Lex-BFS and Partition Refinement, with
Applications to Transitive Orientation, Interval
Graph Recognition and Consecutive Ones
Testing.

Michel HABIB* Ross MCCONNELL ! Christophe PauL?

Laurent VIENNOT §

Abstract

By making use of lexicographic breadth first search (Lex-BFS) and
partition refinement with pivots, we obtain very simple algorithms for
some well-known problems in graph theory.

We give an O(n + mlogn) algorithm for transitive orientation of a
comparability graph, and simple linear algorithms to recognize interval
graphs, convex graphs, Y-semichordal graphs and matrices that have the
consecutive-ones property.

Previous approaches to these problems used difficult preprocessing
steps, such as computing PQ trees or modular decomposition. The al-
gorithms we give are easy to understand and straightforward to prove.
They do not make use of sophisticated data structures, and the complex-
ity analysis is straightforward.

Keywords

algorithm, data-structure, partition refinement, graph, boolean matrix

1 Introduction

Some efficient algorithms for various classes of graphs and boolean matrices are
presented. These classes are comparability, chordal, interval graphs and their
complements. To this aim a general framework, namely partition refinement
[14, 16], is used. This framework allows a unified and more general treatment
of problems on these classes, such as transitive orientation of a comparability
graph or its complement, recognition of an interval graph or its complement,
and consecutive ones testing of boolean matrices. We give efficient solutions to
these problems that do not use the preprocessing steps of computing PQ trees

or modular decomposition.

*LIRMM, Montpellier, France; habibQlirmm.fr

TComputer Science and Engineering Department, University of Colorado at Denver, rmc-
conne@carbon.cudenver.edu

fLIRMM, Montpellier, France; paul@lirmm.fr

SLIAFA, Paris, France;lavie@litp.ibp.fr

All graphs considered in this paper are finite and simple. A directed graph
is transitive if, whenever (a,b) and (b, c) are arcs, (a,c) is also an arc. A graph
is a comparability graph if its edges can be assigned orientations so that the
resulting directed graph is transitive and acyclic, hence a partial order.

An interval graph is a graph that can be modeled by assigning to each vertex
an interval on the set of integers, such that two vertices are adjacent in the graph
if and only if their intervals intersect. A graph is a co-comparability graph if its
complement is a comparability graph. It is readily seen that an interval graph
is a co-comparability graph, since two vertices are an edge in the complement
if and only if one of the intervals comes before the other, and this relation is
transitive.

A chordal graph is an undirected graph where every induced cycle on four
or more vertices has a chord. It is not hard to see that an interval graph must
be chordal. In fact, a graph is an interval graph if and only if it is chordal and
its complement is a comparability graph [9].

Chordal graphs are characterized by the existence of a perfect elimination
ordering of their vertices, which is defined as follows. A clique is a set of vertices
inducing a complete subgraph. An ordering x1,...,x, of vertices is a perfect
elimination ordering of a graph G = (V, &) if the neighborhood of each vertex
x; is a clique of the induced subgraph G, . ..}

A graph is chordal if and only if there exists an arrangement of its maximal
cliques into a tree such that the maximal cliques containing a given vertex always
induce a connected subtree [8]. Such a tree is called a clique tree. Interval graphs
are the chordal graphs admitting a clique tree that is a chain, or equivalently, a
numbering of their maximal cliques such that the maximal cliques containing a
given vertex occur consecutively. Such a chain is called a cliqgue chain. If there
are k cliques, this associates with each vertex an interval on the integers from
one to k, namely, the subscripts of the cliques that contain the vertex. The
result is an interval representation of the graph, since two vertices are adjacent
if and only if they reside in a common clique.

A boolean matrix has the consecutive ones property if its columns can be
reordered so that the ones in each row are consecutive.

In many applications, the modular decomposition [5] appears as a prepro-
cessing step of efficient algorithms for transitive orientation [12], and interval
graph recognition [10]. The first recognition algorithm, presented in [2], uses a
complex procedure for computing a data structure called the PQ-tree. Later,
simpler algorithms based on Lex-BFS have been discovered: in [11], a simplifi-
cation of the PQ-tree, called the MPQ-tree is used, while in [10], the modular
decomposition is used, and in [12], a transitive orientation of the complement is
used.

Either explicitly or implicitly, most of these disparate algorithms make use
of an operation that is sometimes called pivot. In a pivot, a partition of the
vertices is refined by splitting a partition class according to its adjacency to a
selected vertex that is not a member of that partition class. The evolution of the
partition refinement yields information about the structure of the graph, which
is then used to solve the problem. Pivoting is used in finding twins, recognizing
chordal graphs [15], recognizing permutation graphs [12], finding a transitive
orientation [12], and modular decomposition [12, 4]. Lex-BFS is a special case
of pivoting, and is used for recognizing chordal graphs [15].

In this paper, we attempt to show that pivoting is fundamental to the so-

X, X, X,
0 o

@®isinS OisnotinS

Figure 1: The partition refinement of (X;,..., &) into (A7,..., &]) according
to the subset S of black elements.

lution of these problems, by showing how efficient algorithms for them can be
obtained without much recourse to other techniques. The pivot may be viewed
as a generalization to graphs of the Quicksort pivoting rule, used for sorting
integers. This general approach was originally put forth in [14] and in [16], who
showed how it can lead to a simpler conceptual framework for developing algo-
rithms for some of these problems. By generalizing it to arbitrary set families,
we are able to use it to manipulate cliques of interval graphs.

We first show how the O(n + mlogn) transitive orientation algorithm pre-
sented in [12] can be adapted so that it does not require the formidable step of
pre-computing the modular decomposition. We then present an O(n + m) in-
terval graph recognition algorithm that uses a clique tree for pivoting. A clique
tree of a chordal graph can be computed with Lex-BFS in linear time (see [6]).
In order to use the same algorithm for the consecutive one’s property problem,
we propose an adaptation of Lex-BFS that takes as input the cliques of a graph.
This Lex-BFS version gives linear time and space algorithms for the recognition
of convex graphs and Y-semichordal graphs.

2 Refining a Partition by Pivoting

All the algorithms we propose are based on the general framework of Algo-
rithm 1, which refines a partition of a set E according to a subset S of E.

A partition is an ordered collection of disjoint subsets of E called classes,
whose union is E. A set S C F is given as a parameter. We refine the partition
by splitting each partition class I, into two subsets, I, NS and I, \ S. At
the same time, we maintain an order on the partition classes as they evolve.
Figure 1 gives an illustration.

Algorithm 1: Partition Refinement
Input: an ordered partition L = (X}, ..., X)) of a set E and a subset S C E.

Output: a refined partition L' = (&],..., X]).
begin
for each class X, do
let Y be the members of X, that are in S
if Y is not empty and Y # X, then
| remove Y from X, and insert it next to X, in L

end

After the refinement of the partition, no class properly overlaps S: any class
X verifies either X} C S or X, NS = (). Depending on the use of the routine,
Y can be inserted immediately behind or immediately in front of A,.

The refinement can be performed in O(|S|) time by using the following data
structure. All the elements of E are stored in a doubly linked list. Each class
consists of an interval in this list, and is implemented with a structure that has
a pointer to its first element and a pointer to its last element. Each element
keeps a pointer to the class that contains it. To maintain an ordering on the
classes, these class structures are stored in a doubly linked list.

