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A Control Engineer’s Guide to Sliding Mode Control

K. David Young, Senior Member, IEEEYadim I. Utkin, Senior Member, IEEEand Umit Ozginer, Member, IEEE

Abstract—This paper presents a guide to sliding mode control SMC for control engineers. It is our goal to accomplish these
for practicing control engineers. It offers an accurate assessment gbjectives:

of the so-called chattering phenomenon, catalogs implementable . id t t of the chatteri h
sliding mode control design solutions, and provides a frame of provide an accurate assessment or the chattering phenom-

reference for future sliding mode control research. enon;
) . - « offer a catalog of implementable robust sliding mode con-
Index Terms—Discrete-time systems, multivariable systems, . . . . . L .
nonlinear systems, robustness, sampled data systems, singularly _tr(_)l_deS|gn s_olutlons_ for real-l_lf_e engineering appllcatlons,
perturbed systems, uncertain systems, variable structure systems.  * initiate a dialog with practicing control engineers on
sliding mode control by threading the many analytical
underpinnings of sliding mode analysis through a series
of design exercises on a simple, yet illustrative control
URING the last two decades since the publication of the problem;
survey paper in the IEEERANSACTIONS ONAUTOMATIC e establish a frame of reference for future sliding mode
CoNTROL in 1977 [1], significant interest on variable struc-  control research.

ture systems (VSS) and sliding mode control (SMC) hashe flow of the presentation in this paper follows the chrono-
been generated in the control research community worldwidggical order in the development of VSS and SMC: First
One of the most intriguing aspects of sliding mode is thge introduce issues within continuous-time sliding mode in
discontinuous nature of the control action whose primagection II, then in Section Ill, we progress to discrete-time
function of each of the feedback channels is to switch betweglding mode, (DSM) followed with sampled data SMC design
two distinctively different system structures (or components) Section IV.

such that a new type of system motion, called sliding mode,

exists in a manifold. This peculiar system characteristic is Il. CONTINUOUS-TIME SLIDING MODE

claimed to result in superb system performance which includes

insensitivity to parameter variations, and complete rejecti?nSIIdIng mode is originally conceived as system motion

of disturbances. The reportedly superb system behavior S ef %’gger?e'fj ng;ergztghoviﬁhezsrgmg Ogﬁg}fﬁ?alb ihi\gggrfsn
VSS and SMC naturally invites criticism and scepticism fro d y y q '

. . s nilhe discontinuous control action, which is often referred
within the research community, and from practicing contr% as variable structure control (VSC), is also defined in

engineers alike [2]. The sliding mode control research commy- X ) X k
g [2] 9 lfie continuous-time domain. The resulting feedback system,

nity has risen to respond to some of these critical challeng%h . . . . .
while at the same time, contributed to the confusions abo so-called VSS, is also defined in the continuous-time

the robustness of SMC by offering incomplete analyzes, a#gmam, and it is governed by ordinary differential equations

design fixes for the so-called chattering phenomenon [3].Ma\rﬁv'th discontinuous right-hand sides. The manifold of the

analytical design methods were proposed to reduce the eﬁesck%ite-space of the system on which sliding mode occurs

of chattering [4]-[8]—for it remains to be the only obstacle fop %he sliding mode manifold, or simply, sliding manifold.

sliding mode to become one of the most significantdiscoverlggr control engineers, the simplest, but vividly perceptible

in modern control theory; and its potential seemingly Iimite8Xample 'S & double mFegrator plant,.subjec.t to time opt.|mal
) o control action. Due to imperfections in the implementations
by the imaginations of the control researchers [9]-[11].

In contrast to the published works since the 1977 articl8f the switching curve, which is derived from the Pontryagin

which serve as a status overview [12], a tutorial [13] of desié{vﬁaxwztu G'erglnﬁlpé%'nslfé?gnmoiﬁ Te?g Oggun;'ro?“g Pg d?%?;
methods, or another more recent state of the art assess irﬁ%a% ratli)rI Ianlts a :gblelm mcv)\givated by the design of atl:itude
[14], or yet another survey of sliding mode research [15], the 9 P ap y 9

urpose of this paper is to brovide a comorehensive uidec;[ontrol systems of missiles with jet thrusters in the 1950’s [16].
Purp pap P P 9 0The chattering phenomenon is generally perceived as mo-

tion which oscillates about the sliding manifold. There are two
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which, according to control engineering practice, are often 128, + 27k 4+ xs =1, T K 1 4)
neglected in the open-loop model used for control design

if the associated poles are well damped, and outside iwBerex; ands, are the states of the sensor dynamics. Clearly,
desired bandwidth of the feedback control system. Generafiding mode cannot occur on = 0 since is continuous,

the motion of the real system is close to that of an ideAPWeVer, since:; is boundedz,(t) — x(t) = O(r;) wherer,
system in which the parasitic dynamics are neglected, and thehe time constant of the sensor. Furthermore, reaching an
difference between the ideal and the real motion, which §&(7-) boundary layer of:(t) = 0 is guaranteed since

on the order of the neglected time constants, decays rapidly. .
The mathematical basis for the analysis of dynamic systems &y = —sgn (2, + O(73))- (5)

With fast_and slow motion is the_ theory of_singularly perturbegh, o system behavior inside thig(r,) boundary layer can
differential equations [17], and its extensions to control theo[ye analyzed by replacing the infinitely fast switching device

have been developed and applied in practice [18]. HOWeVGf, 5 jinear feedback gain approximation whose gain tends
the theory is not applicable for VSS since they are governed infinity asymptotically

differential equations with discontinuous right hand sides. The

interactions between the parasitic dynamics and VSC generate u=—gr,, g-— 0o. (6)

a nondecaying oscillatory component of finite amplitude and

frequency, and this is generically referred to as chattering. The root locus of this system, with as the scalar gain pa-
Second, the switching nonidealities alone can cause su@meter, has third-order asymptotesgas: ~o. Therefore, the

high-frequency oscillations. We shall focus only on the deldyigh-frequency oscillation in the boundary layer is unstable.

type of switching nonidealities since it is most relevant to Instead of having parasitic sensor dynamics, we may have

any electronic implementation of the switching device, irsecond-order parasitic actuator dynamics in series with the

cluding both analog and digital circuits, and microprocessopminal plant, in which case, the closed-loop dynamics are

code executions. Since the cause of the resulting chatterffigen by

phenomenon is due to time delays, discrete-time control design .

techniques, such as the design of an extrapolator can be applied *=%a (7

to mitigate the switching delays [19]. These design approaches — 7-&q + 27ada + 2o = —sgn(z), 7, < 1. (8)

are perhaps more familiar to control engineers. o ) ) o )
Unfortunately, in practice, both the parasitic dynamics and'€ characteristic equation of this system is identical to that

switching time delays exist. Since it is necessary to compens@feln® parasitic sensor case. This is not surprising since the

for the switching delays by using a discrete-time control desidprward transfer function is identical in both cases. Thus,

approach, a practical SMC design may have to be unavoidaﬁW“lar instability also occur with infinitely fast switching.

