
Lex-BFS and Partition Re�nement, withApplications to Transitive Orientation, IntervalGraph Recognition and Consecutive OnesTesting.Michel Habib� Ross McConnell y Christophe PaulzLaurent Viennot xAbstractBy making use of lexicographic breadth �rst search (Lex-BFS) andpartition re�nement with pivots, we obtain very simple algorithms forsome well-known problems in graph theory.We give an O(n + m log n) algorithm for transitive orientation of acomparability graph, and simple linear algorithms to recognize intervalgraphs, convex graphs, Y -semichordal graphs and matrices that have theconsecutive-ones property.Previous approaches to these problems used di�cult preprocessingsteps, such as computing PQ trees or modular decomposition. The al-gorithms we give are easy to understand and straightforward to prove.They do not make use of sophisticated data structures, and the complex-ity analysis is straightforward.Keywordsalgorithm, data-structure, partition re�nement, graph, boolean matrix1 IntroductionSome e�cient algorithms for various classes of graphs and boolean matrices arepresented. These classes are comparability, chordal, interval graphs and theircomplements. To this aim a general framework, namely partition re�nement[14, 16], is used. This framework allows a uni�ed and more general treatmentof problems on these classes, such as transitive orientation of a comparabilitygraph or its complement, recognition of an interval graph or its complement,and consecutive ones testing of boolean matrices. We give e�cient solutions tothese problems that do not use the preprocessing steps of computing PQ treesor modular decomposition.�LIRMM, Montpellier, France; habib@lirmm.fryComputer Science and Engineering Department, University of Colorado at Denver, rmc-conne@carbon.cudenver.eduzLIRMM, Montpellier, France; paul@lirmm.frxLIAFA, Paris, France;lavie@litp.ibp.fr 1

All graphs considered in this paper are �nite and simple. A directed graphis transitive if, whenever (a; b) and (b; c) are arcs, (a; c) is also an arc. A graphis a comparability graph if its edges can be assigned orientations so that theresulting directed graph is transitive and acyclic, hence a partial order.An interval graph is a graph that can be modeled by assigning to each vertexan interval on the set of integers, such that two vertices are adjacent in the graphif and only if their intervals intersect. A graph is a co-comparability graph if itscomplement is a comparability graph. It is readily seen that an interval graphis a co-comparability graph, since two vertices are an edge in the complementif and only if one of the intervals comes before the other, and this relation istransitive.A chordal graph is an undirected graph where every induced cycle on fouror more vertices has a chord. It is not hard to see that an interval graph mustbe chordal. In fact, a graph is an interval graph if and only if it is chordal andits complement is a comparability graph [9].Chordal graphs are characterized by the existence of a perfect eliminationordering of their vertices, which is de�ned as follows. A clique is a set of verticesinducing a complete subgraph. An ordering x1; : : : ; xn of vertices is a perfectelimination ordering of a graph G = (V; E) if the neighborhood of each vertexxi is a clique of the induced subgraph Gfxi;:::;xng.A graph is chordal if and only if there exists an arrangement of its maximalcliques into a tree such that the maximal cliques containing a given vertex alwaysinduce a connected subtree [8]. Such a tree is called a clique tree. Interval graphsare the chordal graphs admitting a clique tree that is a chain, or equivalently, anumbering of their maximal cliques such that the maximal cliques containing agiven vertex occur consecutively. Such a chain is called a clique chain. If thereare k cliques, this associates with each vertex an interval on the integers fromone to k, namely, the subscripts of the cliques that contain the vertex. Theresult is an interval representation of the graph, since two vertices are adjacentif and only if they reside in a common clique.A boolean matrix has the consecutive ones property if its columns can bereordered so that the ones in each row are consecutive.In many applications, the modular decomposition [5] appears as a prepro-cessing step of e�cient algorithms for transitive orientation [12], and intervalgraph recognition [10]. The �rst recognition algorithm, presented in [2], uses acomplex procedure for computing a data structure called the PQ-tree. Later,simpler algorithms based on Lex-BFS have been discovered: in [11], a simpli�-cation of the PQ-tree, called the MPQ-tree is used, while in [10], the modulardecomposition is used, and in [12], a transitive orientation of the complement isused.Either explicitly or implicitly, most of these disparate algorithms make useof an operation that is sometimes called pivot. In a pivot, a partition of thevertices is re�ned by splitting a partition class according to its adjacency to aselected vertex that is not a member of that partition class. The evolution of thepartition re�nement yields information about the structure of the graph, whichis then used to solve the problem. Pivoting is used in �nding twins, recognizingchordal graphs [15], recognizing permutation graphs [12], �nding a transitiveorientation [12], and modular decomposition [12, 4]. Lex-BFS is a special caseof pivoting, and is used for recognizing chordal graphs [15].In this paper, we attempt to show that pivoting is fundamental to the so-2

is in S is not in S

1 2 l

1 2 l’

X X X

X’ X’ X’Figure 1: The partition re�nement of (X1; : : : ;Xl) into (X 01; : : : ;X 0l) accordingto the subset S of black elements.lution of these problems, by showing how e�cient algorithms for them can beobtained without much recourse to other techniques. The pivot may be viewedas a generalization to graphs of the Quicksort pivoting rule, used for sortingintegers. This general approach was originally put forth in [14] and in [16], whoshowed how it can lead to a simpler conceptual framework for developing algo-rithms for some of these problems. By generalizing it to arbitrary set families,we are able to use it to manipulate cliques of interval graphs.We �rst show how the O(n +mlogn) transitive orientation algorithm pre-sented in [12] can be adapted so that it does not require the formidable step ofpre-computing the modular decomposition. We then present an O(n +m) in-terval graph recognition algorithm that uses a clique tree for pivoting. A cliquetree of a chordal graph can be computed with Lex-BFS in linear time (see [6]).In order to use the same algorithm for the consecutive one's property problem,we propose an adaptation of Lex-BFS that takes as input the cliques of a graph.This Lex-BFS version gives linear time and space algorithms for the recognitionof convex graphs and Y -semichordal graphs.2 Re�ning a Partition by PivotingAll the algorithms we propose are based on the general framework of Algo-rithm 1, which re�nes a partition of a set E according to a subset S of E.A partition is an ordered collection of disjoint subsets of E called classes,whose union is E. A set S � E is given as a parameter. We re�ne the partitionby splitting each partition class Ia into two subsets, Ia \ S and Ia n S. Atthe same time, we maintain an order on the partition classes as they evolve.Figure 1 gives an illustration.Algorithm 1: Partition Re�nementInput: an ordered partition L = (X1; : : : ;Xl) of a set E and a subset S � E.Output: a re�ned partition L0 = (X 01; : : : ;X 0m).beginfor each class Xa dolet Y be the members of Xa that are in Sif Y is not empty and Y 6= Xa thenremove Y from Xa and insert it next to Xa in Lend 3

