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Abstract: The twin disciplines of Pessimal Algorithm Design and Simplexity Analysis are
introduced and illustrated by means of representative problems

“One can always make it work”
— ARNOLD SCHÖNHAGE,

at the Bay Area Theory Seminar, Stanford, 1984

1 Introduction

Consider the following problem: we are given a table of n integer keys A1, A2, ..., An and a query integer
X. We want to locate X in the table, but we are in no particular hurry to succeed; in fact, we would like
to delay success as much as possible.

We might consider using the trivial algorithm, namely test X against A1, A2, etc. in turn. However, it
might happen that X = A1, in which case the algorithm would terminate right away. This shows the
näive algorithm has O(1) best-case running time. The question is, can we do better, that is, worse?

Of course, we can get very slow algorithms by adding spurious loops before the first test of X against
the Ai. However, such easy solutions are unacceptable because any fool can see that the algorithm is just
wasting time. Therefore, we must look for an algorithm that does indeed progress steadily towards its
stated goal even though it may have very little enthusiasm for (or even a manifest aversion to) actually
getting there.

We can get an algorithm that satisfies this criterion and is much better (slower) than the näive one if we
keep the table A sorted in ascending order. Then we can use the reluctant search procedure below

procedure research(X, i, j : integer): integer =
{Result is the index k such that Ak = X, or -1 if no such k exists. }
if i > j then return -1 fi
if i = j then if X = Ai then return i else return -1 fi

m←−
[
i + j

2

]
if X ≤ Am then
k ←− research(X, m+1, j)

if k = −1 then return research(X, i, m) else return k fi
else
k ←− research(X, i, m)

if k = −1 then return research(X, m + 1, j) else return k fi
fi

erudecorp

The number of probes performed by this algorithm is independent of X and thus Ai, and is given by the
recurrence

T (n) =

 1 + T
([

n
2

])
+ T

([
n
2

])
, if n > 1

1, if n = 1
0, if n = 0

that has the solution
T (n) = 2n− 1, n ≥ 1
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This represents a disimprovement by a factor of n over the näive algorithm. Observe that the lack of
enthusiasm of the reluctant search algorithm is not at all evident from its behavior since it performs a
X = Ai test every O(1) operations, never repeats a test, and stops as soon as it finds the answer. Few
search algorithms, honest or not, can match this performance.

2 Generalizations

The research procedure is a prototypical example of an entirely new branch of Computer Science, the
design and analysis of reluctant algorithms. Intuitively, a reluctant algorithm for a problem P is one which
wastes time in a way that is sufficiently contrived to fool a näive observer. We can make this concept
mathematically precise by saying that A is a reluctant algorithm for P iff

(∀W )W(A, t,W, P )⇒
∧

o∈N
F(W, o)

where N is the set of all näive observers, t is time, W(A, t,W, P ) is the predicate “A wastes time t in the
way W while solving P”, and F(W, o) is the predicate “W is sufficiently contrived to fool o”. We make
no assumptions about the finiteness of the set N .

In the study of reluctant algorithms, the performance of an algorithm A is better expressed by its ineffi-
ciency or best-case time, the minimum (as a function of n) over all inputs of size n of the running time
of A. The simplexity of a problem is the maximum inefficiency among the reluctant algorithms that solve
P . An algorithm is said to be pessimal for a problem P if the best-cast inefficiency of A is asymptotically
equal to the simplexity of P .

Reluctant algorithms have plenty of important practical applications. For example, the reluctant search
algorithm is particularly applicable to the case of real keys (real not in the mathematical sense, but rather
in the sense that they can be used to open doors and drawers). The reluctant search algorithm is the only
one known so far that accurately emulates the behavior of bundles of such keys.

3 Path problems in pleasant graphs

Table search can be viewed as a special cast of the following more general problem. We are given a
“maze”, i.e. an undirected graph G with n nodes, and an “entry” node u in it. Our task is to find a path
from u to a specified “exit” node v, by walking on the maze one edge at a time. In the spirit of classical
Analysis of Algorithms, we would immediately think of using one of the efficient shortest-path or graph
traversal methods. However, suppose the maze is actually quite agreeable, so much so that we wouldn’t
mind spending a few extra cycles in the search for v; in fact we vaguely hope, nay, decidedly wish, that
the search will take as long as possible, and even though our sense of duty prevents us from giving up the
search altogether, we are not that insensitive to the primeval necessities of our human nature, and besides
what is wrong with taking a more relaxed attitude to the problem, as long as we do what we are supposed
to do, since we have always been told that haste makes waste, and no one needs to be perfect anyway, and
so forth. With these assumptions, the problem falls squarely within the domain of our theory.

