
5

Linear Arithmetic

5.1 Introduction

This chapter introduces decision procedures for conjunctions of linear con-
straints. An extension of these decision procedures for solving a general lin-
ear arithmetic formula, i.e., with an arbitrary Boolean structure, is given in
Chap. 11.

Definition 5.1 (linear arithmetic). The syntax of a formula in linear
arithmetic is defined by the following rules:

formula : formula ∧ formula | (formula) | atom
atom : sum op sum

op : = | ≤ | <

sum : term | sum + term
term : identifier | constant | constant identifier

The binary minus operator a−b can be read as “syntactic sugar” for a+ −1b.
The operators ≥ and > can be replaced by ≤ and < if the coefficients are
negated. We consider the rational numbers and the integers as domains. For
the former domain the problem is polynomial, and for the latter the problem
is NP-complete.

As an example, the following is a formula in linear arithmetic:

3x1 + 2x2 ≤ 5x3 ∧ 2x1 − 2x2 = 0 . (5.1)

Note that equality logic, as discussed in Chap. 4, is a fragment of linear
arithmetic.

Many problems arising in the code optimization performed by compilers
are expressible with linear arithmetic over the integers. As an example, con-
sider the following C code fragment:

112 5 Linear Arithmetic

for(i=1; i<=10; i++)
a[j+i]=a[j];

This fragment is intended to replicate the value of a[j] into the locations
a[j+1] to a[j+10]. In a DLX-like assembly language,1 a compiler might
generate the code for the body of the loop as follows. Suppose variable i is
stored in register R1, and variable j is stored in register R2:

R4 ←− mem[a+R2] /* set R4 to a[j] */
R5 ←− R2+R1 /* set R5 to j+i */
mem[a+R5] ←− R4 /* set a[j+i] to a[j] */
R1 ←− R1+1 /* i++ */

Code that requires memory access is typically very slow compared with code
that operates only on the internal registers of the CPU. Thus, it is highly
desirable to avoid load and store instructions. A potential optimization for the
code above is to move the load instruction for a[j], i.e., the first statement
above, out of the loop body. After this transformation, the load instruction is
executed only once at the beginning of the loop, instead of 10 times. However,
the correctness of this transformation relies on the fact that the value of
a[j] does not change within the loop body. We can check this condition by
comparing the index of a[j+i] with the index of a[j] together with the
constraint that i is between 1 and 10:

i ≥ 1 ∧ i ≤ 10 ∧ j + i = j . (5.2)

This formula has no satisfying assignment, and thus, the memory accesses
cannot overlap. The compiler can safely perform the read access to a[j] only
once.

5.1.1 Solvers for Linear Arithmetic

The simplex method is one of the oldest algorithms for numerical optimiza-
tion. It is used to find an optimal value for an objective function given a
conjunction of linear constraints over real variables. The objective function
and the constraints together are called a linear program (LP). However,
since we are interested in the decision problem rather than the optimization
problem, we cover in this chapter a variant of the simplex method called gen-
eral simplex that takes as input a conjunction of linear constraints over the
reals without an objective function, and decides whether this set is satisfiable.

Integer linear programming, or ILP, is the same problem for con-
straints over integers. Section 5.3 covers Branch and Bound, an algorithm
for deciding such problems.

1 The DLX architecture is a RISC-like computer architecture, which is similar to
the MIPS architecture [149].

5.2 The Simplex Algorithm 113

These two algorithms can solve conjunctions of a large number of con-
straints efficiently. We shall also describe two other methods that are consid-
ered less efficient, but can still be competitive for solving small problems. We
describe them because they are still used in practice, they are relatively easy
to implement in their basic form, and they will be mentioned again later in
Chap. 11, owing to the fact that they are based on variable elimination. The
first of these methods is called Fourier–Motzkin variable elimination, and
decides the satisfiability of a conjunction of linear constraints over the reals.
The second method is called Omega test, and decides the satisfiability of a
conjunction of linear constraints over the integers.