approached in discrete time. We shall return to the details

of discrete-time SMC after we illustrate our earlier point8. Boundary Layer Control

on continuous-time SMC with a simple design example, andThe most commonly cited approach to reduce the effects of

summarize the existing approaches to avoid chattering.  chattering has been the so called piecewise linear or smooth

approximation of the switching element in a boundary layer

A. Chattering Due to Parasitic Dynamics—A Simple Exampisf the sliding manifold [20]-[23]. Inside the boundary layer,
The effects of unmodeled dynamics on sliding mode cdRe switching function is approximated by a linear feedback

be illustrated with an extremely simple relay control syste@@in. In order for the system behavior to be close to that of the

example: Let the nominal plant be an integrator ideal sliding mode, particularly when an unknown disturbance
) is to be rejected, sufficiently high gain is needed. Note that
&=u, x(to)=z07#0 (1) in the absence of disturbance, it is possible to enlarge the

boundary layer thickness, and at the same time reduce the
effective linear gain such that the resulting system no longer
u = —sgn (z). (2) exhibits any oscillatory behavior about the sliding manifold.

The sliding manifold is the origin of the state-spage= 0. However, this system no longer behaves as dictated by sliding

Given any nonzero initial conditiom,, the state trajectory mode, i.e., simply put, in order to reduce chattering, the

z(t) is driven toward the sliding manifold. Ideally, if the relayfr:gazzztgarglftzoge%z Ec)(l)e;e\sl\”:;rlrl]n\?vziitrh anpopg;gmaﬂ:qf;(;sd%?ss
controller can switch infinitely fast, them(t) = 0,¢ > ¢* Y Y g ’

where ¢ is the first time instant that(¢*) = 0, i.e., once proposed method has wide acceptance by many sliding mode

the state trajectory reaches the sliding manifold, it remairr]%searchers, but unfortunately it does not resolve the core

. . : .. .. _problem of the robustness of sliding mode as exhibited in
on it for good. However, even with such an ideal switchin . - . :

. ; X - hattering. Many sliding mode researchers cited the work in
device, unmodeled dynamics can induce oscillations about

sliding manifold. Suppose we have ignored the existence and_ [22.] as the ba5|_s of the_lr optl_m!sm that the imple-
y . : mentation issues of continuous-time sliding mode are solved
a “sensor” with second-order dynamics, and the true syst

dvnamics are governed b %vrﬂh boundary layer control. Unfortunately, the optimism of
y g y these researchers was not shared by practicing engineers,
& =—sgn(x,) (3) and this may be rightly so. The effectiveness of boundary

and assume that a relay controller has been designed
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layer control is immediately challenged when realistic par- Boundary layer control with sensor dynamics:
asitic dynamics are considered. An in-depth analysis of the,, ___Rootlocus for gain between 20 and 500
interactions of parasitic actuator and sensor dynamics with *
the boundary layer control [24] revealed the shortcomings of
this approach. Parasitics dynamics must be carefully modeled®|
and considered in the feedback design in order to avoid
instability inside the boundary layer which leads to chattering. 5|
Without such information of the parasitic dynamics, controlt
engineers must adopt a worst case boundary layer contrdl g-100
design in which the disturbance rejection properties of SM@ o Go—200
are severely compromised. g
A Boundary Layer Controller;:We shall continue with the =~ 5L
simple relay control example, and consider the design of a
boundary layer controller. We assume the same second-order
parasitic sensor dynamics as before. The behavior inside thé'|
boundary layer is governed by a linear closed-loop system

Ima

950 200 350 00 50 o 50
& = —gr, +d(t) 9) Real part
2. - . . .
TiLs + 27,25 + X5 = (10) Fig. 1. Boundary layer control with sensor dynamics: root locus.
where d(t) represents a bounded, but unknown exogenous Boundary layer control with sensor dynamics:

. . . . . boundary layer 0.005 and 0.01, disturbance 0.5
disturbance. Whereas discontinuous control action in VSC cano.ot e : : ,

reject bounded disturbances, by replacing the switching cpntro(!_ooe_
with a boundary layer control, the additional assumption that ;
be bounded is needed since according to singular perturbatiofposf - AR B
analysis, the residue error is proportional |th)/g. Given a ‘
finite 7,, we can compute the root locus of this system with
respect to the scalar positive gajn>0. An upper boundy, 0002w e R B
exists which specifies the crossover point of the root locas
on the imaginary axis. Thus, fdr< g < g., the behavior of °

this system is asymptotically stable, i.e., for any initial point°002
inside the boundary layer 0004 U]

—

0.004 : : E

o : . N

lzs| < 1/g (11 oo ’ ' : ' : " 1

0.008 e L : ‘ .

the sliding manifoldz = 0 is reached asymptotically as ‘

t — oo. The transient response and disturbance rejection of®®'c s 1 5 2 25 3 85 4

this feedback system are two competing performance measures fme.sec

to be balanced by the choice of an optimum gain value. #fg. 2. Boundary layer control with sensor dynamics: Time responses for
we assumer, = 0.01 the associated root locus is plotted = 200 (oscillatory), andg = 100 (stable).

in Fig. 1 for 0.002 < ¢g=! < 0.05 with a step size of
0.001. The critical gain ig. = 200. Thus from the linear

Vsi bound I trol with — 100 Its i layer region. However, as the gain increases, the frequency of
analysis, a boundary layer control with = Fesults N oscillation increases as the magnitude of the imaginary parts

a stable sliding mode, whereas with = 200, oscillatory . . ,
. ] . . : : of the complex root increases. Increasingly smaller amplitude
behavior about the sliding manifold is predicted. Fig. 2 shows " " L . L
t higher frequency oscillation as gain approaches infinity.

the simulated error responses of the closed-loop system for. " . : o
these two gain values which agree with the analysis. In th is is the chattering behavior observed when the switching

simulation, a unity reference command for the plant state aFﬁdeaCK control action _interacts with the neglected resonant
a constant disturbana&t) = 0.5 is introduced. The tradeoff requencies of the physical plant.

between chattering reduction and disturbance rejection can bd Nis €xample illustrates the advantages of boundary layer
observed fromz(t), of which the steady-state value0.005 control which lie primarily in the availability of familiar
(for the stable response), or the average vah@0025 (for linear control design tools to reduce the potentially disastrous
the oscillatory response) is inversely proportional to the gaffiattering. However, it should also be reminded that if the
g. We note that even witly > ¢., the resulting response isacceptable closed-loop gain has to be reduced sufficiently to
only oscillatory, but still bounded. This is because the lineavoid instability in the boundary layer, the resulting feedback
analysis is valid only inside the boundary layer, and the VS§ystem performance may be significantly inferior to the nom-
always forces the state trajectory back into the boundanal system with ideal sliding mode. Furthermore, the precise
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details of the parasitic dynamics must be known and used n
properly in the linear design. Disturbance
7] nz
Reference - =11