After the re�nement of the partition, no class properly overlaps S: any classX 0a veri�es either X 0a � S or X 0a \ S = ;. Depending on the use of the routine,Y can be inserted immediately behind or immediately in front of Xa.The re�nement can be performed in O(jSj) time by using the following datastructure. All the elements of E are stored in a doubly linked list. Each classconsists of an interval in this list, and is implemented with a structure that hasa pointer to its �rst element and a pointer to its last element. Each elementkeeps a pointer to the class that contains it. To maintain an ordering on theclasses, these class structures are stored in a doubly linked list.During the re�nement, each element in S is simply removed from the listand inserted at the end of its new class. This preserves the initial ordering ofthe vertices inside the classes when S is sorted according to this ordering. Whenit is not important to keep this ordering, it may be simpler to store the verticesin an array, and to exchange the element to be removed and the �rst (or thelast) element of the class being split. The bounds of the new class and the classbeing split must then be updated.In graph algorithms, E is usually the vertex set and S is the neighborhoodof a pivot vertex. Note that the procedure for re�ning the partition by thecomplement of E n S of S produces an identical result if suitable adjustmentsare made to the ordering rule used to determine whether Y should be placedbefore or after Xa in Algorithm 1. In graph algorithms, this means that, giventhe adjacency-list representation of a graph, we can run the partition re�nementroutine on the complement of the graph directly, without having to compute anadjacency-list representation of the complement. This property was used in [12]to recognize permutation graphs, which are those comparability graphs whosecomplement is also a comparability graph.3 Lex-BFS OrderingsStandard breadth-�rst search fails to specify completely the order in whichvertices must be visited. Lex-BFS imposes additional constraints, by breakingties according to a rule that we describe below. This guarantees that the orderin which vertices are visited has certain desirable properties. We call Lex-BFSordering the order in which the vertices are visited. Lex-BFS was introduced in[15] to recognize chordal graphs. Algorithm 2 is one way to implement Lex-BFS.Since there is only one pivot on each vertex, the time bound is clearly O(n+m).An example is given in Figure 2.
pivot

x

x

nx x xn-1

already visited vertices

n-2n-3

n-4Figure 2: Re�ning a partition towards a Lex-BFS ordering according to theneighborhood of the pivot, the currently visited vertex by the Lex-BFS.Given a graph G and a partial numbering � of the vertices of G, we de�ne4

Algorithm 2: Lex-BFS OrderingInput: a graph G = (V; E).Output: a Lex-BFS ordering ��1(1); : : : ; pi�1(n) of the vertices.beginlet L be the one element ordered list (V)i nwhile there exists a non-singleton class in L = (X1; : : : ;Xl) dolet Xa be the last class made of non-visited verticesremove a vertex x from Xa�(x) ii i� 1for each class Xb, b � a dolet Y be the members of Xb that are adjacent to xif Y is nonempty and not equal to Xb thenremove Y from Xbinsert Y immediately behind Xb in LendRN(x) to be the neighbors to the right of x, namely, the set fy : y 2 N(x) and�(y) > �(x)g. Partway through execution of the above algorithm, not all of theeventual members of RN(x) are yet known, so in this context, we we will �nd itconvenient to let RN(x) be de�ned to be the vertices currently known to belongto the right of x in the eventual ordering. Speci�cally, if �(x) is already de�ned,RN(x) is de�ned as before, and if not, RN(x) is the neighbors of x that havealready been assigned numbers.An important function is label(x), which denotes the sequence of � labels ofRN(x) in ascending order. It is not hard to verify that the algorithm maintainsthe invariant that two un-numbered vertices x and y are in the same partitionclass if and only if label(x) = label(y), and that if the reverse of label(x) precedesthe reverse of label(y) in lexical order, then x's partition class is before y's. Thus,in the �nal ordering, the labels of the vertices are in lexical order.Lex-BFS Orderings and Chordal GraphsA graph G is chordal if and only if the ordering of vertices produced by Lex-BFS is a perfect elimination ordering [15]. Thus, an algorithm for recognizingchordal graphs is to use Lex-BFS to obtain an ordering, and then check whetherthis ordering is a perfect elimination ordering. The algorithm 3 is one way todo this.For the correctness, note that if � is a perfect elimination ordering, thenfxg [RN(x) is a clique C, where x is its leftmost member and parent(x) is itsnext leftmost member. The check obviously cannot fail. If it is not a perfectelimination ordering, then for some x, x [RN(x) is not a clique. Without lossof generality, let x be the rightmost vertex in � with this property. By ourchoice of x, parent(x) fails to have as a neighbor some vertex to its right thatis a neighbor of x, so the check fails.For the time bound, �nding RN(x) for all x obviously takes O(n+m) time.We may get all RN lists in sorted order by concatenating them and using a5

Algorithm 3: Chordality testInput: a graph G = (V; E), and a numbering � of verticesOutput: Returns TRUE if � is a perfect elimination orderingbeginfor each vertex x dolet RN(x) be its neighbors to the rightlet parent(x) be the leftmost member of RN(x) in �Let T be the tree de�ned by the parent pointersfor each vertex x in T in postorder docheck that (RN(x) n parent(x)) � RN(parent(x))if no check failed then return TRUEelse return FALSEendtwo-pass radix sort that sorts all entries by � value as the secondary key, andoriginal RN list as primary key. This requires n buckets for each pass, and takesO(n+m) time. Given the lists in sorted order, the remainder of the operationsare trivial to carry out in O(n +m) time.Recall that if G is chordal, it is possible to �nd a clique tree, that is, toarrange the maximal cliques into a tree such that for each vertex, the subtreeinduced by the cliques that contain x are connected. The following variant ofAlgorithm 3 does this:Algorithm 4: Clique treeInput: G is a chordal graph, and � is a perfect elimination orderingOutput: A clique tree T of GbeginLet T be de�ned as in Algorithm 3Let r be the root of Tfor each vertex x in T except the root, in preorder doif (RN(x) n parent(x)) 6= RN(parent(x)) thenCreate a new clique C = fxgC(x) Cparent(C) C(parent(x))elseC(parent(x)) C(parent(x)) [fxgC(x) C(parent(x))endThe O(n + m) time bound follows from the time bound of operations inAlgorithm 3, and the fact that all operations in an iteration of the last for loopmay be charged at O(1) to x and O(1) to each element of the list RN(x). Thesum of cardinalities of RN lists is O(m).For the correctness, note �rst that for each vertex x, RN(x) is a subset ofthe ancestors of x in T . This is true for the root. Suppose it is true for anyvertex at depth k, and assume that x is at depth k + 1. The parent of x is the6