This problem has been extensively studied by graph theorists, who call it the sloppiest path problem. The
important branch of operations research that goes by the name of anemic programming is entirely devoted
to the study of inefficient methods for solving this problem. What do we know about its simplexity? Early
on it was shown by Wagner [Wagner] that if we have no information about the location of v, the best-case
running time may be as low as O(1): at every single step — even the very first one — we risk stumbling
upon v and falling out of the maze, no matter how much we would like to avoid it. However, Homer
[Homer] showed that, if the graph is embedded in the plane (or in a flat globe), and we are given an oracle
that reveals the general direction of our goal, it is possible to delay getting there until after most or all of
the graph has been traversed. In fact, in this situation the delay is limited not by the inherent simplexity
of the problem, but by its monotonicity.† Homer’s algorithm has Ω(n) inefficiency, and this is a lower
bound for the simplexity of the sloppiest path problem.

†Also known as boredom

2



The reluctant search method and Homer’s sloppiest-path algorithm are both based on the same idea,
known as the method of feeblest descent. We mention in passing that another important paradigm for
reluctant algorithm design was described by Homer in the same work. It was given by its inventor the
colorful name of Penelope’s stratagem, and relies in the use of a for loop whose step oscillates between
positive and negative values at each iteration. Unfortunately, this technique (which is presently called the
backtrack method), has become so well-known that even naive observers can spot it at first sight, and is
now of historical interest only.

4 Backwards-first search

A somewhat similar problem is that of enumerating all n vertices of a connected graph G in a systematic
fashion. This problem has been extensively studied in the framework of classical theory of algorithms,
and it is usually solved by the well-known depth-first [Verne1] or breadth-first [Verne2] algorithms, that
exhibit Ω(n) best-case time.

This was for a long time thought to be an upper bound to the simplexity of the problem, but on October 4,
1984 at 2:17 p.m. the reluctant algorithmics community was shaken by the discovery of a search strategy
exhibiting Ω(n2) inefficiency for in important class of graphs. The backwards first searching method, as
it was called by its inventor, is described below. Like its predecessors, it is best thought of as a method
for assigning to the vertices v1, v2, ...., vn of G the integer labels λ(v1), λ(v2), ...λ(vn), in the range 1 to n.
The algorithm is expressed by the recursive procedure bwfs below. The procedure assumes all labels λ(v)
are initially zero; the recursion is started by the call bwfs(vl, 1).

procedure bwfs(v : vertex, i : integer) =
λ(v)←− i
for each neighbor u of v do
if 0 < λ(u) < i then bwfs (u, i) fi
rof
for each neighbor u of v do
if λ(u) = 0 then bwfs (u, i + 1) fi
rof

erudecorp

We leave to the reader as an enlightening exercise the task of proving the correctness of this algorithm,
and establishing that its inefficiency is indeed Θ(n2) for straight line graphs. A feature of interest from
the point of view of space pessimality in this case, is that the recursion depth of bwfs can get up to Θ(n2)
with an appropriate starting point. Its inefficiency on general graphs is an open problem, but it seems
that it is never faster than O(n

√
n).

Remark that it is enough to delete one of the for loops of bwfs to obtain the familiar depth-first search;
however the order in which the vertices of the graph are visited for the first time is quite mysterious and
complicated, and it is not related to the depth-first order.

The backwards first numbering of the vertices of a graph is by definition the labels λ(v) assigned by this
algorithm. Like the depth-first and breadth-first numberings, this one has several interesting properties.
Due to lack of space, we will mention only a couple of them here. If the edges are arbitrarily oriented so
as to produce an acyclic graph, then λ(head(e)) ≥ λ(tail(e))) for every edge e, or λ(head(e)) ≤ λ(tail(e))
for every e. Furthermore, if the maximum degree of the graph is d, for any pair of adjacent vertices u, v
we will have |λ(u)− λ(v)| ≤ d log min(λ(u), λ(v)). These and other properties make the backwards-first
numbering of prime combinatorial importance.

5 Slowsort

No other problem shows more clearly the power and elegance of reluctant algorithmics than the sorting
of n given numbers. This problem has a long and rich history, whose beginnings can be traced far back,
almost certainly to a time before the establishment of reluctant algorithmics as a recognised discipline in
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the second half of last Wednesday. Thanks to the efforts of many industrious pioneers, the inefficiency
of sorting algorithms was steadily raised from the modest Ω(n log n) of the merge sort algorithm to the
Ω(n
√

n) of Shell’s sort (with appropriate increments), to the Ω(n2) of bubble sort, and finally to the clever
Ω(n3) sorting routine recently described by Bentley [Bentley]. (Apparently it was first published by Steele,
Woods, Finkel, Crispin, and Goodfellow [SWFCG])

One of the most important results of modern simplexity theory is the proof that the sorting problem
can be solved in Ω(nlog(n)/(2+ε)) time. This was the first problem to be shown to have non-polynomial
simplexity. An elegant recursive algorithm that attains this inefficiency is the slowsort method below.