During the refinement, each element in S is simply removed from the list
and inserted at the end of its new class. This preserves the initial ordering of
the vertices inside the classes when S is sorted according to this ordering. When
it is not important to keep this ordering, it may be simpler to store the vertices
in an array, and to exchange the element to be removed and the first (or the
last) element of the class being split. The bounds of the new class and the class
being split must then be updated.

In graph algorithms, E is usually the vertex set and S is the neighborhood
of a pivot vertex. Note that the procedure for refining the partition by the
complement of E \ S of S produces an identical result if suitable adjustments
are made to the ordering rule used to determine whether) should be placed
before or after X, in Algorithm 1. In graph algorithms, this means that, given
the adjacency-list representation of a graph, we can run the partition refinement
routine on the complement of the graph directly, without having to compute an
adjacency-list representation of the complement. This property was used in [12]
to recognize permutation graphs, which are those comparability graphs whose
complement is also a comparability graph.

3 Lex-BFS Orderings

Standard breadth-first search fails to specify completely the order in which
vertices must be visited. Lex-BFS imposes additional constraints, by breaking
ties according to a rule that we describe below. This guarantees that the order
in which vertices are visited has certain desirable properties. We call Lez-BFS
ordering the order in which the vertices are visited. Lex-BFS was introduced in
[15] to recognize chordal graphs. Algorithm 2 is one way to implement Lex-BFS.
Since there is only one pivot on each vertex, the time bound is clearly O(n+m).
An example is given in Figure 2.

aready visited vertices
X3 %2 Xn-1 Xn

SIS

pivot X4

Figure 2: Refining a partition towards a Lex-BFS ordering according to the
neighborhood of the pivot, the currently visited vertex by the Lex-BFS.

Given a graph G and a partial numbering 7 of the vertices of GG, we define

Algorithm 2: Lex-BFS Ordering
Input: a graph G = (V,€).
Output: a Lex-BFS ordering 7= 1(1),...,pi !(n) of the vertices.
begin
let L be the one element ordered list (V)
14N
while there exists a non-singleton class in L = (Xy,..., ;) do
let X, be the last class made of non-visited vertices
remove a vertex x from X,
m(x) < i
ii—1
for each class &, b < a do

let) be the members of X} that are adjacent to x

if Y is nonempty and not equal to X, then

remove) from X}
L insert) immediately behind A} in L

end

RN(z) to be the neighbors to the right of x, namely, the set {y : y € N(z) and
7(y) > m(x)}. Partway through execution of the above algorithm, not all of the
eventual members of RN (z) are yet known, so in this context, we we will find it
convenient to let RN (z) be defined to be the vertices currently known to belong
to the right of z in the eventual ordering. Specifically, if w(x) is already defined,
RN(z) is defined as before, and if not, RN (z) is the neighbors of z that have
already been assigned numbers.

An important function is label(z), which denotes the sequence of 7 labels of
RN (z) in ascending order. It is not hard to verify that the algorithm maintains
the invariant that two un-numbered vertices x and y are in the same partition
class if and only if label(x) = label(y), and that if the reverse of label (z) precedes
the reverse of label (y) in lexical order, then z’s partition class is before y’s. Thus,
in the final ordering, the labels of the vertices are in lexical order.

Lex-BFS Orderings and Chordal Graphs

A graph G is chordal if and only if the ordering of vertices produced by Lex-
BEFS is a perfect elimination ordering [15]. Thus, an algorithm for recognizing
chordal graphs is to use Lex-BFS to obtain an ordering, and then check whether
this ordering is a perfect elimination ordering. The algorithm 3 is one way to
do this.

For the correctness, note that if 7w is a perfect elimination ordering, then
{z} U RN (z) is a clique C, where z is its leftmost member and parent(z) is its
next leftmost member. The check obviously cannot fail. If it is not a perfect
elimination ordering, then for some z, U RN (z) is not a clique. Without loss
of generality, let = be the rightmost vertex in m with this property. By our
choice of z, parent(x) fails to have as a neighbor some vertex to its right that
is a neighbor of x, so the check fails.

For the time bound, finding RN (z) for all 2z obviously takes O(n +m) time.
We may get all RN lists in sorted order by concatenating them and using a

Algorithm 3: Chordality test
Input: a graph G = (V, &), and a numbering 7 of vertices
Output: Returns TRUE if 7 is a perfect elimination ordering
begin
for each vertex x do

let RN (z) be its neighbors to the right

let parent(z) be the leftmost member of RN (z) in 7
Let T be the tree defined by the parent pointers
for each vertex x in T in postorder do

| check that (RN(z) \ parent(z)) C RN (parent(z))

if no check failed then return TRUE
else return FALSE
end

two-pass radix sort that sorts all entries by 7 value as the secondary key, and
original RN list as primary key. This requires n buckets for each pass, and takes
O(n 4+ m) time. Given the lists in sorted order, the remainder of the operations
are trivial to carry out in O(n + m) time.

Recall that if G is chordal, it is possible to find a clique tree, that is, to
arrange the maximal cliques into a tree such that for each vertex, the subtree
induced by the cliques that contain x are connected. The following variant of
Algorithm 3 does this:

Algorithm 4: Clique tree

Input: G is a chordal graph, and 7 is a perfect elimination ordering
Output: A clique tree T of G
begin
Let T be defined as in Algorithm 3
Let r be the root of T’
for each vertex x in T except the root, in preorder do
if (RN (z) \ parent(z)) # RN (parent(z)) then
Create a new clique C = {z}
C(z) « C
parent(C) < C(parent(z))
else
C(parent(z)) < C(parent(z)) U {z}
| C(z) « C(parent(z))

end

The O(n + m) time bound follows from the time bound of operations in
Algorithm 3, and the fact that all operations in an iteration of the last for loop
may be charged at O(1) to 2 and O(1) to each element of the list RN (z). The
sum of cardinalities of RN lists is O(m).

For the correctness, note first that for each vertex x, RN (z) is a subset of
the ancestors of x in T. This is true for the root. Suppose it is true for any
vertex at depth k, and assume that x is at depth k + 1. The parent of z is the

earliest member of RN (z) in 7. Since RN(z) is a clique, RN (z) \ parent(z) is
a subset of RN (parent(z)). By the inductive hypothesis, RN (z) \ parent(z) is
a subset of the ancestors of parent(z).

Next, adopt as an inductive hypothesis that just after each vertex is pro-
cessed, the current set of cliques reflects the maximal cliques of the subgraph of
G induced by the set of processed vertices. As a base case, this is obviously true
just before second vertex is processed. The correctness of the set of cliques after
the inductive step is immediate from the fact that the members of RN (z) have
already been processed in the preorder traversal, and {z} U RN(z) is a clique.

Finally, we show that after each vertex is processed, the parent relation is
a clique tree on the subgraph induced by the set of processed vertices. To do
this, we show that for an arbitrary processed vertex y, the cliques containing
y induce a connected subtree of this tree. As a base case, it is true just after
y is processed, since it is contained in only one clique of the tree. Suppose
it is true just before some subsequent vertex z is processed. If no new clique
containing y is created, it continues to be true. So assume that processing
x creates a new clique C' and y is contained in C. It suffices to show that
the parent of C is a pre-existing clique that contains y. For each processed
vertex z, C(z) contains {z} U RN(z). In particular, C(parent(z)) contains
{parent(z)} U RN (parent(z)). Since {parent(x)} U RN (parent(z)) contains
RN (z), C(parent(z)) contains y. The parent of the new clique is a pre-existing
clique containing y.

It follows that the tree is a clique tree for G after all vertices are processed.