earliest member of RN(x) in �. Since RN(x) is a clique, RN(x) n parent(x) isa subset of RN(parent(x)). By the inductive hypothesis, RN(x) n parent(x) isa subset of the ancestors of parent(x).Next, adopt as an inductive hypothesis that just after each vertex is pro-cessed, the current set of cliques reects the maximal cliques of the subgraph ofG induced by the set of processed vertices. As a base case, this is obviously truejust before second vertex is processed. The correctness of the set of cliques afterthe inductive step is immediate from the fact that the members of RN(x) havealready been processed in the preorder traversal, and fxg [RN(x) is a clique.Finally, we show that after each vertex is processed, the parent relation isa clique tree on the subgraph induced by the set of processed vertices. To dothis, we show that for an arbitrary processed vertex y, the cliques containingy induce a connected subtree of this tree. As a base case, it is true just aftery is processed, since it is contained in only one clique of the tree. Supposeit is true just before some subsequent vertex x is processed. If no new cliquecontaining y is created, it continues to be true. So assume that processingx creates a new clique C and y is contained in C. It su�ces to show thatthe parent of C is a pre-existing clique that contains y. For each processedvertex z, C(z) contains fzg [RN(z). In particular, C(parent(x)) containsfparent(x)g [RN(parent(x)). Since fparent(x)g [RN(parent(x)) containsRN(x), C(parent(x)) contains y. The parent of the new clique is a pre-existingclique containing y.It follows that the tree is a clique tree for G after all vertices are processed.Lex-BFS orderings and co-chordal graphsNote that in Algorithm 2, the same result could be achieved by removing thenon-neighbors of the pivot from Xb and placing them before Xb. Thus, the onlyasymmetry in the treatment of neighbors and non-neighbors is the decisionto place the non-neighbors before the neighbors in the ordering of the re�nedclasses. It follows that if this rule is changed so that the neighbors are placedbefore Xb, rather than after, the resulting ordering is that which would beproduced by a Lex-BFS on the complement graph. Changing the ordering ruledoes not a�ect the time bound of Algorithm 2, so we get the following:Algorithmic Result 1 If G is a co-chordal graph, it is possible to produce aLex-BFS ordering of G in O(n+m) time.To recognize whether a graph is a co-chordal graph, we need only verify thatthat this ordering is a perfect elimination ordering on the complement. We givethe following adaptation of Algorithm 3:For the correctness, let RN(x) be the non-neighbors to the right of x inG. To run Algorithm 3 on G, we use the same parent function that we use inAlgorithm 5. Instead of using RN(x), we would use RN(x), and check whetherRN(x) n parent(x) is a subset of RN(parent(x)). This happens if and onlyif RN(parent(x)) fails to be a subset of RN(x), so the two sets of tests areequivalent. The algorithm returns TRUE if and only if Algorithm 3 returnsTRUE when given G and the same Lex-BFS ordering of G as input.For the time bound, creating and sorting the RN lists is accomplished justas it was in Algorithm 3. To compute parent(x), mark all neighbors of x,7

Algorithm 5: Co-chordalilty testInput: a graph G = (V; E), and a numbering � of verticesOutput: Returns TRUE if � is a perfect elimination ordering on Gbeginfor each vertex x dolet RN(x) be its neighbors to the right in Glet parent(x) be the leftmost non-neighbor to its rightLet T be the tree de�ned by the parent pointersfor each vertex x in T in postorder docheck that RN(parent(x)) is a subset of RN(x)if no check failed then return TRUEelse return FALSEendand then moving rightward from x in the ordering given by �, �nd the �rstunmarked vertex. This is parent(x). Then unmark the neighbors of x. Exceptfor the O(1) time spent at parent(x), the time is charged to marked neighborsof x, and takes O(1 + jN(x)j). Computing this for all x thus takes O(n +m).Given the sorted RN lists, the time spent in the subset tests can be charged tomembers of RN lists and are thus O(n+m).Algorithm 4 can be adapted in a similar way. We use it below to recognizewhether the complement of a graph is an interval graph.Algorithm 6: Co-clique treeInput: A co-chordal graph G and a co-Lex-BFS ordering � of GOutput: A clique tree of the complement of G, where each clique is repre-sented by listing its non-membersbeginLet T and RN and be de�ned as in Algorithm 5for each vertex x in T in preorder doLet R be the members of RN(x) to the right of parent(x)if R 6= RN(parent(x)) thenCreate a new empty list CC(x) Cparent(C) C(parent(x))leftmost(C) xelseC(x) C(parent(x))leftmost(C(x)) xfor each empty list C created doInsert the neighbors of leftmost(C)) in CendThe only di�erence between running this algorithm on G and � and runningAlgorithm 4 on G and � is the condition of the for loop, and that each �nalclique is represented by the neighbors in G of its leftmost vertex. That thecondition in the for loop is equivalent follows from the fact that RN(x) is8

the neighbors to the right of x in G, instead of in G. Since � is a co-perfectelimination ordering of G, the complement of the neighborhood in G of theleftmost vertex gives the members of the clique. Thus, the neighborhood in Gof the leftmost vertex is the claimed representation of the clique with its non-members. The O(n+m) bound on the steps it shares with Algorithm 5 followsfrom the time bound of that algorithm. The operations inside an iteration ofthe for loop can clearly be charged to x and members of RN(x), giving anO(n+m) bound for the algorithm. This gives the following:Algorithmic Result 2 Algorithm 5 recognizes co-chordal graphs in O(n+m)time, and a clique tree on the complement of a co-chordal graph may be foundin O(n+m) time by algorithm 6Lex-BFS Orderings and Transitive OrientationA module of a graph is a set M of vertices such that for each vertex x not in M ,either every member ofM is adjacent to x, or no member ofM is adjacent to x.The entire vertex set, its singleton subsets, and the empty set are trivial modules.A graph with only trivial modules is a prime graph. It is easily seen that if Xand Y are disjoint modules, then X and Y are either adjacent (every member ofX � Y is an edge of G) or nonadjacent (no member of X � Y is an edge of G).A modular partition of G is a partition P of V such that every member of P is amodule. A modular partition always exists, since the singleton subsets of V aretrivially a modular partition. Since all sets in a modular partition are disjoint,their adjacency relation de�nes a quotient graph G=P whose vertices are themembers of P . The quotient graph is isomorphic to the subgraph induced byany set consisting of one vertex from each member of P .If a comparability graph contains nontrivial modules, then they give a wayof breaking the transitive orientation problem into smaller pieces, as follows [7].Algorithm 7: Transitive orientationInput: A comparability graphG and a partition P of V where each partitionclass is a module.Output: A transitive orientation of GbeginLet F be an empty set of arcsfor each X 2 P doLet FX be any transitive orientation of the edges of GXF F [FXLet F 0 be any transitive orientation of G=Pfor each arc (X;Y) 2 F 0 dofor each edge xy of G where x 2 X and y 2 Y doF F [(x; y)return FendAlgorithmic Result 3 If G is a comparability graph, then Algorithm 7 pro-duces a transitive orientation of G. 9

Lemma 1 If G is a prime co-comparability graph and (x1; x2; : : : ; xn) is aLex-BFS numbering of V , then there is a transitive orientation of G where x1is a source, and another where it is a sink.Proof: It su�ces to show that there is a transitive orientation where x1 is asink, since reversing the directions of the arcs in this orientation gives anotherwhere x1 is a source.Let V = X1; X2; : : : ; Xk = fx1g be the sequence of partition classes thatcontain x1 during the course of the execution of the Lex-BFS. These classes arealways �rst in the sequence of partition classes, since they contain x1, which is�rst in the �nal partition. Each Xi : 1 � i < k is split into Xi+1 and a class Yby some pivot z not in Xi, since the graph is prime and Xi is therefore not amodule. Note that every vertex in Y is adjacent to z, and every vertex in Xi+1is nonadjacent to z. Adopt as an inductive hypothesis that there is a transitiveorientation that directs all nonedges of G in fx1g� (V nXi) into x1 before thissplit. For the inductive step, note that in such a transitive orientation, any non-edge between y 2 Y and x1 must be oriented into x1, since the nonedge (z; x1)is oriented into x1, and (z; y) is an edge, not a nonedge, and therefore cannot beused in a transitive closure of arcs (z; x1) and (x1; y). The inductive hypothesisis therefore true for Xi+1 also. As a base case, since X2 = V n fxng, we mayarbitrarily orient the nonedge (xn; x1) into x1, since any transitive orientationor its inverse will assign this orientation. The truth of the inductive hypothesisfor Xk = fx1g establishes the result.A result similar to Lemma 1 is given in [12]. However, we wish to avoidreducing the problem to prime co-comparability graphs, since this reductionis what makes calculation of the modular decomposition necessary. Thus, theassumption that the graph is prime is inadequate for our purposes. In order toremedy this, we now generalize it to co-comparability graphs that need not beprime.If P is a modular partition of an undirected graph G, and � is a Lex-BFSordering, then for each X 2 P , let the discovery time of X be maxf��1(x) :x 2 Xg. The following result is a key element in our transitive orientationalgorithm.Lemma 2 Let G be an arbitrary undirected graph.1. If M is a module of a graph G, then any Lex-BFS ordering of G inducesa Lex-BFS ordering of the subgraph GM induced by M .2. If P is a modular partition of G, then ordering the members of P by theirdiscovery times gives a Lex-BFS ordering of G=P.Proof: For the �rst part, note that a pivot on a vertex z 2 V �M cannot a�ectthe relative order of vertices in M , since z is either adjacent to all membersof M or to none of them. To establish the relative order the Lex-BFS induceson members of M , operations involving vertices not in M can be omitted fromconsideration. The subsequence of operations involving only members of M arejust a Lex-BFS of GM .For the second part, suppose that P = fY1; Y2; : : : ; Ykg. For each set Yi,let yi be the �rst vertex visited in Yi. We analyze the operations that a�ectthe discovery times of the members of P , that is, the operations that a�ect therelative order of members of fy1; y2; : : : ; yng. No pivot on a member of Yi may10

