (fact (- n 1)))))))
5)))

120

4. Advantages of the HOAS Representation

At this point we can see the advantages of the HOAS representa-
tion. These are all due to the fact that the Scheme binding mecha-
nism is reflected rather than re-implemented.

Free substitution: since we use Scheme functions, the Scheme
implementation provides us with free substitution — we get
a substituting evaluator, without the hassle of implementing
substitution.

Robust: dealing with the subtleties of identifier scope (substitu-
tion, alpha renaming, etc) is usually an error-prone yet critical
element in code that deals with syntax. In our evaluator, we

4 A predicate that identifies primitive built-in procedures.

120 Scheme and Functional Programming, 2006



need not worry about these issues, since it reflects the mecha-
nism that already exists in the implementation we use.

Efficient: the representation lends itself to efficient substitution
for two reasons. First, function calls are an essential part of
functional languages that must be very efficient; a feature that
our substitution inherits. Second, if we incrementally substitute
some syntax value with multiple binding levels, then the substi-
tutions are not carried out immediately but pushed to substitu-
tion cache contexts (=environments), which are the implemen-
tation’s efficient representation of closures.

Good integration: representing concrete syntax with Scheme S-
expressions is superior to the flat string representations that is
found in other languages because the structure of the syntax is
reflected in syntax values (values are “pre-parsed” into trees). In
a similar way, HOAS adds yet another dimension to the repre-
sentation — scope is an inherent part of representations (lexical
scopes are already identified and turned to closures). We there-
fore enjoy all functionality that is related to scope in our imple-
mentation. For example, the unbound identifiers are caught by
the implementation, analysis tools such as DrScheme’s “Check
Syntax” [6] work for bindings in the representation, macros can
be used, etc.

These advantages, however, do not come without a price. More
on this below.

5. Improving the Code

So far, the evaluator is simple, but the code is somewhat messy:
lambda abstractions and primitive procedures are conflated, lists
are used both as values and as syntax representations. Furthermore,
the evaluator is not as complete as it needs to be to host itself. We
begin by improving the code, and in the following section we will
extend it so it can run itself.

We begin by introducing a new type for our syntax objects, and
use this type to create tagged values for lambda abstractions and
applications:

;; A type for syntax representation values
;; Term = atom ; literals
;; | (term ’if Term Term Term) ; conditionals
;; | (term ’lam (Term ... -> Term)) ; abstractions
;; | (term ’app Term ...) ; applications
(define-struct term (tag exprs) #f)
(define (term tag . args) (make-term tag args))

;; Translates simple terms into a HOAS representation
(define-syntax Q

(syntax-rules (lambda if)
[(Q (lambda args b)) (term ’lam (lambda args (Q b)))]
[(Q (if x y z)) (term ’if (Q x) (Q y) (Q z))]
[(Q (f x ...)) (term ’app (Q f) (Q x) ...)]
[(Q x) x]))

ev is then adapted to process values of this type.

;; ev : Term -> Val
;; evaluate an input term into a Scheme value
(define (ev expr)

(if (term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) expr]
[(if) (ev ((if (ev (car subs)) cadr caddr) subs))]
[(app) (let ([f (ev (car subs))]

[args (map ev (cdr subs))])
(cond [(and (term? f) (eq? ’lam (term-tag f)))

(ev (apply (car (term-exprs f)) args))]

[(procedure? f)
(apply f args)]

[else (error ’ev "bad procedure")]))]
[else (error ’ev "bad tag")]))

expr))

We can now test this evaluation procedure:

> (ev (Q (lambda (x) (+ x 1))))
#3(struct:term lam (#<procedure>))
> (ev (Q ((lambda (x) (+ x 1)) 2)))
3
> (define plus1 (Q (lambda (x) (+ x 1))))
> (ev (Q (plus1 2)))
3

As the previous version, this evaluator does not maintain its own
environment, instead, it uses the Scheme environment (in coopera-
tion with the quotation macro that leaves bindings untouched). This
is used as a definition mechanism that is demonstrated in the last
example — but we have to be careful to use such values only in
a syntax-representation context. Because the representation is us-
ing Scheme closures, we can use recursive Scheme definitions to
achieve recursion in our interpreted language:

> (define fact
(Q (lambda (n)

(if (zero? n) 1 (* n (fact (- n 1)))))))
> (ev (Q (fact 30)))
265252859812191058636308480000000