Lex-BFS orderings and co-chordal graphs

Note that in Algorithm 2, the same result could be achieved by removing the
non-neighbors of the pivot from X, and placing them before X;. Thus, the only
asymmetry in the treatment of neighbors and non-neighbors is the decision
to place the non-neighbors before the neighbors in the ordering of the refined
classes. It follows that if this rule is changed so that the neighbors are placed
before Xj, rather than after, the resulting ordering is that which would be
produced by a Lex-BFS on the complement graph. Changing the ordering rule
does not affect the time bound of Algorithm 2, so we get the following;:

Algorithmic Result 1 If G is a co-chordal graph, it is possible to produce a
Lex-BF'S ordering of G in O(n +m) time.

To recognize whether a graph is a co-chordal graph, we need only verify that
that this ordering is a perfect elimination ordering on the complement. We give
the following adaptation of Algorithm 3:

For the correctness, let RN (z) be the non-neighbors to the right of z in
G. To run Algorithm 3 on G, we use the same parent function that we use in
Algorithm 5. Instead of using RN (), we would use RN (z), and check whether
RN () \ parent(z) is a subset of RN (parent(z)). This happens if and only
if RN (parent(x)) fails to be a subset of RN (x), so the two sets of tests are
equivalent. The algorithm returns TRUE if and only if Algorithm 3 returns
TRUE when given G and the same Lex-BFS ordering of G as input.

For the time bound, creating and sorting the RN lists is accomplished just
as it was in Algorithm 3. To compute parent(z), mark all neighbors of z,

Algorithm 5: Co-chordalilty test
Input: a graph G = (V,£), and a numbering 7 of vertices

Output: Returns TRUE if 7 is a perfect elimination ordering on G
begin
for each vertex x do
let RN (z) be its neighbors to the right in G
\; let parent(z) be the leftmost non-neighbor to its right
Let T be the tree defined by the parent pointers

for each vertex x in T in postorder do
| check that RN (parent(z)) is a subset of RN (z)

if no check failed then return TRUE
else return FALSE
end

and then moving rightward from z in the ordering given by =, find the first
unmarked vertex. This is parent(z). Then unmark the neighbors of z. Except
for the O(1) time spent at parent(x), the time is charged to marked neighbors
of z, and takes O(1 + |N(z)]). Computing this for all = thus takes O(n + m).
Given the sorted RV lists, the time spent in the subset tests can be charged to
members of RN lists and are thus O(n + m).

Algorithm 4 can be adapted in a similar way. We use it below to recognize
whether the complement of a graph is an interval graph.

Algorithm 6: Co-clique tree

Input: A co-chordal graph G and a co-Lex-BFS ordering 7 of G

Output: A clique tree of the complement of G, where each clique is repre-
sented by listing its non-members

begin

Let T and RN and be defined as in Algorithm 5

for each vertex x in T in preorder do

Let R be the members of RN (x) to the right of parent(x)

if R # RN (parent(z)) then

Create a new empty list C

C(z) « C

parent(C) < C(parent(z))

leftmost(C) < x

else
C(z) + C(parent(z))
| leftmost(C(z)) « x

for each empty list C created do
| Insert the neighbors of leftmost(C)) in C

end

The only difference between running this algorithm on G and 7 and running
Algorithm 4 on G and 7 is the condition of the for loop, and that each final
clique is represented by the neighbors in G of its leftmost vertex. That the
condition in the for loop is equivalent follows from the fact that RN(x) is

the neighbors to the right of = in G, instead of in G. Since 7 is a co-perfect
elimination ordering of G, the complement of the neighborhood in G of the
leftmost vertex gives the members of the clique. Thus, the neighborhood in G
of the leftmost vertex is the claimed representation of the clique with its non-
members. The O(n + m) bound on the steps it shares with Algorithm 5 follows
from the time bound of that algorithm. The operations inside an iteration of
the for loop can clearly be charged to # and members of RN(z), giving an
O(n + m) bound for the algorithm. This gives the following:

Algorithmic Result 2 Algorithm 5 recognizes co-chordal graphs in O(n +m)
time, and a clique tree on the complement of a co-chordal graph may be found
in O(n + m) time by algorithm 6

Lex-BFS Orderings and Transitive Orientation

A module of a graph is a set M of vertices such that for each vertex z not in M,
either every member of M is adjacent to x, or no member of M is adjacent to x.
The entire vertex set, its singleton subsets, and the empty set are trivial modules.
A graph with only trivial modules is a prime graph. It is easily seen that if X
and Y are disjoint modules, then X and Y are either adjacent (every member of
X x Y is an edge of G) or nonadjacent (no member of X x Y is an edge of G).
A modular partition of G is a partition P of V such that every member of P is a
module. A modular partition always exists, since the singleton subsets of V' are
trivially a modular partition. Since all sets in a modular partition are disjoint,
their adjacency relation defines a quotient graph G/P whose vertices are the
members of P. The quotient graph is isomorphic to the subgraph induced by
any set consisting of one vertex from each member of P.

If a comparability graph contains nontrivial modules, then they give a way
of breaking the transitive orientation problem into smaller pieces, as follows [7].

Algorithm 7: Transitive orientation

Input: A comparability graph G and a partition P of V' where each partition
class is a module.
Output: A transitive orientation of G
begin
Let F' be an empty set of arcs
for each X € P do
Let Fx be any transitive orientation of the edges of G x
| F«+« FUFx
Let F' be any transitive orientation of G /P
for each arc (X,Y) € F' do

for each edge zy of G where x € X andy € Y do
L F« FU(z,y)

return F

end

Algorithmic Result 3 If G is a comparability graph, then Algorithm 7 pro-
duces a transitive orientation of G.

Lemma 1 If G is a prime co-comparability graph and (:U],$27.;7£En) s a
Lex-BFS numbering of V, then there is a transitive orientation of G where x;
s a source, and another where it is a sink.

Proof: It suffices to show that there is a transitive orientation where z; is a
sink, since reversing the directions of the arcs in this orientation gives another
where x; is a source.

Let V = Xy, Xo,..., X, = {x1} be the sequence of partition classes that
contain x; during the course of the execution of the Lex-BFS. These classes are
always first in the sequence of partition classes, since they contain z1, which is
first in the final partition. Each X; : 1 <i < k is split into X;;1 and a class Y
by some pivot z not in X;, since the graph is prime and X; is therefore not a
module. Note that every vertex in Y is adjacent to z, and every vertex in Xj;41
is nonadjacent to z. Adopt as an inductive hypothesis that there is a transitive
orientation that directs all nonedges of G in {z1} x (V' \ X;) into z; before this
split. For the inductive step, note that in such a transitive orientation, any non-
edge between y € Y and x; must be oriented into x;, since the nonedge (z,z1)
is oriented into x1, and (z,y) is an edge, not a nonedge, and therefore cannot be
used in a transitive closure of arcs (z,21) and (z1,y). The inductive hypothesis
is therefore true for X;;; also. As a base case, since Xo = V' \ {z,,}, we may
arbitrarily orient the nonedge (z,,z1) into x1, since any transitive orientation
or its inverse will assign this orientation. The truth of the inductive hypothesis
for X} = {z1} establishes the result. O

A result similar to Lemma 1 is given in [12]. However, we wish to avoid
reducing the problem to prime co-comparability graphs, since this reduction
is what makes calculation of the modular decomposition necessary. Thus, the
assumption that the graph is prime is inadequate for our purposes. In order to
remedy this, we now generalize it to co-comparability graphs that need not be
prime.