xa
b c

e
dFigure 3: A pivot on a vertex x in the transitive orientation algorithms. Here,the pivot splits two classes. The new interclass non edges a ! b, d ! c ande! c are forced by a! x and x! c. x is the pivot here.a�ect our choice of yj as the �rst pivot in any Yj , since Yj is a module and cannotbe split up by a pivot on a vertex not in Yj . The pivot on yi marks the discoverytime of Yi, and can a�ect the relative order of vertices in two di�erent classes Yaand Yb. However, no subsequent pivot on a member of Yi may further a�ect therelative order of members of Ya and Yb since every member of Yi has the sameadjacencies to them as yi does. We conclude that to establish relative discoverytimes, we may restrict our analysis to those operations involving members offy1; y2; : : : ; ykg. These operations are just a Lex-BFS of Gfy1;y2;:::;ykg, which isisomorphic to G=P .Theorem 1 If G is a co-comparability graph and x1 is the last vertex visited ina Lex-BFS, then there exists a transitive orientation of G where x1 is a sink.Proof: If G is prime, then the result follows from Lemma 1. So assume thatG is not prime. Adopt as an inductive hypothesis that the lemma is true forgraphs with fewer vertices than G.Let X be the maximal module, other than V , that contains x1. Since fx1gis a module, X is always de�ned. Let Y be a maximum-cardinality module thatis contained in V nX . At least one of X and Y is a non-singleton set, since Gis not prime. Let P consist of X , Y , and the singleton subsets of V n (X [Y).G=P and GX each have fewer vertices than G does.As pivots are performed, the partition class containing x1 is always �rst,since x1 is the �rst vertex in the �nal ordering. Vertices are successively splito� from the class that contains x1. When only one partition class remains, itmust be X , since X cannot be split by pivots that it does not contain. Thus, Xis the last-discovered member of P . By the inductive hypothesis and Lemma 2,X is a sink in a transitive orientation of G=P and x1 is a sink in a transitiveorientation of GX . The result now follows immediately from Theorem 3.Figure 3 illustrates the forcing relation on the non edges during a Lex-BFS.Corollary 1 If G is a chordal co-comparability graph, and K is the last cliquediscovered during a Lex-BFS, then there is a transitive orientation of G whereevery member of K is a sink.Proof: K consists of x1 and its neighbors. Consider a transitive orientation ofG where x1 is a sink. For any vertex y of K and any non-neighbor u of y, u isnot a neighbor of x1, since it is not in K. Since x1 is a sink, uy is forced to beoriented toward y, by the orientation of ux1 toward x1 and the adjacency of x1and y. 11

4 A Transitive Orientation AlgorithmThe transitive orientation algorithm of [12] uses modular decomposition to re-duce the problem to that of transitively orienting prime co-comparability graphs.To transitively orient a prime co-comparability graph, they begin with an or-dered partition (V n fvg; fvg), where v is a sink in a transitive orientation ofG. They then repeatedly perform pivots. When a class X is split into Xa andXn by a pivot, where Xa are the vertices adjacent to the pivot, they use thefollowing ordering rule: if the pivot vertex is in a class that follows X , replaceX in the sequence by Xn; Xa, in that order; otherwise replace X by Xa; Xn.The inductive hypothesis is that there is a transitive orientation where everyof G that is not contained in a single partition class is oriented from the laterpartition class to the earlier one. Suppose this is true before X is split. If thepivot vertex z is in a later class than X , then all nonedges to Xn are orientedtoward Xn. This forces the orientation of all edges of G that are in Xn �Xaalso to be oriented towardXn, since orienting them any other way would requiretransitive edges from z to Xa. Since Xa is adjacent to z in G, there can be nosuch transitive edge in G. The inductive hypothesis thus holds afterX is split. Itis true for the initial partition because of the choice of v. Since G is prime, thereis always a pivot that can split a non-singleton class. The �nal partition thusconsists of singletons, and the inductive hypothesis says that the �nal orderingis a linear extension of a transitive orientation of G.This algorithm is not su�cient for our purposes, since we seek to eliminatethe assumption that we have the modular decomposition, and thus cannot as-sume that we have reduced the problem to the special case where G is prime.Suppose we apply their ordering rule, and perform pivots until each partitionclass is a module. Let P be the resulting modular partition. Then the inductivehypothesis given in the previous paragraph implies that the resulting orderingof P is a linear extension of G=P . By Theorem 3, it only remains to �nd a linearextension of a transitive orientation of GX for each X 2 P . Our approach is to�nd these recursively, but as we will see, this must be done in a particular orderto avoid ruining the time bound.To obtain an O(n+m logn) time bound on prime graphs, one may use thefollowing rule for selecting a pivot [16, 12]: only select a pivot if its currentpartition class is at most half the size of the partition class that contained it thelast time it was used as a pivot. This guarantees that each adjacency list willbe touched at most O(logn) times, which gives an O(n+m logn) bound on therunning time. For the correctness, let X be a largest partition class when thepivot selection rule prevents any more pivots from being selected. Every vertexy not in X has been used as a pivot since the last time y was in a commonpartition class with the members of X ; otherwise the rule would allow y to beselected as a pivot. Since X has not been split up by any of these pivots, it isa module. Since G is prime, it must be a singleton set.It is shown in [16] that the pivot selection rule may be extended when thegraph is not prime, in order to perform pivots until every partition class isa module. If the pivot selection rule does not allow any more pivots to beselected, then we have seen that any largest class X is a module. A �nal pivoton each member of X splits any classes that are distinguished by members ofX . X can now be removed from consideration, and the algorithm may continueon the remainder of the partition and GV nX . The algorithm halts when no12