Again, making this evaluator lazy is easy: we only need to avoid
evaluating the arguments on beta reductions. In fact, we can go
further and ‘compile’ lambda expressions into Scheme closures
that will do the reduction and use ev* to continue evaluating the
result. To deal with strict primitives properly, we evaluate them to
a wrapper function that evaluates its inputs5:

;; ev* : Term -> Val
;; evaluate an input term into a Scheme value,
;; this version is lazy, and ‘compiles’ closures to Scheme procedures
(define (ev* expr)

(cond
[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args (ev* (apply (car subs) args)))]
[(if) (ev* ((if (ev* (car subs)) cadr caddr) subs))]
[(app) (apply (ev* (car subs)) (cdr subs))]
[else (error ’ev "bad tag")]))]

[(primitive? expr)
(lambda args (apply expr (map ev* args)))]

[else expr]))

On first look, this change seems a bit dangerous — not only is a
lambda expression represented as a Scheme closure, evaluating
it returns a Scheme closure. In fact, this approach works as the
types demonstrate: the function that is part of the representation is
‘Term→Term’, whereas the ‘compiled’ closure is a ‘Term→Val’
function. Note also that Scheme primitives act as primitives of the
interpreted language (‘Val→Val’), and the evaluator wraps them
as a ‘Term→Val’ function that allows uniform treatment of both
cases in applications.

Here are a few examples to compare with the previous evaluator:

5 Ideally, any procedure that is not the result of evaluating a lambda expres-
sion should be wrapped. In MzScheme it is possible to tag some closures
using applicable structs, but in this paper the code is kept short.

Scheme and Functional Programming, 2006 121



> (ev* (Q (lambda (x) (+ x 1))))
#<procedure>
> (ev* (Q ((lambda (x) (+ x 1)) 2)))
3
> (ev* (Q ((lambda (x y) (+ x 1)) 2 (/ 2 0))))
3
> ((ev* (Q (lambda (x) (+ x 1))))

(Q 2))
3

In the last example, the ‘Term→Val’ procedure that is the result
of evaluating the first part is directly applied on (Q 2) (a syntax)
which is essentially how the outermost application of the second
example is handled. This application jumps back into the evaluator
and continues the computation.

Using the Scheme toplevel for definitions, we can define and
use a lazy fixpoint combinator:

> (define Y
(ev* (Q (lambda (f)

((lambda (x) (f (x x)))
(lambda (x) (f (x x))))))))

> (define fact0
(ev* (Q (lambda (fact)

(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1)))))))))

> (ev* (Q (Y fact0)))
#<procedure>> (ev* (Q ((Y fact0) 30)))
265252859812191058636308480000000

Finally, as an interesting by-product of this namespace sharing, we
can even use the call-by-name fixpoint combinator with Scheme
code, as long as we use ev* to translate the function into a Scheme
function:

> ((Y (lambda (fact)
(lambda (n)

(let ([fact (ev* fact)])
(if (zero? n) 1 (* n (fact (- n 1))))))))

30)
265252859812191058636308480000000

6. Making ev Self-Hosting

In preparation for making our evaluator self-hosting, we need to
deal with representations of all forms that are used in its definition.
Again, to make things simple, we avoid adding new core forms —
instead, we translate the various forms to ones that the evaluator
already knows how to deal with. We will use ‘nested’ instantiations
of our evaluator, which will require nested use of the Q quotation
form — this is a minor complication that could be solved using
macro-CPS [8, 10], but in MzScheme [7] it is easier to write a
syntax-case-based macro, which uses a simple loop for nested
occurrences of Q. The new (and final) definition is in Figure 1. On
first look it seems complex, but it is merely translating additional
forms into known ones, and propagates the transformation into the
delay special form (which will be needed shortly).

The lazy evaluator is slightly modified: call-by-name is too slow
to be usable when nesting multiple evaluators, so we change it to
use call-by-need instead. For this, we make it create ev* promises
for function arguments, and automatically force promise values
so they are equivalent to plain values. We also need to treat the
term constructor as a primitive (otherwise it will contain promises
instead of values). The definition follows.