1 T N
s Vllauis.su ]'lmuis.sn I

C. Observer-Based Sliding Mode Control Gommand Righ Gain Limiter Nominal Plant  gensor Dynamics

Recognizing the essential triggering mechanism for chat- = M@°feéoﬁtf°i'e

tering is due to the interactions of the switching action with } T

the parasitic dynamics, an approach which utilizes asymptotic L;f;j,jigh f,equengw’*

observers to construct a high-frequency by pass loop has been [ Pypass loop ™

proposed [4]. This design exploits a localization of the high- b PR

requenc enomenon in the feedback loo introducing a

freq y ph the feedback loop by introd g [Observer)

discontinuous feedback control loop which is closed through _ .
an asymptotic observer of the plant [25]. Since the modep- 3- Block diagram of observer-based sliding mode control.
imperfections of the observer are supposedly smaller than

those in the plant, and the control is discontinuous only Witflesign. If a switching function is realized in the SMC design,
respect to the observer variables, chattering is localized insi#ig only remaining concern will be switching time delays, and
a high-frequency loop which bypasses the plant. Howeverihe observer is to be implemented in discrete time, the entire
this approach assumes that an asymptotic observer can inde@@back design including the compensation of switching time
be designed such that the observation error converges to Z&Mys may be best carried out in the discrete-time domain.
asymptotically. We shall discuss the various options availat;h?g_ 3 is a block diagram of this design. Note that the switching
in observer based sliding mode control in the following desigflement is inside a feedback loop which passes through only
example. the observer, bypassing both blocks of the plant dynamics.

Design Example of Observer-Based SMEor  the relay This is the so-called high-frequency bypass effects of the
control example, we examine the utility of the observer basgglserver-based SMC [4], [26].

SMC in localizing the high-frequency phenomenon. For the Whend() # 0, its effects on the convergence of asymptotic
nomir_lal plant, thg following asymptptic observer reSl_JIts froerservers are well known. I§(#) is an unknown constant
applying conventional state-space linear control design:  gjgtrhance, a multivariable servomechanism formulation can
(12) be adopted to estimate both the state and exogenous dis-

turbance in a composite asymptotic observer. The resulting
whereh > 0 is the observer feedback gain, anglis the output feedback system is a variable structure (VS) servomechanism
of the parasitic sensor dynamics. The SMC and the associgi@8], [27]. In generald(t) can be the output of a linear time-
sliding manifold defined on the observer state-space is  invariant system whose system matrix is known, but the initial

. conditions are unknown.
u = —sgn (). (13) " For bounded but unknown disturbances with bounded time

The behavior of the closed-loop system can be deduced fregrivatives, the only known approach to ensure the robustness

E=h(zs—3)+u

the following fourth-order system: of the asymptotic observer is to introduce a high-gain loop
around the observer itself to reject the unknown disturbance,

i=—sen(z—e)+d(t), e¢2z—3 (14) i.e., by increasing the gaih in the observer such that the
& =—he + hiz — z,) + d(t) (15) effects ofd(t) are adequately attenuated. However, the require-

ments for disturbance attenuation and closed-loop stability
must be balanced in the design, and if sliding mode is to be
preserved in the manifol@ = 0, ¢ must be sufficiently larger
First we consider the case whelt) = 0. Using an infinite than . A switching function implemen?ation of the SMC
gain linear functiong(z — ¢) to approximate the switching would seem to ensure the necessary time scale_separanons,
function sgn (z — ¢), and sincer, is finite, the above system however, the conditiory < 1/7, should also be imposed

is a singularly perturbed system witT! being the parasitic to avoid gdverse_ mtergctlons _W|th the paras_mc dynamlc_s.
parameter. The slow dynamics which are of third-order can B9t that if the high-gain loop in the asymptotic observer is

723, 4 2Tods + Ty = . (16)

extracted by formally setting=* = 0, andz = e, implemented with a switching function, it is referred to as a
sliding mode observer [28]-[30]. Since two sliding manifolds

¢ = —hxs (17) are employed in the feedback loops, the closed-loop system

128, + 27,0, 4+ 2, = c. (18) robustness must be carefully examined when less than infinite

switching frequencies are to be expected. In such robustness
analysis, the relative time scales of the various motions in the
It is possible to further apply a singular perturbation analysis gystem can be managed with singular perturbation methods,
insure that giverr,, there exists: > 0 such that the asymptotic similar to that applied to high-gain observers.
observer dynamics are of first order, and its eigenvalue isThe performance of the observer based SMC can be evalu-
approximately—h. Clearly, the adverse effects of the parasitiated by simulation. We let the sensor dynamic time constant
sensor dynamics are neutralized with an observer-based SBtCr, = 0.01, and assume the same unity reference command
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Observer based SMC: boundary layer 0.002, disturbance 0.5 Observer based SMC: boundary layer 0.002, disturbance 0.5
0.01 — Y ! T . : . 11 — . , . . . T
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Fig. 4. Observer-based SMC: error between reference command and Big- 5. Observer-based SMC: plant state (upper curve) and its estimate
server state. (lower curve).

and constant disturbance as in the boundary layer conteall. Also chattering becomes a nonissue since a conventional
example,d(t) = 0.5. A linear feedback gain approximationfeedback control instead of SMC is applied. The critical design
with a boundary layer of 0.002 is used in place of thizsues are transferred to the SM disturbance estimator and its
switching control in the observer based SMC. The closed-loagsociated sliding mode. While there are many engineering
eigenvalues are af—510 (due to boundary layer)-12.92 issues to be dealt with in this approach, simulation studies
(from observer),—59.44, —127.62 (shifted sensor poles) and experiment results [31] show that desired objectives are
Fig. 4 shows the error response between the reference @miked achievable.

the observed state. The steady state error0f001 reflects ~ An SM Disturbance EstimatorOnce again we return to the
the attenuation of the disturbance by the high-gain of 506imple relay example with parasitic sensor dynamics for our
Note that sliding mode in the observer state-space can deesign of a disturbance estimator. The plant model is
implemented with high-gain with no adverse interactions with b= utd(t) (19)

the parasitic dynamics. Fig. 5 shows the observer state’s o
tracking of the unity reference command despite the constant T8, + 27,05 + s = @ (20)
disturbance. The superb rejection of the disturbance by sliding

mode in the observer state-space is expected since a large
value can be chosen freely when the constraints imposed by
parasitic dynamics are no longer present. However, also sho(ﬁ OWS:

in this figure, the plant state response has a steady-state error F=u+ sen(z, — 1), e 2 zs — & (21)
of 0.05 which is due to the observation error caused by the o ) ]
relatively low feedback gain of the observer= 10. This error  SUPPose sliding mode occurs on = 0. Since u(t) is
can be reduced by increasing the value of gaiprovided that continuous and differentiable, from the error dynamics
the time scales and stability of the system are preserved. ¢ = —sgn(zs — &)+ d(t) + &5 — & (22)

ain . . . : -
%{ shall design a disturbance estimator with sliding mode as

D. Disturbance Compensation The “equivalent control” is the control which keeps the tra-

. - . . Jectories of the system oa = 0. It can be solved from
In SMC, the main purpose of sliding mode is to rejeéé -0 y ’
disturbances and to desensitize against unknown paramefric
perturbations. Building on the observer based SMC, a sliding [sgn (x, — &)]eq = d(t) + O(7s). (23)
mode disturbance es_tlmator which uses shdmg mode to .eﬂéte that from (20),|#. — | = O(.). Thus, within this
mate the unknown disturbances and parametric uncertamtle.? . . . -
has also been introduced [8]. In this approach, the contfdt mgtor, Fhere exists a signal which, ””def the sliding mode
: : ndition, is O(r;) close to the unknown disturbanc&t).