If P is a modular partition of an undirected graph G, and = is a Lex-BFS
ordering, then for each X € P, let the discovery time of X be maz{r'(x) :
x € X}. The following result is a key element in our transitive orientation
algorithm.

Lemma 2 Let G be an arbitrary undirected graph.

1. If M is a module of a graph G, then any Lez-BFS ordering of G induces
a Lex-BFS ordering of the subgraph Gps induced by M .

2. If P is a modular partition of G, then ordering the members of P by their
discovery times gives a Lez-BFS ordering of G/P.

Proof: For the first part, note that a pivot on a vertex z € V — M cannot affect
the relative order of vertices in M, since z is either adjacent to all members
of M or to none of them. To establish the relative order the Lex-BFS induces
on members of M, operations involving vertices not in M can be omitted from
consideration. The subsequence of operations involving only members of M are
just a Lex-BFS of G .

For the second part, suppose that P = {V¥7,Y5,...,Y,}. For each set V;,
let y; be the first vertex visited in Y;. We analyze the operations that affect
the discovery times of the members of P, that is, the operations that affect the
relative order of members of {y1,y2,...,yn}. No pivot on a member of Y; may

3

10

Figure 3: A pivot on a vertex x in the transitive orientation algorithms. Here,
the pivot splits two classes. The new interclass non edges a — b, d — ¢ and
e — c are forced by a — x and x — ¢. z is the pivot here.

affect our choice of y; as the first pivot in any Y}, since Y} is a module and cannot
be split up by a pivot on a vertex not in Y;. The pivot on y; marks the discovery
time of Y;, and can affect the relative order of vertices in two different classes Y,
and Yj. However, no subsequent pivot on a member of Y; may further affect the
relative order of members of Y, and Y} since every member of Y; has the same
adjacencies to them as y; does. We conclude that to establish relative discovery
times, we may restrict our analysis to those operations involving members of
{y1,92, ..., yr}. These operations are just a Lex-BFS of Gy, 4, .. 4.}, which is
isomorphic to G/P. O

Theorem 1 If G is a co-comparability graph and x1 is the last vertex visited in
a Lex-BFS, then there exists a transitive orientation of G where x1 is a sink.

Proof: If G is prime, then the result follows from Lemma 1. So assume that
G is not prime. Adopt as an inductive hypothesis that the lemma is true for
graphs with fewer vertices than G.

Let X be the maximal module, other than V', that contains z;. Since {z;}
is a module, X is always defined. Let Y be a maximum-cardinality module that
is contained in V' \ X. At least one of X and Y is a non-singleton set, since G
is not prime. Let P consist of X, Y, and the singleton subsets of V' \ (X UY).
G /P and G x each have fewer vertices than G does.

As pivots are performed, the partition class containing x; is always first,
since x; is the first vertex in the final ordering. Vertices are successively split
off from the class that contains x;. When only one partition class remains, it
must be X, since X cannot be split by pivots that it does not contain. Thus, X
is the last-discovered member of P. By the inductive hypothesis and Lemma 2,
X is a sink in a transitive orientation of 6/77 and z; is a sink in a transitive
orientation of Gx. The result now follows immediately from Theorem 3. O

Figure 3 illustrates the forcing relation on the non edges during a Lex-BFS.

Corollary 1 If G is a chordal co-comparability graph, and K is the last clique
discovered during a Lex-BFS, then there is a transitive orientation of G where
every member of K is a sink.

Proof: K consists of 1 and its neighbors. Consider a transitive orientation of
G where ; is a sink. For any vertex y of K and any non-neighbor u of y, u is
not a neighbor of z;, since it is not in K. Since z; is a sink, uy is forced to be
oriented toward y, by the orientation of uz; toward z; and the adjacency of x;
and y. O

11

4 A Transitive Orientation Algorithm

The transitive orientation algorithm of [12] uses modular decomposition to re-
duce the problem to that of transitively orienting prime co-comparability graphs.
To transitively orient a prime co-comparability graph, they begin with an or-
dered partition (V' \ {v},{v}), where v is a sink in a transitive orientation of
G. They then repeatedly perform pivots. When a class X is split into X, and
X, by a pivot, where X, are the vertices adjacent to the pivot, they use the
following ordering rule: if the pivot vertex is in a class that follows X, replace
X in the sequence by X,,, X,, in that order; otherwise replace X by X,, X,,.

The inductive hypothesis is that there is a transitive orientation where every
of G that is not contained in a single partition class is oriented from the later
partition class to the earlier one. Suppose this is true before X is split. If the
pivot vertex z is in a later class than X, then all nonedges to X, are oriented
toward X,,. This forces the orientation of all edges of G that are in X,, x X,
also to be oriented toward X,,, since orienting them any other way would require
transitive edges from z to X,. Since X, is adjacent to z in G, there can be no
such transitive edge in G. The inductive hypothesis thus holds after X is split. It
is true for the initial partition because of the choice of v. Since G is prime, there
is always a pivot that can split a non-singleton class. The final partition thus
consists of singletons, and the inductive hypothesis says that the final ordering
is a linear extension of a transitive orientation of G.

This algorithm is not sufficient for our purposes, since we seek to eliminate
the assumption that we have the modular decomposition, and thus cannot as-
sume that we have reduced the problem to the special case where G is prime.
Suppose we apply their ordering rule, and perform pivots until each partition
class is a module. Let P be the resulting modular partition. Then the inductive
hypothesis given in the previous paragraph implies that the resulting ordering
of P is a linear extension of G/P. By Theorem 3, it only remains to find a linear
extension of a transitive orientation of G x for each X € P. Qur approach is to
find these recursively, but as we will see, this must be done in a particular order
to avoid ruining the time bound.

To obtain an O(n + mlogn) time bound on prime graphs, one may use the
following rule for selecting a pivot [16, 12]: only select a pivot if its current
partition class is at most half the size of the partition class that contained it the
last time it was used as a pivot. This guarantees that each adjacency list will
be touched at most O(logn) times, which gives an O(n + mlogn) bound on the
running time. For the correctness, let X be a largest partition class when the
pivot selection rule prevents any more pivots from being selected. Every vertex
y not in X has been used as a pivot since the last time y was in a common
partition class with the members of X; otherwise the rule would allow y to be
selected as a pivot. Since X has not been split up by any of these pivots, it is
a module. Since G is prime, it must be a singleton set.

It is shown in [16] that the pivot selection rule may be extended when the
graph is not prime, in order to perform pivots until every partition class is
a module. If the pivot selection rule does not allow any more pivots to be
selected, then we have seen that any largest class X is a module. A final pivot
on each member of X splits any classes that are distinguished by members of
X. X can now be removed from consideration, and the algorithm may continue
on the remainder of the partition and Gy\x. The algorithm halts when no

12

Figure 4: Transitive orientation. The new interclass non edges a — b, d = ¢
and e — ¢ are forced by a = x and x — ¢. z is the pivot here.

vertex remains, and the removed partition classes are the desired modules. Each
adjacency is used at most logn times when the pivot rule allows it to, plus an
additional time, when its class is removed from consideration. Thus, the running
time is still O(n + mlogn).

If we apply the algorithm in [16] recursively inside the modules that it finds,
using the ordering rule introduced in [12] to order the classes, then we get a
linear extension of a transitive orientation of G, by Theorem 3. Unfortunately,
the rule that says that a final pivot on a vertex is necessary when its partition
class is discovered to be a module violates the rule that a pivot is only used
when its partition class is half as big as the one that contained it when it was
last used. This is not a problem for the time bound when the algorithm of
[16] is run once, since this situation happens only once for each vertex. When
the algorithm is applied recursively, however, it can happen more than O(logn)
times, so the O(n + mlogn) bound fails.