;; ev* : Term -> Val
;; evaluate an input term into a Scheme value, uses call-by-need

(define (ev* expr)
(cond

[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args

(ev* (apply (car subs)
(map (lambda (a) (delay (ev* a)))

args))))]
[(if) (ev* ((if (ev* (car subs)) cadr caddr) subs))]
[(app) (apply (ev* (car subs)) (cdr subs))]
[else (error ’ev "bad tag")]))]

[(promise? expr) (ev* (force expr))]
[(primitive*? expr)
(lambda args (apply expr (map ev* args)))]

[else expr]))

(define (primitive*? x)
(or (primitive? x) (eq? x term)))

And with this change we are finally ready to run the evaluator code
in itself.

7. Bootstrapping the Evaluator

First, we use the strict evaluator to evaluate a nested copy of itself.
In this definition, ev is the same as the strict version above, and its
code is used with no change.

(define ev1
(ev* (Q (Y (lambda (ev)

(lambda (expr)
(cond

[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args

(ev (apply (car subs) args)))]
[(if) (ev ((if (ev (car subs))

cadr caddr)
subs))]

[(app) (apply (ev (car subs))
(map ev (cdr subs)))]

[else (error ’ev1 "bad tag")]))]
[else expr])))))))

We can verify that this evaluator works as expected:

> (ev (Q (ev1 (Q (+ 1 2)))))
3
> (ev (Q (ev1 (Q ((lambda (x) (+ x 2)) 1)))))
3

We can continue this and implement a third evaluator in ev1 —
using the same definition once again. The result is again working
fine.

> (define ev2
(ev (Q (ev1 (Q (lambda (expr)

;; Same code as ev1, substituting ‘ev2’ for ‘ev1’
))))))

> (ev (Q (ev1 (Q (ev2 (Q (+ 1 2)))))))
3
> (ev (Q (ev1 (Q (ev2 (Q ((lambda (x) (+ x 2)) 1)))))))
3

It is interesting to compare the performance of the three eval-
uators. We do this by defining a Fibonacci function in each of the
three levels and in Scheme:

(define fib
(lambda (n)

(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))))

122 Scheme and Functional Programming, 2006



;; Translates terms into a HOAS representation
(define-syntax (Q s)

(let transform ([s s])
(syntax-case s (Q quote lambda if let and or cond case else delay)

[(Q (Q x)) ; transform once, then reprocess:
(with-syntax ([1st-pass (transform (syntax (Q x)))])

(syntax (Q 1st-pass)))]
[(Q (quote x)) (syntax ’x)]
[(Q (lambda args b)) (syntax (term ’lam (lambda args (Q b))))]
[(Q (if x y z)) (syntax (term ’if (Q x) (Q y) (Q z)))]
[(Q (let ([x v] ...) b)) (syntax (Q ((lambda (x ...) b) v ...)))]
[(Q (and)) (syntax #t)]
[(Q (and x)) (syntax x)]
[(Q (and x y ...)) (syntax (Q (if x (and y ...) #f)))]
[(Q (or)) (syntax #f)]
[(Q (or x)) (syntax x)]
[(Q (or x y ...)) (syntax (Q (let ([x* x]) (if x* x* (or y ...)))))]
[(Q (cond)) (syntax ’unspecified)]
[(Q (cond [else b])) (syntax (Q b))]
[(Q (cond [test b] clause ...))

(syntax (Q (if test b (cond clause ...))))]
[(Q (case v)) (syntax ’unspecified)]
[(Q (case v [else b])) (syntax (Q b))]
[(Q (case v [(tag) b] clause ...)) ; (naive translation)

(syntax (Q (if (eqv? v ’tag) b (case v clause ...))))]
[(Q (delay x)) (syntax (delay (Q x)))]
[(Q (f x ...)) (syntax (term ’app (Q f) (Q x) ...))]
[(Q x) (syntax x)])))

Figure 1. Full quotation code

(define fib0
(ev (Q (lambda (n) ...))))

(define fib1
(ev (Q (ev1 (Q (lambda (n) ...))))))

(define fib2
(ev (Q (ev1 (Q (ev2 (Q (lambda (n) ...))))))))

Measuring their run-time shows the expected blowup with each
layer of representation, and that even at three levels of nesting it
is still usable.