law consists of a conventional continuous feedback contr.?al?lis forms the basis of a feedback control desian which
component, and a component derived from the SM disturbanct ; N . g
dtilizes this signal to compensate the disturbancedtas ).

estimator for disturbance compensation. If the d|sturbam]‘.%e resulting control law has a conventional linear feedback

is sufficiently compensated, there is no Ineed to evoke a . .
. ) . - component, and a disturbance compensating component, and
discontinuous feedback control to achieve sliding mode, thys, ., .
. . : ; ot this system

the remaining control design follows the conventional wisdom;,

and issues regarding unmodeled dynamics are no longer criti- u= —ki —[sgn(xs — &)]eq- (24)
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SM disturbance estimator: filter time constant 0.02, disturbance 0.5 SM disturbance estimator: filter time constant 0.02, disturbance 0.5
T T T T T T T 0.8 T T T T T T T

i
estimated disturbance

K i L i i i i i
2 25 3 35 4 0 0.5 1 15 2 25 3 35 4
time,sec time,sec

i H ! 1

Fig. 6. SM disturbance estimator control: Error between reference commafid. 7. SM disturbance estimator control: Disturbance estimate.
and plant state.

) _ o used. The third example, which is closely related to the first
The extraction of the equivalent control from the sliding mod ne, is power converter and inverter feedback control design.

control signal is by low-pass filtering. While theoretically ther('}or these classes of applications, the chattering phenomenon
exists a low-pass filter such that the equivalent control can 8 needs to be addressed. However. the arguments against
found, in practice, the bandwidth of the desired closed-loqQRijq sliding mode in the feedback design are weakened. The
system, the spectrum of the disturbance, are all important ¢tk in this case is whether VSC should be utilized directly to
siderations in the selection of the cutoff frequency of this f'ltefmprove system performance while at the same time produces
For a closer examination of the behavior of this disturbant{,ﬁ:e required PWM control signal, or a standard PID type
estimator, we let the sensor time constant be once agafirgjier should first be designed, and then the actual PWM

7, = 0.01, and simulate the system’s responses with the sasntrol signal is to be generated by applying standard PWM

unity reference command, and constant disturbaite= 0.5 o hniques to approximate the continuous linear control signal.

as before. After canceling the disturbance, we design a clos%sc is to be used, by adopting an observer-based SMC, the
loop system with a time constant of one seconds whi ' ’

. ) " ‘H?gh-frequency components of the discontinuous control can
can be attained withk = 2. A boundary layer of %10™" o pynassed, and consequently, adverse interactions with the

replacgs the switching function in the estimator. The Closeﬂhmodeled dynamics which cause chattering can be avoided.
loop eigenvalues arg—2000. (from the boundary layer);1, |5 hjants where control actuators have limited bandwidth,

(the dominant closed-loop pole).96.75+7101.83 (the shifted ¢ o “hyqraulic actuators, there are two possibilities: First,
s_ensor_poleé) For low-pass filtering, a third-order bl_Jtterworththe actuator bandwidth is outside the required closed-loop
filtler with a 3 dB corner frequency of 50 rad/s is used 18,qyidth. Thus the actuator dynamics become unmodeled
filter the equivalent control. Fig. 6 shows the error betw‘?‘iﬂ/namics, and our discussions in the previous sections are
the reference command and the plant state which exhibis,jicapie. while it is possible to ignore the actuator dynamics
the desired one second time constant transient behavior, w, hlinear control design, doing so in VSC requires extreme
the exception of initial minor dlstortlon_s which are _due_ Rare. By ignoring actuator dynamics in a classical SMC design,
the convergence of the c_jlsturbance estimate shown in F'g'cﬂ_attering is likely to occur since the switching frequency is
Despite the constant disturbance, the steady-state errofd§aq py the actuator dynamics even in the absence of other
zero. While standard PI.D controllers can achieve the Sarﬂﬁrasitic dynamics. Strictly speaking, sliding mode cannot
zero steady state error in the presence of unknown constgpl,,. since the control input to the plant is continuous.
disturbance, the tracking error is regulated to zero even WherSecond, the desired closed-loop bandwidth is beyond the
d(t) is time varying [8]. actuator bandwidth. In this case, regardless of whether SMC or
other control designs are to be used, the actuator dynamics are
lumped together with the plant, and the control design model
Despite its desirable properties, VSC is mostly restrictashcompasses the actuator-plant in series. With the actuator
to control engineering problems where the control input a@lynamics no longer negligible, often the matching conditions
the plant is, by the nature of the control actuator, necessarfity disturbance rejection and insensitivity to parameter varia-
discontinuous. Such problems include control of electric drivéi®ns in sliding mode [32] which are satisfied in the nominal
where pulse-width-modulation is not the exception, but the rufdant model are violated. This results from having dominant
of the game. Space vehicle attitude control is another exampgimnamics inserted between the physical input to the plant,
where reaction jets operated in an on-off mode are commorslych as force, and the controller output, usually an electrical

E. Actuator Bandwidth Constraints
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Zg?r?:‘rlmgshzsdzsgrlfﬁre?'}g? t\i{]vglﬁsgcv?/;psor‘:}tsso;heed alr(itlfzaé?r Limited bfalndwidth actuator with SM disturbance estimator:
. ilter time constant 0.02, disturbance 0.5
This design utilizes an expansion of the original state-space i " '
by including state derivatives, and formulates an SMC design
such that the matching condition is indeed satisfied in the osr— - ' j e : ‘ b
extended space. Another alternative approach is to utilize 5 : ' : :
sliding mode to estimate the disturbance for compensation
as discussed earlier. Since sliding mode is not mtroduced
primarily to reject disturbances, the matching conditions are of 5
no significance in this design. Provided that a suitable sl|d|n§ 04 F S i R
mode exists such that the disturbance can be estimated from ‘ ‘ ' :
the corresponding equivalent control, this approach resolves,
the limitations imposed by actuator bandwidth constraints on
the design of sliding mode based controllers. ; ; 5 v v
An SMC Design with PrefilterWe shall use the example o 5> B T e
with a nominal integrator plant and actuator dynamics '

T =xq +d(t) (25) 0z, o5 i 15 2 25 3 a5 4

time,sec
APy + 200k, + Ta = U (26)