We can get around this problem by changing the order of the recursive calls.
When a set X is discovered to be a module, Spinrad’s algorithm says that
we must perform a pivot on each member of X before we can remove it from
consideration. Instead of doing this, we observe that a pivot occurs on each
member of X when we make the recursive call on X. So, instead of performing
a final pivot on each member of X, we make the entire recursive call on it, and
only then remove it from consideration and proceed with the rest of the work
in the main call. We use the pivots inside the recursive call to split also those
classes not contained in X. This guarantees that we use a pivot in a recursive
call only if the last time it was used, it was in a class that was twice as big,
even if the previous pivot occurred in the main call. This restores the O(mlogn)
bound on the number of times a vertex is used as a pivot in all recursive calls
put together.

To complete the algorithm, we must show how to identify a sink v in each of
the recursive calls. Making a call to Lex-BFS at the beginning of each recursive
call would ruin the time bound. Fortunately, each recursive call is applied to a
module that was discovered in a higher-level call. Thus, we may preprocess the
graph by running a single call to Lex-BFS to number its vertices. By Lemma 2,
part 1, whenever we need a sink in the subgraph induced by a module, we may
just select the highest-numbered vertex in the module.

The complete algorithm is given as Algorithm 8, with the recursive struc-
ture of the algorithm simulated with a set of nested loops. Figure 4 gives an
illustration.

A trait shared with it by our algorithm is that it fails to recognize within that
time bound that the result is not transitive if the input is not a comparability

13

Algorithm 8: Transitive Orientation

Input: a graph G = (V,€).

Output: if the input graph is a co-comparability graph, the output is an
ordering of the vertices inducing a transitive orientation of the non

edges.
begin
compute a Lex-BFS ordering of the vertices z1, ..., z,
let L be the one-element ordered list ({z1,...,z,})
lastused({x1,...,xn}) = 00
while there exists a non-singleton class in L = (Xy,..., ;) do

if there is a partition class X, such that |X,| < lastused(X,) then
for each vertexr xz in X, do
for each class X}, b # a do
let Y be the members of A} that are adjacent to x
if Y = emptyset or X = Y then
| do nothing
else
remove) from X}
if b < a then insert) immediately behind A}
else insert) immediately in front of A}

| lastused()) = lastused(X})

lastused(X,) = | X,|

else

let X, be the largest class in L

let x; be the last vertex in X, discovered by the Lex-BFS (the
vertex with the smallest number)

replace X, by X\ {z;},{z;} in L

lastused({x;}) = oo

end

graph. However, as is shown in [12], this does not prevent it from being used
as a key step in many algorithms for other problems where the correctness of a
solution must be certified.

The algorithm computes a linear extension of a transitive orientation of G
if G is a co-comparability graph. By reversing the insertion order rule for new
classes, the algorithm computes a linear extension of a transitive orientation of
G if it is a comparability graph. A transitive orientation may then be obtained
by orienting the edges according to the linear extension. Permutation graphs are
those graphs that are both comparability and co-comparability graphs. Com-
bining the two above results and using this fact, permutation graph recognition
with same complexity is easily obtained; see [12] for details.

This gives the following:

Algorithmic Result 4 Using the algorithm 8, we can compute in O(n+mlogn)
time and in linear space a transitive orientation of a comparability graph.

14

5 Interval and Co-interval Graph Recognition

We have given an algorithm for finding an ordering of vertices of G that is a
linear extension of a transitive orientation of G if G is a comparability graph.
Given such an ordering, it is easy to check whether GG is an interval graph in
linear time [12]. Finding the ordering takes O(n + mlogn) time, yielding a
simple O(n + mlogn) interval graph recognition algorithm. In this section,
we show how to get this bound down to O(n + m) without compromising the
conceptual simplicity.

Hsu and Ma [10] give a linear-time algorithm for recognizing whether a prime
graph is an interval graph. They then use modular decomposition to reduce the
problem to the special case of prime graphs. We show that there is a way to
eliminate the modular decomposition step.

An interval graph is a chordal graph such that there exists a clique tree that is
a path. That is, the maximal cliques can be linearly arranged so that all cliques
containing a given vertex are consecutive. Such an ordering is called a clique
chain. This associates an interval on this clique chain with each vertex, namely,
the interval given by the cliques that contain the vertex. This assignment of
intervals gives an interval representation of (G, where two vertices are adjacent
if and only if their intervals intersect.

There may be more than one clique chain on G. However, suppose that
a particular transitive orientation F' of G is given. If X and Y are maximal
cliques, define the relation X <p Y to hold if and only if there is some edge of
F' that begins in X and ends in Y. In [9], it is shown that either X <z Y or
Y <g X, but not both, for every pair X,Y of maximal cliques, and that this
relation is transitive and acyclic. Thus, F' defines a unique linear order on the
maximal cliques. It is shown that this linear order is a clique chain.

Conversely, it is also shown in [9] that each clique chain defines a transitive
orientation of G. Every edge (z,y) of G connects some pair X,Y of maximal
cliques of G, where z € X,y &€ X,y € Y,z ¢ Y. We may say that the clique
chain assigns an orientation z — y if and only if X is before Y in the clique chain.
Thus, the problem of computing a clique chain and the problem of computing
a transitive orientation of G may be regarded as dual problems.

In view of these observations, the following is an immediate consequence of
Corollary 1:

Lemma 3 The last clique discovered in a Lez-BF'S is an extreme clique in some
clique chain.

We will assume that G is an interval graph and show how a clique chain
can be computed under this assumption. Since only interval graphs have clique
chains, the output of the algorithm must fail to be a clique chain if G is not
an interval graph. Checking whether the output is a clique chain will then
give a recognition algorithm for interval graphs. This test can be achieved in
linear time after each refinement step (line 3). For the sake of simplicity, in
the interval graph recognition algorithm, the verification is made globally in a
separate further step. This also can be done in linear time by the usual technique
which traverses the clique chain and builds the interval representation.

Algorithm 9 gives the procedure, and Figure 5 illustrates an execution of the
algorithm on an example.

15

Algorithm 9: Interval Graph Recognition (via Clique Partition Refine-
ment)
Input: a graph G = (V,€).
Output: if the input graph is interval: a clique chain L.
begin
1 compute the maximal cliques and a clique tree T' = (X', F) using a Lex-
BFS according to Algorithm 4
let X' be the set of maximal cliques X = {C4,...,Cy}
let L be the ordered list (X)
pivots = () is an empty stack
while there exists a non-singleton class X, in L = (X1,..., ;) do
if pivots = () then
let C; be the last clique in X, discovered by the Lex-BFS (the
clique with the greatest number)
replace X, by X\ {C;},{C/}in L

C={C}
else
pick an unprocessed vertex z in pivots (throw away processed
ones)
2 let X, and A} be the first and last classes containing a member
of C
3 replace X, by X, \C, X, NC and A, by X, NC, A\ C

for each remaining tree edge (C;,C;) connecting a clique C; € C to
a cliqgue C; € C do

pivots = pivots U C; N C;

remove (C;,C;) from the clique tree

for each vertex x do
if the cliques containing x are not consecutive in the ordering then
| return “G is not an interval graph”

| return “G is an interval graph”

end

The ordered set of partition classes maintained by the algorithm represents
a partial order on the cliques, where clique A is a predecessor of clique B if and
only if the partition class containing A class precedes the one containing B. The
invariant that we maintain is that some clique chain is a linear extension of this
partial order. This can only be the case if the members of the set C of cliques
containing a given vertex appear in consecutive partition classes, and if there is
more than one such class, only the two end classes X, and X} of this interval can
contain cliques that do not contain the vertex. If there is more than one class
containing members of C, we may split each of the X, and A&} into cliques that
contain the pivot and cliques that do not, and order the resulting classes so that
the classes containing members of C are still consecutive. Since the cliques that
contain the pivot must be consecutive in a clique chain, any clique chain that is
a linear extension of the old ordered partition must also be a linear extension
of the new one.