The slowsort algorithm is a perfect illustration of the multiply and surrender paradigm, which is perhaps
the single most important paradigm in the development of reluctant algorithms. The basic multiply and
surrender strategy consists in replacing the problem at hand by two or more subproblems, each slightly
simpler than the original, and continue multiplying subproblems and subsubproblems recursively in this
fashion as long as possible. At some point the subproblems will all become so simple that their solution
can no longer be postponed, and we will have to surrender. Experience shows that, in most cases, by the
time this point is reached the total work will be substantially higher than what could have been wasted
by a more direct approach.

To get a firmer grasp of the multiply and surrender method, let us follow the step-by-step development of
the a slowsort algorithm. We can decompose the problem of sorting n numbers Al, A2, ..., An in ascending
order into (1) finding the maximum of those numbers, and (2) sorting the remaining ones. Subproblem (1)
can be further decomposed into (1.1) find the maximum of the first [n/2] elements, (1.2) find the maximum
of the remaining [n/2] elements, and (1.3) find the largest of those two maxima. Finally, subproblems
(1.1) and (1.2) can be solved by sorting the specified elements and taking the last element in the result.
We have thus multiplied the original problem into three slightly simpler ones (sort the first half, sort the
second half, sort all elements but one), plus some overhead processing. We continue doing this recursively
until the lists have at most one element each, at which point we are forced to surrender.

procedure slowsort (A, i, j ) =
{This procedure sorts the subarray Ai, Ai+1, ..., Aj. }
if i ≥ j then
return
else
m←−

∣∣ i+j
2

∣∣
slowsort (A, i, m )
slowsort (A, m + 1, n )
if Am > Aj then Am ←→ Aj fi
slowsort (A, i, j - 1 )
fi

erudecorp

The recursion characterizing the running time of slowsort will look familiar to readers of Volume Three.
It is essentially T (n) = 2T (n/2) + T (n− 1). The Hamming distance between this and the well known
T (n) = 2T (n/2) + cn recurrence of merge-sort is only 5, but a simple argument about finite differences
shows that this is sufficient to make the first equation have no polynomially-bound solution. In fact it can
be shown that the solution satisfies†

Canlog(n)/(2+e) ≤ T (n) ≤ Cbn
log(n)/2

for any fixed e > 0 and some constants, Ca and Cb. The idea of the proof (we were told that we need at
least one proof to get published) is to assume that T (n) = C1n

C2 ln n for some constants. Then

2T (n/2) + T (n− 1)
T (n)

= 1− 2C2 lnn

n
+

21+C2 ln 2

n2C2 ln 2
+ O

(
(lnn)2

n2

)

†We use “log” for logarithms in base two, and “ln” for natural logarithms
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Making C2 = 1/(2 ln 2) we can show that T (n) ≤ Cbn
log(n)/2 and making C2 = 1/((2 + e) ln 2) we show

that T (n) ≥ Canlog(n)/(2+e) for sufficiently large n. (The constants Ca and Cb, are fudge factors to get the
induction going.) In the spirit of reluctant algorithmics, the details will be available from the authors in
the near future, an 7-track odd-parity EBCDIC tapes, containing rasterized punched card images of the
proof written in EQN.

For practical applications, it is obvious that slowsort is the eminently suitable algorithm whenever your
boss sends you to sort something in Paris. Among other nice properties, during the execution of slowsort
the number of inversions in A is nonincreasing. So, in a certain sense (if you are in Paris, all expenses
paid, this sense is clear) slowsort never makes a wrong move.

6 Conclusions and open problems

For a long time theoretical Computer Science was concerned only with the analysis of either the worst
case or the average case behavior of algorithms. This paper is the first to try to remedy the obvious
discrimination against the study of the best case behavior, and we can only hope that it will be followed
by many others.

The analysis of slowsort led to the following conjecture known as the raising hypothesis (RH): If the
complexity of a problem is O(gf) where g and f are functions of the length of the input and f = o(g) then
the simplicity of this problem is Θ(gf ).

The extended raising hypothesis (ERH) states that if the complexity of a problem is O(g + f), then its
simplicity is Θ(gf). It is obvious that ERH implies RH.

The proof or disproof of RH is one of the greatest open problems in Simplexity. However we must end
on the sad note that it might be impossible to prove RH due to the well known incompleteness of Peano
arithmetic.
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NOTE

This article was originally published as:

ACM SIGACT NEWS, 16(3):49-53, 1984

but the only copy of it was a fairly poor photo-copy. So I have reset it in LATEX2ε.

Gordon Lack, April 2000.
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