5.2 The Simplex Algorithm

5.2.1 Decision Problems and Linear Programs

The simplex algorithm, originally developed by Danzig in 1947, decides satis-
fiability of a conjunction of weak linear inequalities. The set of constraints is
normally accompanied by a linear objective function in terms of the variables
of the formula. If the set of constraints is satisfiable, the simplex algorithm
provides a satisfying assignment that maximizes the value of the objective
function. Simplex is worst-case exponential. Although there are polynomial-
time algorithms for solving this problem (the first known polynomial-time al-
gorithm, introduced by Khachiyan in 1979, is called the ellipsoid method),
simplex is still considered a very efficient method in practice and the most
widely used, apparently because the need for an exponential number of steps
is rare in real problems.

As we are concerned with the decision problem rather than the optimiza-
tion problem, we are going to cover a variant of the simplex algorithm called
general simplex that does not require an objective function. The general
simplex algorithm accepts two types of constraints as input:

1. Equalities of the form

a1x1 + . . . + anxn = 0 . (5.3)

2. Lower and upper bounds on the variables:2

li ≤ xi ≤ ui , (5.4)

where li and ui are constants representing the lower and upper bounds
!" #$li!" #$ui

on xi, respectively. The bounds are optional as the algorithm supports
unbounded variables.

2 This is in contrast to the classical simplex algorithm, in which all variables are
constrained to be nonnegative.

114 5 Linear Arithmetic

This representation of the input formula is called the general form. This
statement of the problem does not restrict the modeling power of weak linear
constraints, as we can transform an arbitrary weak linear constraint L !" R
with !"∈ {=,≤,≥} into the form above as follows. Let m be the number of

!" #$m
constraints. For the i-th constraint, 1 ≤ i ≤ m:

1. Move all addends in R to the left-hand side to obtain L′ !" b, where b is
a constant.

2. Introduce a new variable si. Add the constraints

L′ − si = 0 and si !" b . (5.5)

If !" is the equality operator, rewrite si = b to si ≥ b and si ≤ b.

The original and the transformed conjunctions of constraints are obviously
equisatisfiable.

Example 5.2. Consider the following conjunction of constraints:

x +y ≥ 2 ∧
2x −y ≥ 0 ∧
−x +2y ≥ 1 .

(5.6)

The problem is rewritten into the general form as follows:

x +y −s1 = 0 ∧
2x −y −s2 = 0 ∧
−x +2y −s3 = 0 ∧

s1 ≥ 2 ∧
s2 ≥ 0 ∧
s3 ≥ 1 .

(5.7)

The new variables s1, . . . , sm are called the additional variables. The vari-
ables x1, . . . , xn in the original constraints are called problem variables.
Thus, we have n problem variables and m additional variables. As an opti-

!" #$n
mization of the procedure above, an additional variable is only introduced
if L′ is not already a problem variable or has been assigned an additional
variable previously.

5.2.2 Basics of the Simplex Algorithm

It is common and convenient to view linear constraint satisfaction problems
as geometrical problems. In geometrical terms, each variable corresponds to
a dimension, and each constraint defines a convex subspace: in particular,
inequalities define half-spaces and equalities define hyperplanes.3 The (closed)
3 A hyperplane in a d-dimensional space is a subspace with d − 1 dimensions. For

example, in two dimensions, a hyperplane is a straight line, and in one dimension
it is a point.

5.2 The Simplex Algorithm 115

subspace of satisfying assignments is defined by an intersection of half spaces
and hyperplanes, and forms a convex polytope. This is implied by the fact
that an intersection between convex subspaces is convex as well. A geometrical
representation of the original problem in Example 5.2 appears in Fig. 5.1.