To launch the process, we put the last clique discovered during a Lex-BFS

16

in a separate class to the right of all others. We know from Corollary 1 and
Lemma 3 that there is an interval representation of G where this clique is right-
most in the clique chain. This establishes the invariant initially.

Each pivot only needs to be used once, but it may not be used until the
cliques that contain it reside in more than one class. The cliques containing a
vertex induce a connected subtree of the clique tree, which we may refer to as
its containing subtree. A vertex is eligible if some edge of its containing subtree
intersects two partition classes. The set of vertices whose subtrees contain a
tree edge (C1,Cs) is C; NCa, since each vertex’s containing subtree is connected.
Thus, the first time C; and Cs find themselves in different partition classes, we
may add C; NC,y to a list of eligible pivots.

Hsu and Ma show that if the graph is prime, this refinement leads to a
set of partition classes where each contains one clique. The truth of the main
invariant at this point gives the clique chain. However, we are not assuming
that the graph is prime, since we wish to avoid the modular decomposition
step. Thus, we must consider the possibility that the process will halt when
some partition classes contain more than one clique. If A is a partition class
with more than one clique at this point, let S4 denote the set of vertices that
occur only in cliques of A.

If z is a vertex not in S4, then z is either in every member of A or none of
them; otherwise z could be used to split A further. Thus z is either adjacent to
every member of S 4 or to none of them. We may conclude that S4 is a module.
In addition, since < is a total order, for each X,Y in A, there exists z € X
and y € Y such that (z,y) is not an edge of G. It follows that =,y € S, hence
that the relative ordering of cliques in 4 may be determined by restricting our
attention to <p/, where F’ is a transitive orientation of éSA. Since Sy, is a
module, Theorem 3 implies that we are free to choose F' to be any transitive
orientation of Gg,. The existence of and y also establishes that X N S4 and
Y NS4 are not contained in the same clique of Gg,. Since <p' induces a total
order on A, A' = {K NS, : K € A} are the maximal cliques of Gg,. Thus,
we may call the algorithm recursively on G, to find a clique chain on A’, and
assign this ordering to the corresponding members of A in order to obtain the
desired ordering of members of A.

678 578 478 368 28 | 16 161\]5——6——7—
368 1\3 8.
578 478 28|678 368 | 16 .
T ers -
6
578 478 28/678 368 | 16 478 | {*|-
IR 578 |12
28| 578 478 | 678|368 | 16 5
N 28 {2 |-
7
28‘ 578|478 678‘368 16
@ (ii) (iii) ()

Figure 5: (i) An interval graph. Its vertices are numbered according to a Lex-
BFS ordering. (ii) The clique tree associated with the Lex-BFS ordering. (iii)
A partition refinement of the clique set. Note that {4,5} is a module. (iv) An
interval representation associated with the computed clique chain.

17

However, naively calling the algorithm recursively in Gg, would result in
some inefficiencies that we wish to avoid. Since S, is a module, we are able
to use Lemma 2 and Lemma 3 to avoid computing another Lex-BFS ordering
inside the recursive call. Instead, we reuse the ordering on S4 imposed by our
initial Lex-BFS. In addition, we avoid computing the members of A’ explicitly,
by letting the members of A stand in for them. We also simulate the recursive
call within the loop structure.

For the time bound, we must consider the time bound when G may or may
not be chordal. In this case, the purported cliques may not actually be cliques.
Because of the way the purported cliques are constructed, each purported clique
is the neighborhood of its last-visited vertex, and each vertex is the last-visited
vertex of at most one purported clique. Thus, there are are O(n) purported
cliques, and their total size is O(n + m).

Each vertex is used once as a pivot, and a clique is touched once for each of
its members. This gives an O(n +m) bound for performing pivots and touching
cliques. We must also bound the cost of maintaining the list of eligible pivots.

Since each clique has only one parent edge, the O(n + m) bound on the
sum of the sizes of the cliques gives an O(n + m) bound on the number of times
vertices are inserted in the list of pivots. To identify clique-tree edges when they
first intersect two classes as a result of a pivot, we mark all tree edges incident
to members of C N X, and C N X, since we have to touch these cliques to move
them during the pivot. A tree edge that is marked only once will be deleted, so
this happens O(n) times. An edge that is marked twice goes between a child
clique and its parent, and the child is a touched clique. In this case, we charge
the cost of marking the edge to the child. Only cliques that are touched during
the pivot are charged in this way, and each touched clique is charged at most
once. As a consequence:

Algorithmic Result 5 Algorithm 9, tests in linear time and space wether a
graph is an interval graph.

For cointerval graph recognition, we note that Algorithm 6 gives a represen-
tation of the clique tree, where each clique C of G is represented with the set
C =V \C. Since C is just the neighbors in G' of the leftmost vertex of C, the
sum of cardinalities of these complements of cliques is at most m. Thus, for
each vertex, we may create a list that gives the maximal cliques of G that do
not contain it. The sum of sizes of these lists is also m.

We obtain a cointerval graph recognition algorithm by simulating a run of
Algorithm 9 on G. When we pivot on a vertex, we use the lists of cliques of G
that do not contain it instead of the list of cliques that do. Since the cliques that
contain a vertex are consecutive in the list of partition classes on the cliques,
the cliques that do not contain a vertex are contained in a prefix and/or a suffix
of the list of partition classes. The end of the prefix identifies X,, and the
beginning of the suffix identifies X;. To split X,, we remove the cliques that
do not contain the pivot and place them to the left of what remains of X,. We
perform the symmetric operation on X;. This duplicates the results of the pivot
had we run the original algorithm on G, but in time proportional to the number
of cliques that do not contain the pivot. Similarly, for the final verification step,
we check for each vertex that the cliques that do not contain it in the purported
clique chain form a prefix and suffix of that chain.

18

We must also change the way we keep track of eligible pivots. Previously, we
had to detect when a tree edge (C7, Cs) first intersected more than one partition
class. This happened when exactly one of C; and C, contained the pivot. We
perform the equivalent test now by checking whether exactly one of C; and Cy
contains the pivot. By the charging arguments used before, we can then keep
track of these events in O(n + m) time. When such an event happens when
we run Algorithm 9 on G, we insert C; N C, into a list of eligible pivots. To
simulate this exactly, we would have to insert C,UC, into a lit of eligible pivots.
This would not satisfy the time bound, since if C; has multiple children in the
clique tree, the members of C; might be inserted multiple times. However, if the
members of C; have already been inserted when an edge (C;, C3) was processed,
the list of eligible pivots will still be complete if we only insert C,. Thus, we
may mark each C the first time we insert its list of members, and refrain from
ever doing it again. When it is time to process (C1, Cy), we insert any or both
of C; and Cs that are unmarked, and then mark them. Since each C is only
inserted once in the list of eligible pivots, keeping track of eligible pivots still
takes O(n + m) time.