Fig. 8. Limited bandwidth actuator with SM disturbance estimator: Error
between reference command and plant state.
to illustrate this design. The actuator bandwidth limitation
is expressed in the time constamt Given a discontinuous 2) A Disturbance Estimation Solutiorf-or the nominal in-
input «(t), the rate of change of the actuator outpy{t) is tegrator plant with limited bandwidth actuator dynamics given
limited by the finite magnitude af. However, in order for the by (25), (26), we introduce the same set of sensor dynamics
disturbancei(t) to be rejectedy, () must be an SMC. Also as in (20) and use a disturbance estimator similar to (21), only
if x, can be designed as a control input, then the matchimgth =, replacing
condition is clearly satisfied. But sineeis the actual input,
the matching condition does not hold for finite The design
begins with an assumption thdtt) has continuous first and With sliding mode occurs om— & = 0, the disturbancé(t) is
second derivatives, and with the introduction of new statstimated with the equivalent control given by (23)Q6r;).
variables With the disturbance compensated, the remaining task is to
design a linear feedback control to achieve the desired transient
27) performance. The resulting feedback control law is given by

& =1xq +sgn(z, — 2). (32)

T =2, To=x, T3=2I

u=—ki1& — koo — [sg0 (x5 — £)]eq- (33)
the controku is designed as an VSC with respect to the slidingjith -, = 0.01, anda = 0.2, the feedback gaink;, = 31.25,
manifold andk, = 6.25 place the poles of third-order system dynamics,

28) which consists of the actuator dynamics and the integrator

s(z1,22,73) = 1z1 + 272 + plant, at{—2.5 —2.5,—5}. Again, we use the same third-order

With the equivalent controk., computed from butterworth low-pass filter with a 50 rad/s bandwidth as before
to filter the equivalent control signal. Fig. 8 shows the effects
0=—cieomy + (c1 — A)aa + <d'_ 2% — “7_(; + “P;) of the constant disturbanc&t) = 0.5 are neutralized since
o o the error between the reference command and the plant state

(29) s reduced to zero in steady state. The disturbance estimate is

shown in Fig. 9 to reach its expected value in steady state.
the resulting sliding mode dynamics are found to be composed g P y

of two subsystems in series F. Frequency Shaping

Itczr+car=0 (30) An approach which has been advocated for attenuating
iq = (2 — 1)+ creax — d. (31) the effects of unmodeled parasitic dynamics in sliding mode
involves the introduction of frequency shaping in the design
of the sliding manifold [5]. Instead of treating the sliding
This design shows that although the embedded prefilter in timanifold as the intersection of hyperplanes defined in the state-
plant model destroys the matching condition, an SMC can s#lpace of the plant, sliding manifolds which are defined as linear
be designed to reject the unknown disturbance. However, itdperators are introduced to suppress frequency components of
necessary to restrict the class of disturbances to those whilé sliding mode response in a designated frequency band. For
have bounded derivatives. Furthermore, derivatives of themodeled high-frequency dynamics, this approach implants
statez, # are required in the feedback control implementatiom. low-pass filter either as a prefilter, similar to introducing
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Limited bandwidth actuator with SM disturbance estimator: of this approaCh can be traced to the work pUinShed in the
06 , fiiter time constant 0.02, disturbance 0.5 , 1970’s by Leitmann and Gutman [34], [35]. Although sliding
mode is not explicitly evoked in the Lyapunov control syn-
thesis, nevertheless, the resulting closed-loop system behavior
unavoidably includes sliding mode as the system’s trajectory
approaches the desired equilibrium point.
0al ‘ : j 1 Given an affine dynamic system

&= f(z,t) + B(z,t)u + h(z,t), u e R™ (37)

0.5r

03r . .
wherez € R™ is the state vector, anB(x,t) € R**™ is the

input matrix, and there exists a vectdfz, ¢) € R™ such that

Mz, t) = Bz, t)A(z,t). (38)

disturbance estimate

01k L : : S S A We note that (38) satisfies the Drazenovic matching condition
introduced for variable structure systems [32]. The robust
feedback control law which stabilizes the above system is

0 i i i i

0 05 1 15 e 25 3 35 4 given by
T
Fig. 9. Limited bandwidth actuator with SM disturbance estimator: Distur- u = —p(a: t)ﬂ
bance estimate. BTV
A OV " "
artificial actuator dynamics, or as a postfilter, functioning Vv = or € R, veR (39)

like sensor dynamics. The premise of this frequency shap\cﬁl erep
sliding mode design, which was motivated by flexible robotic
manipulator control applications [33], is that the effects of plx,t) > || Az, t)]] (40)
parasitic dynamics remain to be critical on the sliding man- : , ) )
ifold. However, robustness to chattering was only implicitl)‘?ndv(x) >0 ISa Lyapunov funct_lon of the nominal plant, i.e.,
addressed in this design. By combining frequency shapifif"d the trajectories of (37) with = 0 and (,-) = 0,V
sliding mode and the SMC designs introduced earlier, e Negative definite. For unity feedba_ck gai;, -) :.1’ the
effects of parasitic dynamics on switching induced oscillation orm of thg a_bove feedback control IS equal to unity for any
as well as their interactions with sliding mode dynamics ¢ ,t), thus it is also referred to as unit control.

(+,-) is a scalar feedback gain satisfying the condition

be dealt with. Unambiguouslyu(-, -) is discontinuous on the manifold
A Frequency-Shaped SMC Desigkor the nominal inte- s(z) = BYVV =o. (41)
grator plant with parasitic sensor dynamics, we introduce a
frequency shaping postfilter Moreover, the condition (40) guarantees that sliding mode
) ] ) exists ons(z) = 0 inside a domain|z(t)|| < Q(«,t). For
Ty + 2wpTp + WpTy = Ts (34) sufficiently largep(-, ), sliding mode exists for any. Since
Yp = P1Tp + P2Tp. (35) the closed-loop system is asymptotically stable, sliding mode

on s(z) = 0 is also asymptotically stable, i.ex(¢) — 0 on
o . _ _ . _ the manifolds(z) = 0 ast — oo. Moreover, the dynamics of
The sliding manifold is defined as a linear operator, which ca3fe system in sliding mode are invariant with respect to the

be expressed as a linear transfer function unknown disturbancé(z, t).
P15+ po Since sliding mode is the principal mechanism with which
=1+ ———"— Jz,(s)=0. (36) inti i i i
o(s) 2+ owstw2 ) uncertainties and disturbances are rejected in robust control
P P

of uncertain systems, the robustness of these feedback con-
Given an estimate of the lower bound of the bandwidth @follers with respect to unmodeled dynamics are identical to
parasitic dynamics, the postfilter parametgrcan be chosen continuous-time SMC, and the respective engineering design
to impose a frequency dependent weighting function in igsues can be addressed as outlined in this section.

linear quadratic optimal design whose solution provides anA Robust Control Stabilization Exampl&he dynamics of
optimal sliding manifold. The optimal feedback gains arg rolling platform with a rotating eccentric mass [36] are
implemented a1, p2 in (36), and they ensure that the slidingyoverned by

mode dynamic response has adequate roll off in the specified

frequency band. T =22 (42)
_bcosay(d(t) — sinzyx3) — bry — kxy +u 43)