xa
b c

e
dFigure 4: Transitive orientation. The new interclass non edges a ! b, d ! cand e! c are forced by a! x and x! c. x is the pivot here.vertex remains, and the removed partition classes are the desired modules. Eachadjacency is used at most logn times when the pivot rule allows it to, plus anadditional time, when its class is removed from consideration. Thus, the runningtime is still O(n +m logn).If we apply the algorithm in [16] recursively inside the modules that it �nds,using the ordering rule introduced in [12] to order the classes, then we get alinear extension of a transitive orientation of G, by Theorem 3. Unfortunately,the rule that says that a �nal pivot on a vertex is necessary when its partitionclass is discovered to be a module violates the rule that a pivot is only usedwhen its partition class is half as big as the one that contained it when it waslast used. This is not a problem for the time bound when the algorithm of[16] is run once, since this situation happens only once for each vertex. Whenthe algorithm is applied recursively, however, it can happen more than O(logn)times, so the O(n+m logn) bound fails.We can get around this problem by changing the order of the recursive calls.When a set X is discovered to be a module, Spinrad's algorithm says thatwe must perform a pivot on each member of X before we can remove it fromconsideration. Instead of doing this, we observe that a pivot occurs on eachmember of X when we make the recursive call on X . So, instead of performinga �nal pivot on each member of X , we make the entire recursive call on it, andonly then remove it from consideration and proceed with the rest of the workin the main call. We use the pivots inside the recursive call to split also thoseclasses not contained in X . This guarantees that we use a pivot in a recursivecall only if the last time it was used, it was in a class that was twice as big,even if the previous pivot occurred in the main call. This restores the O(m logn)bound on the number of times a vertex is used as a pivot in all recursive callsput together.To complete the algorithm, we must show how to identify a sink v in each ofthe recursive calls. Making a call to Lex-BFS at the beginning of each recursivecall would ruin the time bound. Fortunately, each recursive call is applied to amodule that was discovered in a higher-level call. Thus, we may preprocess thegraph by running a single call to Lex-BFS to number its vertices. By Lemma 2,part 1, whenever we need a sink in the subgraph induced by a module, we mayjust select the highest-numbered vertex in the module.The complete algorithm is given as Algorithm 8, with the recursive struc-ture of the algorithm simulated with a set of nested loops. Figure 4 gives anillustration.A trait shared with it by our algorithm is that it fails to recognize within thattime bound that the result is not transitive if the input is not a comparability13

Algorithm 8: Transitive OrientationInput: a graph G = (V; E).Output: if the input graph is a co-comparability graph, the output is anordering of the vertices inducing a transitive orientation of the nonedges.begincompute a Lex-BFS ordering of the vertices x1; : : : ; xnlet L be the one-element ordered list (fx1; : : : ; xng)lastused(fx1; : : : ; xng) =1while there exists a non-singleton class in L = (X1; : : : ;Xl) doif there is a partition class Xa such that jXaj � lastused(Xa) thenfor each vertex x in Xa dofor each class Xb, b 6= a dolet Y be the members of Xb that are adjacent to xif Y = emptyset or Xb = Y thendo nothingelseremove Y from Xbif b < a then insert Y immediately behind Xbelse insert Y immediately in front of Xblastused(Y) = lastused(Xb)lastused(Xa) = jXajelselet Xc be the largest class in Llet xl be the last vertex in Xc discovered by the Lex-BFS (thevertex with the smallest number)replace Xc by Xc n fxlg; fxlg in Llastused(fxlg) =1endgraph. However, as is shown in [12], this does not prevent it from being usedas a key step in many algorithms for other problems where the correctness of asolution must be certi�ed.The algorithm computes a linear extension of a transitive orientation of Gif G is a co-comparability graph. By reversing the insertion order rule for newclasses, the algorithm computes a linear extension of a transitive orientation ofG if it is a comparability graph. A transitive orientation may then be obtainedby orienting the edges according to the linear extension. Permutation graphs arethose graphs that are both comparability and co-comparability graphs. Com-bining the two above results and using this fact, permutation graph recognitionwith same complexity is easily obtained; see [12] for details.This gives the following:Algorithmic Result 4 Using the algorithm 8, we can compute in O(n+m logn)time and in linear space a transitive orientation of a comparability graph.14

5 Interval and Co-interval Graph RecognitionWe have given an algorithm for �nding an ordering of vertices of G that is alinear extension of a transitive orientation of G if G is a comparability graph.Given such an ordering, it is easy to check whether G is an interval graph inlinear time [12]. Finding the ordering takes O(n + m logn) time, yielding asimple O(n + m logn) interval graph recognition algorithm. In this section,we show how to get this bound down to O(n +m) without compromising theconceptual simplicity.Hsu and Ma [10] give a linear-time algorithm for recognizing whether a primegraph is an interval graph. They then use modular decomposition to reduce theproblem to the special case of prime graphs. We show that there is a way toeliminate the modular decomposition step.An interval graph is a chordal graph such that there exists a clique tree that isa path. That is, the maximal cliques can be linearly arranged so that all cliquescontaining a given vertex are consecutive. Such an ordering is called a cliquechain. This associates an interval on this clique chain with each vertex, namely,the interval given by the cliques that contain the vertex. This assignment ofintervals gives an interval representation of G, where two vertices are adjacentif and only if their intervals intersect.There may be more than one clique chain on G. However, suppose thata particular transitive orientation F of G is given. If X and Y are maximalcliques, de�ne the relation X <F Y to hold if and only if there is some edge ofF that begins in X and ends in Y . In [9], it is shown that either X <F Y orY <F X , but not both, for every pair X;Y of maximal cliques, and that thisrelation is transitive and acyclic. Thus, F de�nes a unique linear order on themaximal cliques. It is shown that this linear order is a clique chain.Conversely, it is also shown in [9] that each clique chain de�nes a transitiveorientation of G. Every edge (x; y) of G connects some pair X;Y of maximalcliques of G, where x 2 X; y 62 X; y 2 Y; x 62 Y . We may say that the cliquechain assigns an orientation x! y if and only ifX is before Y in the clique chain.Thus, the problem of computing a clique chain and the problem of computinga transitive orientation of G may be regarded as dual problems.In view of these observations, the following is an immediate consequence ofCorollary 1:Lemma 3 The last clique discovered in a Lex-BFS is an extreme clique in someclique chain.We will assume that G is an interval graph and show how a clique chaincan be computed under this assumption. Since only interval graphs have cliquechains, the output of the algorithm must fail to be a clique chain if G is notan interval graph. Checking whether the output is a clique chain will thengive a recognition algorithm for interval graphs. This test can be achieved inlinear time after each re�nement step (line 3). For the sake of simplicity, inthe interval graph recognition algorithm, the veri�cation is made globally in aseparate further step. This also can be done in linear time by the usual techniquewhich traverses the clique chain and builds the interval representation.Algorithm 9 gives the procedure, and Figure 5 illustrates an execution of thealgorithm on an example. 15

Algorithm 9: Interval Graph Recognition (via Clique Partition Re�ne-ment)Input: a graph G = (V; E).Output: if the input graph is interval: a clique chain L.begin1 compute the maximal cliques and a clique tree T = (X ;F) using a Lex-BFS according to Algorithm 4let X be the set of maximal cliques X = fC1; : : : ; Ckglet L be the ordered list (X)pivots = ; is an empty stackwhile there exists a non-singleton class Xc in L = (X1; : : : ;Xl) doif pivots = ; thenlet Cl be the last clique in Xc discovered by the Lex-BFS (theclique with the greatest number)replace Xc by Xc n fClg; fClg in LC = fClgelsepick an unprocessed vertex x in pivots (throw away processedones)2 let Xa and Xb be the �rst and last classes containing a memberof C3 replace Xa by Xa n C;Xa \ C and Xb by Xb \ C;Xb n Cfor each remaining tree edge (Ci; Cj) connecting a clique Ci 2 C toa clique Cj 62 C dopivots = pivots [Ci \ Cjremove (Ci; Cj) from the clique treefor each vertex x doif the cliques containing x are not consecutive in the ordering thenreturn \G is not an interval graph"return \G is an interval graph"endThe ordered set of partition classes maintained by the algorithm representsa partial order on the cliques, where clique A is a predecessor of clique B if andonly if the partition class containing A class precedes the one containing B. Theinvariant that we maintain is that some clique chain is a linear extension of thispartial order. This can only be the case if the members of the set C of cliquescontaining a given vertex appear in consecutive partition classes, and if there ismore than one such class, only the two end classes Xa and Xb of this interval cancontain cliques that do not contain the vertex. If there is more than one classcontaining members of C, we may split each of the Xa and Xb into cliques thatcontain the pivot and cliques that do not, and order the resulting classes so thatthe classes containing members of C are still consecutive. Since the cliques thatcontain the pivot must be consecutive in a clique chain, any clique chain that isa linear extension of the old ordered partition must also be a linear extensionof the new one.To launch the process, we put the last clique discovered during a Lex-BFS16