6 Testing the Consecutive Ones Property

Let M be a 0-1 matrix with n rows and k& columns. M is said to have the
consecutive one’s property for the rows if the columns can be permuted in a
such a way that the ones in each row occur consecutively. We give a simple
algorithm for testing this property in O(r + ¢+ m) time, where r is the number
of rows, ¢ is the number of columns, and m is the number of nonzero entries in
M.

Let us say that column ¢ of a matrix M is a subset of column j if the rows
where ones occur in column 7 are a subset of the rows where they occur in j. A
column is mazimal if it is a subset of no other.

The mazimal clique-vertex matriz of a graph G is a matrix where the rows
are the vertices of GG, the columns its maximal cliques, and the entry in row 14
column j is one if and only if the vertex i belongs to the maximal clique C. A
matrix is conformal if it is the maximum clique matrix of some graph.

Let G(M) be the graph obtained from a matrix M by letting each row of M
be a vertex, and letting two rows be adjacent in G(M) if and only if they have
a one in a common column. If M is the maximal clique matrix of a graph G,
then clearly G = G(M). If not all columns of M are maximal, then M is clearly
not the maximal clique matrix of any graph. If the columns of M are maximal,
they may still fail to be maximal cliques of G(M), and G(M) may have some
maximal cliques that do not appear among the columns of M.

Theorem 2 For a boolean matriz M, the following are equivalent:
1. G(M) is an interval graph and M is its mazimal cligue matriz.
2. The columns of M are mazimal and M has the consecutive ones property.

Proof: 1 = 2 : If G(M) is an interval graph and M is its maximal clique
matrix, then the columns of M are maximal, and the existence of a chain of
cliques guarantees that M has the consecutive ones property.

2 = 1 : The consecutive one’s property is a hereditary property. Let ¢y, ¢y
and c3 be three columns of M such that ¢y, cs,c3 is an appropriate ordering.

19

Obviously, (e1 Ne2) U (c2 Ne3) is contained in c¢o. MorEover the consecutive
one’s property ensures that ¢; N eg is included in ¢y. Therefore for any three
columns, there always exists a column that contains the union of the three
pairwise intersections. In 1960, Gilmore proved that this property holds for a
matrice if and only if the maximal cliques of G(M) is equal to the maximal
columns of M, see [1]. Thus, M is the clique matrix of G(M). Any ordering of
columns of M that realizes the consecutive ones property in M gives a clique
chain of G(M). O

The approach of our algorithm is to create a matrix M that has all maximal
columns, and that has the consecutive ones property if and only if M does. If M
has the consecutive ones property, we can use a variant of Algorithm 9 to find a
clique chain on G(M). The order of cliques in the clique chain gives a consecutive
ones ordering of columns M. This ordering of columns is a certificate that M
has the consecutive ones property, but we must verify the certificate. If M does
not have the consecutive ones property, the algorithm produces some ordering
of the columns, but the verification step must fail, since no such certificate can
exist. Thus, we only need to prove that the algorithm produces a certificate
whenever M has the consecutive ones property, and may ignore its behavior
whenever M does not. In the remainder of the section, we will therefore assume
that M and M have the consecutive ones property. .

Unfortunately, we cannot produce an adjacency-list representation of G(M)
within the time bound. Instead, we observe that M is itself a representation
of G(M), since G(M) can be constructed from it. We adapt Lex-BFS and
Algorithm 9 to run directly on M.

M is obtained from M by appending the identity matrix below it. That
is, we add ¢ dummy rows, one row for each column. Each dummy row has
a one in the corresponding column and zeros in the others. Clearly M has
the consecutive ones property if and only if M does. The columns of M are
maximal, since for each column 4, the one in the it" dummy row appears only
in column 4. The size of M and time to construct it is clearly O(r + ¢ + m), if
we use a sparse representation of M and M, where for each row we keep a list
of column numbers where it has nonzero entries, and for each column, we keep
a list of row numbers where it has nonzero entries.

A critical step of running Algorithm 9 on G(M) is the call to Algorithm 4,
which requires us to obtain a clique tree for G(ﬂ) Though we do not have time
to compute an adjacency-list representation of G(M)7 we demonstrate how this
algorithm can be adapted to produce the ordering in O(r + ¢+ m), using M as
the representation of G(M).

If C is a family of sets of vertices, Algorithm 10 runs in time proportional
to the sum of cardinalities. If G is chordal and C is its maximal cliques, then it
gives a Lex-BFS ordering of the vertices of G.

Lemma 4 If G is a chordal graph with mazimal cliques C, then Algorithm 10
computes a Lex-BFS ordering of G.

Proof: As before, for each vertex y, let label(y) be the numbers of the numbered
neighbors of y in ascending order. For each clique C that has un-numbered mem-
bers, let label(C) be the numbers of the numbered members of C' in ascending
order. Clearly, L maintains the cliques in lexical order of the reverse of their cur-
rent labels. Adopt as an inductive hypothesis that the first i pivots are a suffix

20

Algorithm 10: Lex-BFS on a clique representation

Input: a family of sets C
Output: if G is chordal and C is maximal cliques, a Lex-BFS ordering of
the vertices of G

begin

let L = (C)

14N

while L is not empty do

let C' a clique in the rightmost class in L

pick an unnumbered vertex z from C

m(x) < i

if all members of C' are now numbered then
L remove it from its class

if its class is now empty then
L remove it from L

for each class X, in L do
let) be the members of X, that contain x
if Y is not empty and Y # X, then
| remove)Y from X, and insert to the right of X, in L

end

of a valid Lex-BFS ordering, and that after the i* pivot, for each un-numbered
vertex y and clique C' has lexically maximal label among those cliques that con-
tain y, label(y) = label(C). As a base case, this is true when ¢ = 0. Since the
i+ 1%t pivot z is selected from a clique in the rightmost class of cliques this clique
has lexically maximal label among all cliques with un-numbered vertices. By
the inductive hypothesis, = has maximal label among all un-numbered vertices.
Thus, the first i + 1 pivots are a suffix of a valid Lex-BFS ordering. Suppose
y is an un-numbered vertex, after the first i + 1 pivots. No clique containing
y contains a non-neighbor of y, so no clique’s label may be lexically greater
than gy’s. Since G is chordal, y and its numbered neighbors are a clique. There
are one or more cliques of G that contain y and its numbered neighbors, so the
labels of these cliques must be the same as y’s, and their labels must be lexically
maximal among all cliques that contain y. The inductive hypothesis continues
to hold. After all n pivots, the numbering must be a valid lex-BFS numbering
of G. (]

Lemma 5 Algorithm 10 takes time proportional to the sum of cardinalities of
members of C.

Proof: The cost of a pivot may be charged to its occurrences in members of C.
Since no vertex is used twice as a pivot, the bound is immediate. O

It remains to adapt Algorithm 4. Create a search tree S whose vertices are
labeled with vertices of G, and where each member of C is the sequence of labels
on a path from the root to a leaf, and where these labels appear in descending
Lex-BFS order. A vertex of G may label more than one vertex of S. However,
if G is chordal, then for each vertex z, {z} U RN (z) are a clique, hence RN (z)

21

appears as the labels of a path from the root to a vertex of the tree labeled
with z. The end of this path may not be a leaf, but it must be the deepest
occurrence of z in the tree. Call the end of this path the principal location of x.
Let z be any vertex of G, let s be its principal location in S, let s’ be the parent
of s in S, and let y be the label of s'. Then y is the parent of z in the tree T
required for Algorithm 4, and RN (z) — parent(z) = RN(y) if and only if s’ is
y’s principal location. This allows all checks of Algorithm 4 to be carried out in
time proportional to the sum of cardinalities of members of C. The algorithm
produces a faulty result if G is not chordal, but still runs within the time bound.
Summarizing, we get Algorithm 11.