To =
G. Robust Control Design Based on the Lyapunov Method ? (1 — 6% cos?x)

Another nonlinear control design approach for plants whosénere 6 < 1 is a measure of the eccentricity of the rotating
dynamic models are uncertain is a robust control design whittertia, d(¢) is the translational displacement of the platform,
utilizes a Lyapunov function of the nominal plant. The origirx;, x5 are the angular displacement and velocity of the rotating
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mass, andu is the control torque. The uncertainty in the .o Y . . , ’
dynamics is due to the platfrom’s translational motion. The '
unperturbed system, witd = 0 andx = 0 in (43), is a
conservative mechanical system. However, its total energy

E(zy,22) = + kai + 5 (1 — 6% cos® z1) 3. (44)

8 e i i s

6 - i ; e - —

cannot be used a Lyapunov function for the robust contrg - » _ , ;
design because its time derivative is seminegative definite, aRd- OSSR RSSO v S
not negative definite. The origin of this system is nevertheless : : :
asymptotically stable. For this system, the robust contrdl o
assumes ae factodiscontinuous control characteristic since
the discontinuous manifold is one-dimensional

: switéhing surfaéé§
AN

-){{boundary \---

s = M(l — 62 C082 .’L’l)_l =0 (45) R T r G NG SN oo NV ‘a -
(9372 : : :
2 1 4 1 1 1 1
where V(z1,z;) is a Lyapunov function which must be ° * 1 “Angular positon ° e

computed in the design process. This is a major design issue
since finding a suitable Lyapunov function even for this simplgg. 10. Phase trajectory of the eccentric rotating mass platform under
nonlinear system is a nontrival task. Givén- /o >0, there Sinusoidal excitation and robust unit control.

existst* > 0 and« > 0 such that, along the trajectories of themanifold 4 21 — 0 if the control law is implemented with
unperturbed system, the time derivative of L2y = P

a switching function.
V(xl,xQ) = % k*x% + Oé(]. — (52 COS2 .1‘1).1’1.1‘2
+ 1 (1—6%cos’ z1)x3 (46)
Ill. DISCRETETIME SLIDING MODE

r(k*, e, k,b)}. Using this as a Lyapunov function, the resulting While it is an accepted practice for (_:ontrol engineers _to
robust control is in the form of a sliding mode control whicfsonsider the design of feedback systems in the continuous-time

is typically applied to second-order mechanical systems domain—a practice which is based on the notion that, with suf-
ficiently fast sampling rate, the discrete-time implementation

u = —po(1,2,t)sgn (z2 + axy) (47) of the feedback loops is merely a matter of convenience due
pol1, T2, 1) > |6 cos z1 d(t)). (48) to the increasingly affordable microprocessor hardware. The
essential conceptual framework of the feedback design remains
to be in the continuous-time domain. For VSS and SMC, the
With this example, we have shown that a more effectiveotion of sliding mode subsumes a continuous-time plant,
control design procedure for uncertain dynamic systems isand a continuous-time feedback control, albeit its discon-
bypass the detour into the Lyapunov function constructiotinuous, or switching characteristics. However, SM, with its
and to proceed with a sliding mode control design. Fig. ldbnceptually continuous-time characteristics, is more difficult
shows the phase trajectory of the closed-loop system to whichquantify when a discrete-time implementation is adopted.
feedback control in the form of (47) has been applied. TAR&hen control engineers approach sampled data control, the
system is subjected to a 10 Hz sinusoidal excitation of tlehoice of sampling rate is an immediate, and extremely
platform, d(t) = sin(2710t), and the control magnitude iscritical design decision. Unfortunately, in continuous-time SM,
po = 1.16. The stiffness and damping ave = 50,6 = 5, desired closed-loop bandwidth does not provide any useful
and the eccentricity paramet@e= 0.2. We solve for the cross guidelines for the selection of sampling rate. In the previous
product coefficienty in (46) to satisfy the negative definitenessection, we indicate that asymptotic observers or sliding mode
condition. One possible solution is = 1. While it is a observers can be constructed to eliminate chattering. Observers
fairly straightforward matter in sliding mode control desigmre most likely constructed in discrete time for any real life
to change the slope of the switching line, it may require thentrol implementations. However, in order for these observer-
construction of another Lyapunov function. Such is the cabased design to work, the sampling rate has to be relatively
here if it is desirable to speed up the transient process hiigh since the notion of continuous-time sliding mode is still
sliding mode by changing to 10. For the switching function applied.
implementation, we utilize a boundary layer control with a For SM, the continuous-time definition and its associated
boundary layer thickness of = 0.001. Due to the finite design approaches for sampled data control implementation
gain approximation, the effects of the persistingly excitatingave been redefined to cope with the finite-time update limita-
platform motion on the system’s trajectory are only attenuatéidns of sampled data controllers. DSM was introduced [37] for
to O(e). The residual oscillations in the phase trajectory nediscrete-time plants. The most striking contrast between SM
the origin are due to the exogenous disturbance. Neverthelesgl] DSM is that DSM may occur in discrete-time systems
this trajectory clearly remains inside the boundary layer whickith continuous right-hand sides, thus discontinuous control
indicates that sliding mode would exist on the switchingnd SM, are finally separable. In discrete time, the notion of

is negative definite in a domaifi(x,z2): (x? + 22)Y/? <
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VSS is no longer a necessity in dealing with motion on &, which to O(7?), is given by
sliding manifold.
Tpy1 = Fxp + Gui, + Ddy,,  z0 = z(2,) (52)