> (time (fib 18))
cpu time: 1 real time: 1 gc time: 0
2584
> (time (ev (Q (fib0 18))))
cpu time: 105 real time: 133 gc time: 65
2584
> (time (ev (Q (ev1 (Q (fib1 18))))))
cpu time: 618 real time: 637 gc time: 394
2584
> (time (ev (Q (ev1 (Q (ev2 (Q (fib2 18))))))))
cpu time: 3951 real time: 4131 gc time: 2612
2584

To make things more interesting, we can try variations on this
theme. For example, we can nest a strict evaluator in the lazy one,
and use the Y combinator to get recursion:

(define ev*1
(ev* (Q (Y (lambda (ev)

(lambda (expr)
(cond

[(term? expr)
(let ([subs (term-exprs expr)])

(case (term-tag expr)
[(lam) (lambda args

(ev (apply (car subs) args)))]
[(if) (ev ((if (ev (car subs))

cadr caddr)
subs))]

[(app) (apply (ev (car subs))
(map ev (cdr subs)))]

[else (error ’ev*1 "bad tag")]))]
[else expr])))))))

The definition of this evaluator is not really strict. In fact, it does
not enforce any evaluation strategy — it just inherits it from the
language it is implemented in. In this case, this definition is running
in ev*’s lazy context, which makes the resulting language lazy as
well:

> (ev* (Q (ev*1 (Q (+ 1 2)))))
3
> (ev* (Q (ev*1 (Q ((lambda (x y) y) (+ 1 "2") 333)))))
333

Again, we can repeat this definition to get a third level, then mea-
sure the performance of the three levels using fib definitions:

> (time (ev* (Q (fib*0 18))))
cpu time: 198 real time: 227 gc time: 129
2584
> (time (ev* (Q (ev*1 (Q (fib*1 18))))))
cpu time: 575 real time: 589 gc time: 357
2584
> (time (ev* (Q (ev*1 (Q (ev*2 (Q (fib*2 18))))))))
cpu time: 1186 real time: 1266 gc time: 780
2584

It is interesting to note that the blowup factor is much smaller than
in the ev case. The conclusion is still the same: each evaluator
layer increases run-time, but the blowup is small enough to still
be practical. (E.g., it is a feasible strategy for implementing DSLs.)

8. HOAS Disadvantages

As mentioned above, HOAS does not come without a price. The
two major problems with HOAS representations are well-known:

Exotic terms: we have seen that the functions that are used in
HOAS representations are syntactic ‘Term→Term’ transform-
ers. However, not all of these functions are proper representa-
tions — some are not a quotation of any concrete syntax. For
example, we can manually construct the following term, which
does hold a ‘Term→Term’ function:

Scheme and Functional Programming, 2006 123



(term ’lam

(lambda (x)

(if (equal? x (Q 1)) (Q 2) (Q 3))))

but it is not a valid representation — there is no lambda term
that has this as its quotation. Briefly, the problem is that the
function is trying to inspect its values (it would have been a
valid representation had the whole if expression been quoted).
This means that we should not allow arbitrary functions into
the representation; indeed, major research efforts went into
formalizing types in various ways from permutations-based
approaches [15, 16, 17], to modal logic [4, 5] and category
theory [14]. In [1], another formalism is presented which is
of particular interest in the context of Scheme. It relies on a
predicative logic system, which corresponds to certain dynamic
run-time checks that can exclude formation of exotic terms.
This formalism is extended in [12].

Induction: another common problem is that the representation
contains functions (which puts a function type in a negative po-
sition), and therefore does not easily lend itself to induction.
Several solutions for this problem exist. As previously demon-
strated [1], these functions behave in a way that makes them
directly correspond to concrete syntax. In Scheme, the quota-
tion macro can add the missing information — add the syntactic
information that contains enough hints to recover the structure
(but see [1] for why this is not straightforward).

As a side note, it is clear that using HOAS is very different in
its nature than using high-level Scheme macros. Instead of plain
pattern matching and template filling, we need to know and encode
the exact lexical structure of any binding form that we wish to
encode. Clearly, the code that is presented here is simplified as
it has just one binding form, but we would face such problems if
we would represent more binding constructs like let, let* and
letrec. This is not necessarily a negative feature, since lexical
scope needs to be specified in any case.

9. Conclusion

We have presented code that uses HOAS techniques in Scheme.
The technique is powerful enough to make it possible to write a
small evaluator that can evaluate itself, and — as we have shown
— be powerful enough to model different evaluation approaches.
In addition to being robust, the encoding is efficient enough to be
practical even at three levels of nested evaluators, or when using
lazy semantics. HOAS is therefore a useful tool in the Scheme
world in addition to the usual host of meta-level syntactic tools.