Algorithm 11: Consecutive One’s Test

Input: A 0-1 matrix M with ¢ columns and r rows and m one entries
Output: Test whether M has the consecutive one’s property
begin . .
1 Compute M from M, using the sparse representation of M and M de-
scribed previously
2 Run Algorithm 9, but in the first step, call the foregoing variant of of Al-
gorithm 4, using the columns of M as the maximal-clique representation
of the graph.

end

Algorithmic Result 6 Algorithm 11, tests in O(r + ¢ + m) time and space
whether a 0-1 matrix M has the consecutive one’s property.

7 Some applications

A 0-1 matrix M can also be seen as a bipartite graph B = (X, Y, £) such that
X is the set of rows and Y the set of columns. There is an edge between z € X
and y € Y if the corresponding entry is one.

The maximal clique-vertex graph of a graph G = (V, E) is the bipartite
graph B.(G) = (V,C(G),€£). In this section, recognition algorithms for classes
of bipartite graphs related to chordal graphs and intervals graphs are given,
namely Y -semichordal graphs and convex graphs.

Recognition of Y-semichordal graphs

Let B = (X,Y, E) be a bipartite graph and C = (z1,y1...%x,yx) a cycle of
length 2k > 6. C has an X-star if there exist # € X such that = ¢ {1 ...z}
and iy,is,43 < k such that (z,y;,) € E with j € {1,2,3}. A Y-star is defined
analogously.

B is semichordal (X-semichordal, Y-semichordal respectively) if each cycle
of length at least 6 contains an X-star or a Y-star (an X-star, a Y-star respec-
tively). Note that the class of semichordal graphs strictly contain the union of
X-semichordal graph and Y-semichordal graph. A more intuitive characteriza-
tion of Y-semichordal graphs was presented in [3] :

Theorem 3 [3] A graph G is chordal if and only if B.(G) is Y -semichordal.

22

Algorithm 10 shows how to compute a a Lex-BFS ordering of the vertices if
the input matrix M is the maximal clique-vertex matrix of a chordal graph, in
O(r +c+m) time. Algorithm 3 can then test whether this ordering is a perfect
elemination ordering. Thus:

Algorithmic Result 7 Let B be a bipartite graph. It can be tested in O(r +
¢+ m) time and space whether B is Y -semichordal (or X -semichordal).

Recognition of convex graphs

A permutation o of Y has the adjacency property if for each vertex z € X, its
neighborhood N (z) induces a factor of o.

Definition 1 Let B = (X,Y, E) be a bipartite graph. B is a convex graph if
there is a permutation of X or Y which fulfills the adjacency property.

It is obvious that M is the matrix of a convex graph with respect to Y if and
only if M is the matrix of a convex graph too. Finding a permutation of the
vertex set Y with the adjacency property is equivalent to finding a permutation
of the columns such that for any rows the one entries occur consecutively. In
other words testing whether M has the consecutive one’s property or testing
whether M is the matrix of a convex graph are the same problems.

Algorithmic Result 8 Algorithm 11, tests in O(r + ¢ + n) time and space
whether a 0-1 matrix M is the adjacency matriz of a convex graph.

The reader should notice that up to now the only known recognition algo-
rithm for convex graphs used PQ-trees (see [2]).

8 Conclusions

We have given simple algorithms and efficient algorithms for clique tree on
a chordal graph or its complement, transitive orientation of a comparability
graph or its complement, and interval graph recognition. ;From the transi-
tive orientation results follow simple algorithms for permutation graph recogni-
tion, maximum clique and minimum vertex on comparability graphs, maximum
independent set and clique cover on co-comparability graphs that run in the
O(n + mlogn) time; see [12] for details. To date, the only general linear-
time transitive orientation algorithm is quite complex [13]; the simplicity of
the O(n + mlogn) algorithm provides some hope for a simple linear transitive
orientation algorithm that avoids modular decomposition.

The techniques might be generalized to other recognition algorithms, such
as trapezoidal graphs or weakly chordal graphs and perhaps for some other
interesting classes of bipartite graphs.

References

[1] C. Berge. Graphes et Hypergraphes. Dunod, 1970.

23

2]

[13]

K.S. Booth and G.S. Lueker. Testing for the consecutive ones property,
interval graphs and graph planarity using pg-tree algorithm. J. Comput.
Syst. Sci., 13:335-379, 1976.

A. Brandstadt. Classes of bipartite graphs related to chordal graphs. Dis-
crete Applied Mathematics, 32:51 60, 1991.

A. Cournier and M. Habib. A new linear algorithm of modular decompo-
sition. In Trees in algebra and programming CAAP 9/ (Edinburgh) Lec-
ture Notes in Computer Science, volume 787, pages 68 84, Berlin, 1994.
Springer.

E. Dahlhaus, J. Gustedt, and R.M. McConnell. Efficient and practical
modular decomposition. In Proceedings of the seventh annual ACM-SIAM
Symposium on Discrete Algorithm, pages 26 35. Society of Industrial and
Applied Mathematics (STAM), 1997.

3

P. Galinier, M. Habib, and C. Paul. Chordal graphs and their clique graph.
In M. Nagl (Ed.), editor, Graph-Theoretic Concepts in Computer Science,
WG@G’95, volume 1017 of Lecture Notes in Computer Science, pages 358—
371, Aachen, Germany, June 1995. 21st Internationnal Workshop WG’95,
Springer.

T. Gallai. Transitiv orientierbare graphen. In Acta Math. Acad. Sci. Hun-
gar., volume 18, pages 25 66, 1967.

F. Gavril. The intersection graphs of a path in a tree are exactly the chordal
graphs. Journ. Comb. Theory, 16:47 56, 1974.

M.C. Golumbic. Algorithms Graph Theory and Perfect Graphs. Academic
Press, New York University, 1980.

Hsu and Ma. Substitution decomposition on chordal graphs and applica-
tions. In Proceedings of the 2nd ACM-SIGSAM Internationnal Symposium
on Symbolic and Algebraic Computation, number 557 in LNCS. Springer-
Verlag.

N. Korte and R. Mohring. An incremental linear-time algorithm for recog-
nizing interval graphs. SIAM J. of Computing, 18:68 81, 1989.

R. M. McConnell and J. P. Spinrad. Linear-time modular decomposition
and efficient transitive orientation of comparability graphs. In Proceed-
ings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(Arlington, VA), pages 536-545, 1994.

R.M. McConnell and J.P. Spinrad. Linear-time modular decomposition
and efficient transitive orientation of undirected graphs. In Proceedings of
the seventh annual ACM-SIAM Symposium on Discrete Algorithm, pages
19 35. Society of Industrial and Applied Mathematics (SIAM), 1997.

3

R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM
Journ. Comput., 16(6):973 989, 1987.

24

[15] Donald J. Rose, R. Endre Tarjan, and George S. Leuker. Algorithmic

aspects of vertex elimination on graphs. SIAM Journal of Computing,
5(2):266-283, June 1976.

[16] J.P. Spinrad. Graph partitioning, 1986.

25