2(kT) =zp, wlkT) =1y, dkT)=d (53)
IV. SAMPLED DATA SLIDING MODE CONTROL DESIGN
We shall limit our discussions to plant dynamics whic¥/hereF’, G, andD result from integrating the solution of (49)
can be adequately modeled by finite dimensional ordina@yer the time intervat € KT, (k + 1)T] with
differential equations, and assume thataap.riori bandwidth ult) = u(kT), d(t) = d(kT) (54)
of the closed-loop system has been defined. The feedback _ Z _~ i
controller is assumed to be implemented in discrete-time form. F=exp(Al), G=IB (55)
The desired closed-loop behavior includes insensitivity to
significant parameter uncertainties and rejection of exogenous
disturbances. Without such a demand on the closed-loop G=G+TAB, D=TE. (57)
performance, it is not worthwhile to evoke DSM in the
design. Using conventional design rule of thumb for sampldis discrete-time model is a@(7?) approximation of the
data control systems, it is reasonable to assume that for ¢h@ct model which is described by the samandG matrices,
discretization of the continuous-time plant, we include onlput because the exogenous disturbance is a continuous-time
the dominant modes of the plant whose corresponding corifienction, the sample and hold process yields anatrix which
frequencies are well within the sampling frequency. This ienders the matching condition for the continuous-time plant
always achievable in practice by antialiasing filters whictp be only a necessary, but not sufficient condition for the
attenuate the plant outputs at frequencies beyond the samphgct discrete-time model [40]. However, by adopting the
frequency before they are sampled. Actuator dynamics are aboveO(1?) approximated model, it follows from (57) that,
sumed to be of higher frequencies than the sampling frequenifjthe continuous-time matching condition (51) is satisfied, the
Otherwise, actuator dynamics will have to be handled as p&rtlowing matching condition for this model holds:
of the dominant plant dynamics. Thus, all the undesirable
parasitic dynamics manifest only in the between sampling rank [ BT AATABITE] = rank (I'B). (58)
plant behavior, which is essentially the open-loop behavior ) ) ) )
of the plant since sampled data feedback control is applidd®M an engineering design perspective, ) models
Clearly, this removes any remote possibilities of chattering dgé€ adequate since the between sampling behavior of the
to the interactions of sliding mode control with the parasiti€ontinuous-time plant is als@(Z?) close to the values at
dynamics. the sampling instants. Let the sliding manifold be defined by
We begin to summarize sampled data sliding mode control
designs with the well understood sample and hold process.
This may seem to be elementary at first glance, it is howevRko different definitions of discrete-time sliding mode have
worthwhile since the matching conditions for the continuougeen proposed for discrete-time systems. While these defini-
time plant are only satisfied in an approximation sense fidns share the common base of using the concept of equivalent
the discretized models. We shall restrict our discussions dentrol, the one proposed in [37] uses a definition of discrete-
linear time-invariant plants with uncertainties and exogenotigne equivalent controk;? = w(kZ") which is the solution
disturbances of

T
F=F+TAA, TI= / exp (Ar)dr (56)
0

sy = Cxyp, =0, k=0,1,---, s(kT) = s (59)

t=Az+Bu+Ed, zeR", weR™ deR" si+1 =0, k=0,1,---. (60)
(49 On the other handy;* is defined in [38] as the solution of

where A, B, E are constant matrices, ané(¢) is the ex- A} = spq1— sk =0, k=0,1,---. (61)
ogenous disturbance. For the plant (49), we assume that the

system matrices are decomposed into nominal and uncert¥fpf€ that (60) implies (61), however, the converse is not true.
components Herein, the first definition given by (60) shall be used.

A=A+AA, B=B+AB (50) A. DSM Control Design for Nominal Plants

Given the nominal plant with no external disturbance, the

where A, B denote the nominal components. Let the aghg design becomes intuitively clear. In DSM, by definition
missible parametric uncertainties satisfy the following model

matching condition [32]: sip1 = Cxpgr = O(Frp + Guy) = 0 (62)

and provided tha€'G is invertible, the DSM control which is
(1) also the equivalent control, is given by the linear continuous

. . , . ) feedback control
The discrete-time model is obtained by applying a sample and

hold process to the continuous-time plant with sampling period Ukg, = —[CGI*CF . (63)

rank ([EAAABE]) = rank B.
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The _Only other_ Complica_tion is that Sm¢@|| = O(T)' the Discrete time SMC: sampling period 0.1, disturbance 0.5
required magnitude of this control may be large. If the bounds ; ; ; ™ ' g ;
7 onwy, are taken into account, the following feedback control 08 : :
has been shown [19] to force the system into DSM:

0.6F- L : : ,,,,,,,,,,, L Ld

Ukeg) if ug,, || <@ : : . : : ;
Uk S S [y || > T (64)  oap i) T RS
[tk || : ' :

02 .

ntrol

DSM Control of the Integrator PlantFor the nominal in- ; : _ _ : ,
tegrator plant with parasitic sensor dynamics (20), we desigh of o S e S S
an DSM controller based on (64). Let the sensor time constant : ' : : :
7, = 0.02, and the control magnitude = 1. The desired oz
closed-loop bandwidth is given to be one Hz. A good choice 4| -
of the sampling frequency would be 10 KZ = 0.1). Since
the sensor dynamics are of 50 Hz, and therefore they can bésf
neglected initially in the design. The DSM control takes the _ ; :
form of 08, 05 1 15 2 25 3 35 4

time,sec
5
. _ﬂ’ if |$i| <T 6 Fig. 11. DSM control for nominal plant: error between reference command
U = A . S (65) and sensor output.
—sgn(zz), i |zg| 2T

Wherea:i = xS(kT) is the Sampled value of the sensor output Discrete time SMC: sampling period 0.1, disturbance 0.5
z,(t). Note that due to the control bounds, a linear feedback °2 ‘ ! ! j T ! !

control law is applied inside a boundary layer of thicknggs ; '
about the sliding manifold:{ = 0. Without sensor dynamics,
the behavior inside the boundary layer is that of a deadbeat .|
controller. The sensor dynamics impose a third-order discretg-

time system inside this boundary layer, and its eigenvalues a"_ie,_os,
inside the unit circle af—0.002 0.1+ ;0.436}. For reference, 2
the discrete model of the open-loop nominal plant and thé}’z oF -
sensor dynamics has a pair of double real pole almost &t

the origin {4.54 x 107°)}, which result from sampling at £-005
a frequency much lower than the sensor's corner frequency,

and a pole at unity which is due to the integrator plant. The ©'f
third-order system response can be seen in Fig. 11 where the
sample values of the error between the constant unity referenc8'*|
command and the sensor output is plotted. Note that only the_02

0.15

T

i i S

behavior inside the boundary layer is shown, and it agrees well ~© 05 1 5 2 25 8 85 4

time,sec
with the predicted third-order behavior. The steady state error _ _ _ . _
magnitude of 0.05 is due to the constant disturbam:)e: 0.5 Z:?érlrzéspgr?sMesc.oerI for nominal plant: Continuous-time and discrete-time
as applied to this plant as before, and the effective loop gain
beingZ—! = 10. Fig. 12 displays the continuous-time error of
the plant state and the discrete-time error of the sensor outplie feedback controller is of a similar form as (64)

where the time lag due to the sensor dynamics can be seen

* H * a7
during the transient period. heq? if [, || <@
Uk = — ukcq : * — (68)
—U— ,if ||ukcq|| > u.
B. DSM Control with Delayed Disturbance Compensation I kcq”

The earlier DSM control design for nominal plants cafhe effectiveness of this controller is demonstrated by ex-

be modified to compensate for unknown disturbances in taﬁhining the behavior of; when the control signal is not
system [39], [40]. From the discrete model in (52), the ongyrated

step delayed unknown disturbance
A _ _ Sk41 = OD(dk - dk—l)- (69)
o1 = Ddp_1 =3 — Fop_1 — Gup— (66) i
If the disturbance has bounded first derivatives, ié., <

can be computed, given the measurements:x—1, andur—1, < o0, dy, — dy_; is of O(T"), and from the definition given

and the nominal system matricés G. Let in (57), ||D|| = O(T), hencels| = O(T?), implying that the