We plan on further work in this area, specifically, it is possible
that using a HOAS representation for PLT’s Reduction Semantics
[11] tool will result in a speed boost, and a cleaner solution to its
custom substitution specification language. Given that we’re using
Scheme bindings to represent bindings may make it possible to
use HOAS-based techniques combined with Scheme macros. For
example, we can represent a language in Scheme using Scheme
binders, allowing it to be extended via Scheme macros in a way
that still respects Scheme’s lexical scope rules.

References
[1] Eli Barzilay. Implementing Direct Reflection in Nuprl. PhD thesis,

Cornell University, Ithaca, NY, January 2006.
[2] Eli Barzilay and Stuart Allen. Reflecting higher-order abstract

syntax in Nuprl. In Victor A. Carreño, Cézar A. Muñoz, and

Sophiène Tahar, editors, Theorem Proving in Higher Order Logics;
Track B Proceedings of the 15th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2002), Hampton,
VA, August 2002, pages 23–32. National Aeronautics and Space
Administration, 2002.

[3] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing
Mathematics with the Nuprl Proof Development System. Prentice-
Hall, NJ, 1986.

[4] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. In Conf. Record 23rd ACM SIGPLAN/SIGACT Symp.
on Principles of Programming Languages, POPL’96, pages 258–270.
ACM Press, New York, 1996.

[5] Joëlle Despeyroux and Pierre Leleu. A modal lambda-calculus with
iteration and case constructs. In Proc. of the annual Types seminar,
March 1999.

[6] Robert Bruce Findler. PLT DrScheme: Programming environment
manual. Technical Report PLT-TR2006-3-v352, PLT Scheme Inc.,
2006. See also: Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S.
Krishnamurthi, P. Steckler and M. Felleisen. DrScheme: A program-
ming environment for Scheme, Journal of Functional Programming,
12(2):159–182, March 2002. http://www.ccs.neu.edu/scheme/pubs/.

[7] Matthew Flatt. PLT MzScheme: Language manual. Technical
Report PLT-TR2006-1-v352, PLT Scheme Inc., 2006. http:
//www.plt-scheme.org/techreports/.

[8] Erik Hilsdale and Daniel P. Friedman. Writing macros in
continuation-passing style. In Scheme and Functional Program-
ming 2000, page 53, September 2000.

[9] Martin Hofmann. Semantical analysis of higher-order abstract syntax.
In 14th Symposium on Logic in Computer Science, page 204. LICS,
July 1999.

[10] Oleg Kiselyov. Macros that compose: Systematic macro program-
ming. In Generative Programming and Component Engineering
(GPCE’02), 2002.

[11] Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias
Felleisen. A visual environment for developing context-sensitive
term rewriting systems. In International Conference on Rewriting
Techniques and Applications, 2004.

[12] Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey. A
computational approach to reflective meta-reasoning about languages
with bindings. In MERLIN ’05: Proceedings of the 3rd ACM
SIGPLAN workshop on Mechanized reasoning about languages with
variable binding, pages 2–12, Tallinn, Estonia, September 2005.
ACM Press.

[13] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation (PLDI), pages 199–208,
Atlanta, Georgia, June 1988. ACM Press.

[14] Carsten Schürmann. Recursion for higher-order encodings. In
Proceedings of Computer Science Logic (CSL 2001), pages 585–599,
2001.

[15] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programming with binders made simple. In Eighth ACM SIGPLAN
International Conference on Functional Programming (ICFP 2003),
Uppsala, Sweden, pages 263–274. ACM Press, August 2003.

[16] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification.
In M. Baaz, editor, Computer Science Logic and 8th Kurt Gödel
Colloquium (CSL’03 & KGC), Vienna, Austria. Proccedings, Lecture
Notes in Computer Science, pages 513–527. Springer-Verlag, Berlin,
2003.

[17] Christian Urban and Christine Tasson. Nominal reasoning techniques
in isabelle/hol. In Proceedings of the 20th Conference on Automated
Deduction (CADE 2005), volume 3632, pages 38–53, Tallinn,
Estonia, July 2005. Springer Verlag.

124 Scheme and Functional Programming, 2006

http://www.plt-scheme.org/techreports/
http://www.plt-scheme.org/techreports/

	Introduction
	A Toy Evaluator
	Creating HOAS Representations
	Advantages of the HOAS Representation
	Improving the Code
	Making ev Self-Hosting
	Bootstrapping the Evaluator
	HOAS Disadvantages
	Conclusion