in a separate class to the right of all others. We know from Corollary 1 andLemma 3 that there is an interval representation of G where this clique is right-most in the clique chain. This establishes the invariant initially.Each pivot only needs to be used once, but it may not be used until thecliques that contain it reside in more than one class. The cliques containing avertex induce a connected subtree of the clique tree, which we may refer to asits containing subtree. A vertex is eligible if some edge of its containing subtreeintersects two partition classes. The set of vertices whose subtrees contain atree edge (C1; C2) is C1 \ C2, since each vertex's containing subtree is connected.Thus, the �rst time C1 and C2 �nd themselves in di�erent partition classes, wemay add C1 \ C2 to a list of eligible pivots.Hsu and Ma show that if the graph is prime, this re�nement leads to aset of partition classes where each contains one clique. The truth of the maininvariant at this point gives the clique chain. However, we are not assumingthat the graph is prime, since we wish to avoid the modular decompositionstep. Thus, we must consider the possibility that the process will halt whensome partition classes contain more than one clique. If A is a partition classwith more than one clique at this point, let SA denote the set of vertices thatoccur only in cliques of A.If z is a vertex not in SA, then z is either in every member of A or none ofthem; otherwise z could be used to split A further. Thus z is either adjacent toevery member of SA or to none of them. We may conclude that SA is a module.In addition, since <F is a total order, for each X;Y in A, there exists x 2 Xand y 2 Y such that (x; y) is not an edge of G. It follows that x; y 2 SA, hencethat the relative ordering of cliques in A may be determined by restricting ourattention to <F 0 , where F 0 is a transitive orientation of GSA . Since SA is amodule, Theorem 3 implies that we are free to choose F 0 to be any transitiveorientation of GSA . The existence of x and y also establishes that X \ SA andY \ SA are not contained in the same clique of GSA . Since <F 0 induces a totalorder on A, A0 = fK \ SA : K 2 Ag are the maximal cliques of GSA . Thus,we may call the algorithm recursively on GSA to �nd a clique chain on A0, andassign this ordering to the corresponding members of A in order to obtain thedesired ordering of members of A.
16578 36828 678

678

478

8

1636867847857828

28 368478578 16
8

7 6

5

4

3

2

1

678

478

368

28

16

578

78

78 8

68

6

(i) (ii) (iii)

678 578 478 368 28 16

6

1636867847857828
7

16

368

678

1 6

3 8

7

478

578

28

4

5

2

(iv)Figure 5: (i) An interval graph. Its vertices are numbered according to a Lex-BFS ordering. (ii) The clique tree associated with the Lex-BFS ordering. (iii)A partition re�nement of the clique set. Note that f4; 5g is a module. (iv) Aninterval representation associated with the computed clique chain.17

However, naively calling the algorithm recursively in GSA would result insome ine�ciencies that we wish to avoid. Since SA is a module, we are ableto use Lemma 2 and Lemma 3 to avoid computing another Lex-BFS orderinginside the recursive call. Instead, we reuse the ordering on SA imposed by ourinitial Lex-BFS. In addition, we avoid computing the members of A0 explicitly,by letting the members of A stand in for them. We also simulate the recursivecall within the loop structure.For the time bound, we must consider the time bound when G may or maynot be chordal. In this case, the purported cliques may not actually be cliques.Because of the way the purported cliques are constructed, each purported cliqueis the neighborhood of its last-visited vertex, and each vertex is the last-visitedvertex of at most one purported clique. Thus, there are are O(n) purportedcliques, and their total size is O(n +m).Each vertex is used once as a pivot, and a clique is touched once for each ofits members. This gives an O(n+m) bound for performing pivots and touchingcliques. We must also bound the cost of maintaining the list of eligible pivots.Since each clique has only one parent edge, the O(n + m) bound on thesum of the sizes of the cliques gives an O(n+m) bound on the number of timesvertices are inserted in the list of pivots. To identify clique-tree edges when they�rst intersect two classes as a result of a pivot, we mark all tree edges incidentto members of C \Xa and C \Xb, since we have to touch these cliques to movethem during the pivot. A tree edge that is marked only once will be deleted, sothis happens O(n) times. An edge that is marked twice goes between a childclique and its parent, and the child is a touched clique. In this case, we chargethe cost of marking the edge to the child. Only cliques that are touched duringthe pivot are charged in this way, and each touched clique is charged at mostonce. As a consequence:Algorithmic Result 5 Algorithm 9, tests in linear time and space wether agraph is an interval graph.For cointerval graph recognition, we note that Algorithm 6 gives a represen-tation of the clique tree, where each clique C of G is represented with the setC = V n C. Since C is just the neighbors in G of the leftmost vertex of C, thesum of cardinalities of these complements of cliques is at most m. Thus, foreach vertex, we may create a list that gives the maximal cliques of G that donot contain it. The sum of sizes of these lists is also m.We obtain a cointerval graph recognition algorithm by simulating a run ofAlgorithm 9 on G. When we pivot on a vertex, we use the lists of cliques of Gthat do not contain it instead of the list of cliques that do. Since the cliques thatcontain a vertex are consecutive in the list of partition classes on the cliques,the cliques that do not contain a vertex are contained in a pre�x and/or a su�xof the list of partition classes. The end of the pre�x identi�es Xa, and thebeginning of the su�x identi�es Xb. To split Xa, we remove the cliques thatdo not contain the pivot and place them to the left of what remains of Xa. Weperform the symmetric operation on Xb. This duplicates the results of the pivothad we run the original algorithm on G, but in time proportional to the numberof cliques that do not contain the pivot. Similarly, for the �nal veri�cation step,we check for each vertex that the cliques that do not contain it in the purportedclique chain form a pre�x and su�x of that chain.18