. A . . motion of the system remains within &(7"?) neighborhood
Ukyy = OGOl 2y + di_y]. 67)  of the sliding manifold. This controller has also been shown
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Discrete time SMC with disturbance estimation: Discrete time SMC with disturbance estimation:
sampling period 0.1, disturbance 0.5 sampling period 0.1, disturbance 0.5
0.1 — T — — T T T 0.8 T T T T T T T
0.081 e R L e
: : : R : : 0.7
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Fig. 13. DSM control with disturbance compensation: Error between refdfig. 14. DSM control with disturbance compensation: One step delayed

ence command and sensor output. disturbance estimate.
[19] to force the system into DSM if the control signal is _ Discrete time SMC with disturbance estimation:
initiaIIy saturated. 02 D: ‘ samplvmg perlodl 0.1,d|stHrbance 0‘.5
On the sliding manifold, the system dynamics areptd™),
invariant with respect to the unknown disturbance. Since ¢157-
similar matching conditions exist for th@(7?) discrete-time
models we have adopted, it follows from continuous-time, or
sliding mode [28] that by using a change of state vanableg
0.05+
the discrete model can be transformed into 2
37,1“_'_1 :Fllx,le + Flga:i (70) .g or
zh41 =Foizy, + Forxy, + Gowr + Dady, (T1) 808t
with the sliding manifold given by 5 o ]
sk = Oy, + Coxs =0 (72)
015+ : ; E
andC»@ is nonsingular. By eliminating?, the reduced order ‘ ‘
sliding mode dynamics ar@(7-) approximated by 02 o : R o . a5 .
ime, sec

g1 = (F11 = FroGy 1Oy, (73) o . . .
Fig. 15. DSM control with disturbance compensation: Continuous-time and
Discrete-Time Disturbance Compensation for the Integrat@fscrete-time error responses.
Plant: We continue with the DSM control design using the
same sampling frequency and system parameter values. TheDSM Control with Parameter Uncertainties
controller which takes into account the one step delayegd Disturbances

disturbance estimates is given by With the presence of system parameter uncertainties, the

_Th Ty — Th_y n if 23] <T above approach which uses one step delayed disturbance
up, = T T U1, Mg < (74) estimates can still be applied. However the one step delayed
—sgn (z,), if |z = T signal contains both delayed state and control values

Note the PID controller structure of this controller when the A
o X 1= AFz;_ 1+ AGuy_1 + Ddj_

system is inside the boundary layer. Fig. 13 shows the sampled S Tt + k-1 + P

error between the reference command and the sensor output. =y — Fap—1 — Gui— (75)

The practically zero steady-state error is much better th@jhere AF = TAA, AG = TAB. The DSM control is of the

our O(T?) estimate due to the PID controller structure. Thggme form as (68), witH; _, replaced byf;_;. The behavior
one step delayed disturbance estimate is given in Fig. M. 5, is prescribed by

showing convergence to the expected value. Fig. 15 displays
the continuous-time error between the plant state and thest+1 =C(fk — fu—1) = CD(dp — dp—1)
reference, and its discrete-time measurements. + CAF(zy — xp—1) + CAG(up — ur—1).  (76)
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Root locus for gain uncertainty between -1 and 0.34 Discrete time SMC with disturbance estimation:
1 T 7 T T T samplig period 0.1, gain uncertainty -0.5, disturbance 0.5
i [ J T ! J T !

e et

Imaginary part
o

=5

o8 ' f o [

-1 -05 0 0.5 1 02 I ) I 1 I 1 i
Real part o 5 10 15 20 25 30 35 40
times step

Fig. 16. DSM control with control parameter variations: Root locus for ) o
evaluating sliding manifold convergence. Fig. 17. DSM control with control parameter variations: Error between

reference command and sensor output.

Since |z| is bounded,z) — zx—1 is of O(T), and since
Discrete time SMC with disturbance estimation:

||AF|| = O(T), we have 12 sampling period 0.1, gain uncertainty -0.5, disturbance 0.5

sp1 = CAG(uy, — up_1) + O(T?). (77)

Due to the coupling betweesy, and uy, it has been shown
[40], [41] that the behavior outside the sliding manifold is
governed by the following second-order difference equation:

0.8}

06

Sip1 = —CAG(CG)™ 25y — sp_1] + O(T?)  (78)

which has poles inside the unit circle for sufficiently small
[|[ABJ|. The permissible control matrix uncertainties are dic-
tated by the above stability condition which determines the o2
convergence on the sliding manifold. Note that provided the

parameter and disturbance estimate

parameter uncertainties are in the system matrix, they do not o - m - -~ = = = ™
impact the convergence, nor they affect the motion on the times step
manifold. Fig. 18. DSM control with disturbance compensation: One step delayed

Compensation for Gain Uncertainties in Integrator Plant:  parameter and disturbance estimate.
We shall introduce gain uncertainties in the integrator plant
to examine their effects on the convergence of the slidinge previous studies. Fig. 17 shows the convergence of the

manifold. The actual plant is given by sampled error between the reference command and the sensor
output to zero. Fig. 18 displays the estimates of the exogenous
i =(1+7)u+ d(t) (79) disturbance and the residue control signal due to the gain

uncertainty. The continuous-time error of the plant state and

where ~ reoresents the gain uncertainty in the inte ratothe discrete-time error of the sensor output are shown in
7 rep g ty 9 qu 19 for comparison.

The DSM controller in (74) can be used again because t
right-hand side of the one step delayed signal is the same
regardless of the parametric uncertainties. The root locus of
the second-order system governing the motion outside théNe have systematically examined SMC designs which are
manifold is plotted in Fig. 16 for—-1 < ~ < 0.34. For firmly anchored in sliding mode for the continuous-time do-

v = -1, there is a pair of double poles at unity, andnain. Most of these designs are focused on guaranteeing
for v = 1/3, one of the poles becomesl. The case for the robustness of sliding mode in the presence of practical
~ = —0.5, corresponding to a pole of complex pai¥§+0.5, engineering constraints and realities, such as finite switching
is simulated with the same reference and disturbance asfrimquency, limited bandwidth actuators, and parasitic dynam-

V. CONCLUSIONS
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Discrete time SMC with disturbance estimation:

sampling period 0.1, gain uncertainty -0.5, disturbance 0.5
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Fig. 19. DSM control with control parameter variations: Continuous-tim

fis)

[16]
ics. Introducing DSM, and restructuring the SMC design in[ﬁ7
sampled data system framework are appropriate, and posi vd
steps in sliding mode control research. It directly addresses
the pivotal microprocessor implementation issues; it moves tHé!
research in a direction which is more sensitive to the concerpsg)
of practicing control engineers who are faced with the dilemma
of whether to ignore this whole branch of advanced contr
methods for fear of the reported implementation difficulties,
or to embrace it with caution in order to achieve systergll
performance otherwise unattainable. However, as compared
with the ideal continuous-time sliding mode, we should als@2]
be realistic about the limitations of DSM control designs in
rejecting disturbances, and in its ability to withstand parangs)
eter variations. The real test for the sliding mode research
community in the near future will be the willingness of controf?*
engineers to experiment with these SMC design approaches in
their professional practice. [25]

and discrete-time error responses.

[26]
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