We must also change the way we keep track of eligible pivots. Previously, wehad to detect when a tree edge (C1; C2) �rst intersected more than one partitionclass. This happened when exactly one of C1 and C2 contained the pivot. Weperform the equivalent test now by checking whether exactly one of C1 and C2contains the pivot. By the charging arguments used before, we can then keeptrack of these events in O(n + m) time. When such an event happens whenwe run Algorithm 9 on G, we insert C1 \ C2 into a list of eligible pivots. Tosimulate this exactly, we would have to insert C1[C2 into a lit of eligible pivots.This would not satisfy the time bound, since if C1 has multiple children in theclique tree, the members of C1 might be inserted multiple times. However, if themembers of C1 have already been inserted when an edge (C1; C3) was processed,the list of eligible pivots will still be complete if we only insert C2. Thus, wemay mark each C the �rst time we insert its list of members, and refrain fromever doing it again. When it is time to process (C1; C2), we insert any or bothof C1 and C2 that are unmarked, and then mark them. Since each C is onlyinserted once in the list of eligible pivots, keeping track of eligible pivots stilltakes O(n+m) time.6 Testing the Consecutive Ones PropertyLet M be a 0-1 matrix with n rows and k columns. M is said to have theconsecutive one's property for the rows if the columns can be permuted in asuch a way that the ones in each row occur consecutively. We give a simplealgorithm for testing this property in O(r+ c+m) time, where r is the numberof rows, c is the number of columns, and m is the number of nonzero entries inM . Let us say that column i of a matrix M is a subset of column j if the rowswhere ones occur in column i are a subset of the rows where they occur in j. Acolumn is maximal if it is a subset of no other.The maximal clique-vertex matrix of a graph G is a matrix where the rowsare the vertices of G, the columns its maximal cliques, and the entry in row icolumn j is one if and only if the vertex i belongs to the maximal clique C. Amatrix is conformal if it is the maximum clique matrix of some graph.Let G(M) be the graph obtained from a matrix M by letting each row of Mbe a vertex, and letting two rows be adjacent in G(M) if and only if they havea one in a common column. If M is the maximal clique matrix of a graph G,then clearly G = G(M). If not all columns ofM are maximal, then M is clearlynot the maximal clique matrix of any graph. If the columns of M are maximal,they may still fail to be maximal cliques of G(M), and G(M) may have somemaximal cliques that do not appear among the columns of M .Theorem 2 For a boolean matrix M , the following are equivalent:1. G(M) is an interval graph and M is its maximal clique matrix.2. The columns of M are maximal and M has the consecutive ones property.Proof: 1) 2 : If G(M) is an interval graph and M is its maximal cliquematrix, then the columns of M are maximal, and the existence of a chain ofcliques guarantees that M has the consecutive ones property.2) 1 : The consecutive one's property is a hereditary property. Let c1, c2and c3 be three columns of M such that c1; c2; c3 is an appropriate ordering.19

Obviously, (c1 \ c2) [(c2 \ c3) is contained in c2. MorEover the consecutiveone's property ensures that c1 \ c3 is included in c2. Therefore for any threecolumns, there always exists a column that contains the union of the threepairwise intersections. In 1960, Gilmore proved that this property holds for amatrice if and only if the maximal cliques of G(M) is equal to the maximalcolumns of M , see [1]. Thus, M is the clique matrix of G(M). Any ordering ofcolumns of M that realizes the consecutive ones property in M gives a cliquechain of G(M).The approach of our algorithm is to create a matrix fM that has all maximalcolumns, and that has the consecutive ones property if and only ifM does. If fMhas the consecutive ones property, we can use a variant of Algorithm 9 to �nd aclique chain onG(fM). The order of cliques in the clique chain gives a consecutiveones ordering of columns fM . This ordering of columns is a certi�cate that fMhas the consecutive ones property, but we must verify the certi�cate. If fM doesnot have the consecutive ones property, the algorithm produces some orderingof the columns, but the veri�cation step must fail, since no such certi�cate canexist. Thus, we only need to prove that the algorithm produces a certi�catewhenever fM has the consecutive ones property, and may ignore its behaviorwhenever fM does not. In the remainder of the section, we will therefore assumethat M and fM have the consecutive ones property.Unfortunately, we cannot produce an adjacency-list representation of G(fM)within the time bound. Instead, we observe that fM is itself a representationof G(fM), since G(fM) can be constructed from it. We adapt Lex-BFS andAlgorithm 9 to run directly on fM .fM is obtained from M by appending the identity matrix below it. Thatis, we add c dummy rows, one row for each column. Each dummy row hasa one in the corresponding column and zeros in the others. Clearly fM hasthe consecutive ones property if and only if M does. The columns of fM aremaximal, since for each column i, the one in the ith dummy row appears onlyin column i. The size of fM and time to construct it is clearly O(r + c+m), ifwe use a sparse representation of M and fM , where for each row we keep a listof column numbers where it has nonzero entries, and for each column, we keepa list of row numbers where it has nonzero entries.A critical step of running Algorithm 9 on G(fM) is the call to Algorithm 4,which requires us to obtain a clique tree for G(fM). Though we do not have timeto compute an adjacency-list representation of G(fM), we demonstrate how thisalgorithm can be adapted to produce the ordering in O(r + c+m), using fM asthe representation of G(M).If C is a family of sets of vertices, Algorithm 10 runs in time proportionalto the sum of cardinalities. If G is chordal and C is its maximal cliques, then itgives a Lex-BFS ordering of the vertices of G.Lemma 4 If G is a chordal graph with maximal cliques C, then Algorithm 10computes a Lex-BFS ordering of G.Proof: As before, for each vertex y, let label(y) be the numbers of the numberedneighbors of y in ascending order. For each clique C that has un-numbered mem-bers, let label(C) be the numbers of the numbered members of C in ascendingorder. Clearly, L maintains the cliques in lexical order of the reverse of their cur-rent labels. Adopt as an inductive hypothesis that the �rst i pivots are a su�x20

Algorithm 10: Lex-BFS on a clique representationInput: a family of sets COutput: if G is chordal and C is maximal cliques, a Lex-BFS ordering ofthe vertices of Gbeginlet L = (C)i nwhile L is not empty dolet C a clique in the rightmost class in Lpick an unnumbered vertex x from C�(x) iif all members of C are now numbered thenremove it from its classif its class is now empty thenremove it from Lfor each class Xa in L dolet Y be the members of Xa that contain xif Y is not empty and Y 6= Xa thenremove Y from Xa and insert to the right of Xa in Lendof a valid Lex-BFS ordering, and that after the ith pivot, for each un-numberedvertex y and clique C has lexically maximal label among those cliques that con-tain y, label(y) = label(C). As a base case, this is true when i = 0. Since thei+1st pivot x is selected from a clique in the rightmost class of cliques this cliquehas lexically maximal label among all cliques with un-numbered vertices. Bythe inductive hypothesis, x has maximal label among all un-numbered vertices.Thus, the �rst i + 1 pivots are a su�x of a valid Lex-BFS ordering. Supposey is an un-numbered vertex, after the �rst i + 1 pivots. No clique containingy contains a non-neighbor of y, so no clique's label may be lexically greaterthan y's. Since G is chordal, y and its numbered neighbors are a clique. Thereare one or more cliques of G that contain y and its numbered neighbors, so thelabels of these cliques must be the same as y's, and their labels must be lexicallymaximal among all cliques that contain y. The inductive hypothesis continuesto hold. After all n pivots, the numbering must be a valid lex-BFS numberingof G.Lemma 5 Algorithm 10 takes time proportional to the sum of cardinalities ofmembers of C.Proof: The cost of a pivot may be charged to its occurrences in members of C.Since no vertex is used twice as a pivot, the bound is immediate.It remains to adapt Algorithm 4. Create a search tree S whose vertices arelabeled with vertices of G, and where each member of C is the sequence of labelson a path from the root to a leaf, and where these labels appear in descendingLex-BFS order. A vertex of G may label more than one vertex of S. However,if G is chordal, then for each vertex x, fxg [RN(x) are a clique, hence RN(x)21

appears as the labels of a path from the root to a vertex of the tree labeledwith x. The end of this path may not be a leaf, but it must be the deepestoccurrence of x in the tree. Call the end of this path the principal location of x.Let z be any vertex of G, let s be its principal location in S, let s0 be the parentof s in S, and let y be the label of s0. Then y is the parent of z in the tree Trequired for Algorithm 4, and RN(x) � parent(x) = RN(y) if and only if s0 isy's principal location. This allows all checks of Algorithm 4 to be carried out intime proportional to the sum of cardinalities of members of C. The algorithmproduces a faulty result if G is not chordal, but still runs within the time bound.Summarizing, we get Algorithm 11.Algorithm 11: Consecutive One's TestInput: A 0-1 matrix M with c columns and r rows and m one entriesOutput: Test whether M has the consecutive one's propertybegin1 Compute fM from M , using the sparse representation of M and fM de-scribed previously2 Run Algorithm 9, but in the �rst step, call the foregoing variant of of Al-gorithm 4, using the columns of fM as the maximal-clique representationof the graph.endAlgorithmic Result 6 Algorithm 11, tests in O(r + c + m) time and spacewhether a 0-1 matrix M has the consecutive one's property.7 Some applicationsA 0-1 matrix M can also be seen as a bipartite graph B = (X;Y; E) such thatX is the set of rows and Y the set of columns. There is an edge between x 2 Xand y 2 Y if the corresponding entry is one.The maximal clique-vertex graph of a graph G = (V;E) is the bipartitegraph Bc(G) = (V; C(G); E). In this section, recognition algorithms for classesof bipartite graphs related to chordal graphs and intervals graphs are given,namely Y -semichordal graphs and convex graphs.Recognition of Y -semichordal graphsLet B = (X;Y;E) be a bipartite graph and C = (x1; y1 : : : xk ; yk) a cycle oflength 2k � 6. C has an X-star if there exist x 2 X such that x 62 fx1 : : : xkgand i1; i2; i3 � k such that (x; yij) 2 E with j 2 f1; 2; 3g. A Y -star is de�nedanalogously.B is semichordal (X-semichordal, Y -semichordal respectively) if each cycleof length at least 6 contains an X-star or a Y -star (an X-star, a Y -star respec-tively). Note that the class of semichordal graphs strictly contain the union ofX-semichordal graph and Y -semichordal graph. A more intuitive characteriza-tion of Y -semichordal graphs was presented in [3] :Theorem 3 [3] A graph G is chordal if and only if Bc(G) is Y -semichordal.22

Algorithm 10 shows how to compute a a Lex-BFS ordering of the vertices ifthe input matrix M is the maximal clique-vertex matrix of a chordal graph, inO(r+ c+m) time. Algorithm 3 can then test whether this ordering is a perfectelemination ordering. Thus:Algorithmic Result 7 Let B be a bipartite graph. It can be tested in O(r +c+m) time and space whether B is Y -semichordal (or X-semichordal).Recognition of convex graphsA permutation � of Y has the adjacency property if for each vertex x 2 X , itsneighborhood N(x) induces a factor of �.De�nition 1 Let B = (X;Y;E) be a bipartite graph. B is a convex graph ifthere is a permutation of X or Y which ful�lls the adjacency property.It is obvious that M is the matrix of a convex graph with respect to Y if andonly if fM is the matrix of a convex graph too. Finding a permutation of thevertex set Y with the adjacency property is equivalent to �nding a permutationof the columns such that for any rows the one entries occur consecutively. Inother words testing whether M has the consecutive one's property or testingwhether M is the matrix of a convex graph are the same problems.Algorithmic Result 8 Algorithm 11, tests in O(r + c + n) time and spacewhether a 0-1 matrix M is the adjacency matrix of a convex graph.The reader should notice that up to now the only known recognition algo-rithm for convex graphs used PQ-trees (see [2]).8 ConclusionsWe have given simple algorithms and e�cient algorithms for clique tree ona chordal graph or its complement, transitive orientation of a comparabilitygraph or its complement, and interval graph recognition. >From the transi-tive orientation results follow simple algorithms for permutation graph recogni-tion, maximum clique and minimum vertex on comparability graphs, maximumindependent set and clique cover on co-comparability graphs that run in theO(n + m logn) time; see [12] for details. To date, the only general linear-time transitive orientation algorithm is quite complex [13]; the simplicity ofthe O(n +m logn) algorithm provides some hope for a simple linear transitiveorientation algorithm that avoids modular decomposition.The techniques might be generalized to other recognition algorithms, suchas trapezoidal graphs or weakly chordal graphs and perhaps for some otherinteresting classes of bipartite graphs.References[1] C. Berge. Graphes et Hypergraphes. Dunod, 1970.23

[2] K.S. Booth and G.S. Lueker. Testing for the consecutive ones property,interval graphs and graph planarity using pq-tree algorithm. J. Comput.Syst. Sci., 13:335{379, 1976.[3] A. Brandst�adt. Classes of bipartite graphs related to chordal graphs. Dis-crete Applied Mathematics, 32:51{60, 1991.[4] A. Cournier and M. Habib. A new linear algorithm of modular decompo-sition. In Trees in algebra and programming|CAAP 94 (Edinburgh) Lec-ture Notes in Computer Science, volume 787, pages 68{84, Berlin, 1994.Springer.[5] E. Dahlhaus, J. Gustedt, and R.M. McConnell. E�cient and practicalmodular decomposition. In Proceedings of the seventh annual ACM-SIAMSymposium on Discrete Algorithm, pages 26{35. Society of Industrial andApplied Mathematics (SIAM), 1997.[6] P. Galinier, M. Habib, and C. Paul. Chordal graphs and their clique graph.In M. Nagl (Ed.), editor, Graph-Theoretic Concepts in Computer Science,WG'95, volume 1017 of Lecture Notes in Computer Science, pages 358{371, Aachen, Germany, June 1995. 21st Internationnal Workshop WG'95,Springer.[7] T. Gallai. Transitiv orientierbare graphen. In Acta Math. Acad. Sci. Hun-gar., volume 18, pages 25{66, 1967.[8] F. Gavril. The intersection graphs of a path in a tree are exactly the chordalgraphs. Journ. Comb. Theory, 16:47{56, 1974.[9] M.C. Golumbic. Algorithms Graph Theory and Perfect Graphs. AcademicPress, New York University, 1980.[10] Hsu and Ma. Substitution decomposition on chordal graphs and applica-tions. In Proceedings of the 2nd ACM-SIGSAM Internationnal Symposiumon Symbolic and Algebraic Computation, number 557 in LNCS. Springer-Verlag.[11] N. Korte and R. M�ohring. An incremental linear-time algorithm for recog-nizing interval graphs. SIAM J. of Computing, 18:68{81, 1989.[12] R. M. McConnell and J. P. Spinrad. Linear-time modular decompositionand e�cient transitive orientation of comparability graphs. In Proceed-ings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms(Arlington, VA), pages 536{545, 1994.[13] R.M. McConnell and J.P. Spinrad. Linear-time modular decompositionand e�cient transitive orientation of undirected graphs. In Proceedings ofthe seventh annual ACM-SIAM Symposium on Discrete Algorithm, pages19{35. Society of Industrial and Applied Mathematics (SIAM), 1997.[14] R. Paige and R.E. Tarjan. Three partition re�nement algorithms. SIAMJourn. Comput., 16(6):973{989, 1987.24

[15] Donald J. Rose, R. Endre Tarjan, and George S. Leuker. Algorithmicaspects of vertex elimination on graphs. SIAM Journal of Computing,5(2):266{283, June 1976.[16] J.P. Spinrad. Graph partitioning, 1986.

25