1 2 3 4

1

2

(A) (B)

2x − y ≥ 0

−x + 2y ≥ 0

x + y ≥ 2

x

y

3

(C)

Fig. 5.1. A graphical representation of the problem in Example 5.2, projected on
x and y. The shaded region corresponds to the set of satisfying assignments. The
marked points (A), (B), and (C) illustrate the progress that the simplex algorithm
makes, as will be explained in the rest of this section

It is common to represent the coefficients in the input problem using an
m-by-(n + m) matrix A. The variables x1, . . . , xn, s1, . . . , sm are written as a

!" #$A
vector x. Following this notation, our problem is equivalent to the existence !" #$x
of a vector x such that

Ax = 0 and
m∧

i=1

li ≤ si ≤ ui , (5.8)

where li ∈ {−∞} ∪ Q is the lower bound of xi and ui ∈ {+∞} ∪ Q is the
upper bound of xi. The infinity values are for the case that a bound is not
set.

Example 5.3. We continue Example 5.2. Using the variable ordering x, y,
s1, s2, s3, a matrix representation for the equality constraints in (5.7) is

1 1 −1 0 0
2 −1 0 −1 0
−1 2 0 0 −1

 . (5.9)

Note that a large portion of the matrix in Example 5.3 is very regular: the
columns that are added for the additional variables s1, . . . , sm correspond to

116 5 Linear Arithmetic

an m-by-m diagonal matrix, where the diagonal coefficients are −1. This is a
direct consequence of using the general form.

While the matrix A changes as the algorithm progresses, the number of
columns of this kind is never reduced. The set of m variables corresponding to
these columns are called the basic variables and denoted by B. They are also
called the dependent variables, as their values are determined by those of the
nonbasic variables. The nonbasic variables are denoted by N . It is convenient

!" #$B,N
to store and manipulate a representation of A called the tableau, which is
simply A without the diagonal submatrix. The tableau is thus an m-by-n
matrix, where the columns correspond to the nonbasic variables, and each
row is associated with a basic variable – the same basic variable that has a
“−1” entry at that row in the diagonal sub-matrix in A. Thus, the information
originally stored in the diagonal matrix is now represented by the variables
labeling the rows.

Example 5.4. We continue our running example. The tableau and the bounds
for Example 5.2 are:

x y

s1 1 1

s2 2 −1

s3 −1 2

2 ≤ s1

0 ≤ s2

1 ≤ s3

The tableau is simply a different representation of A, since Ax = 0 can be
rewritten into ∧

xi∈B

(
xi =

∑

xj∈N
aijxj

)
. (5.10)

When written in the form of a matrix, the sums on the right-hand side of
(5.10) correspond exactly to the tableau.

5.2.3 Simplex with Upper and Lower Bounds

The general simplex algorithm maintains, in addition to the tableau, an as-
signment α : B ∪ N −→ Q. The algorithm initializes its data structures as

!" #$α
follows:

• The set of basic variables B is the set of additional variables.
• The set of nonbasic variables N is the set of problem variables.
• For any xi with i ∈ {1, . . . , n + m}, α(xi) = 0.

If the initial assignment of zero to all variables (i.e., the origin) satisfies
all upper and lower bounds of the basic variables, then the formula can be
declared satisfiable (recall that initially the nonbasic variables do not have

5.2 The Simplex Algorithm 117

!

"

#

$

Algorithm 5.2.1: General-Simplex

Input: A linear system of constraints S
Output: “Satisfiable” if the system is satisfiable, “Unsatisfiable” oth-

erwise

1. Transform the system into the general form

Ax = 0 and
m∧

i=1

li ≤ si ≤ ui .

2. Set B to be the set of additional variables s1, . . . , sm.
3. Construct the tableau for A.
4. Determine a fixed order on the variables.
5. If there is no basic variable that violates its bounds, return “Satisfiable”.

Otherwise, let xi be the first basic variable in the order that violates its
bounds.

6. Search for the first suitable nonbasic variable xj in the order for pivoting
with xi. If there is no such variable, return “Unsatisfiable”.

7. Perform the pivot operation on xi and xj .
8. Go to step 5.

explicit bounds). Otherwise, the algorithm begins a process of changing this
assignment.

Algorithm 5.2.1 summarizes the steps of the general simplex procedure.
The algorithm maintains two invariants:

• In-1. Ax = 0
• In-2. The values of the nonbasic variables are within their bounds:

∀xj ∈ N . lj ≤ α(xj) ≤ uj . (5.11)

Clearly, these invariants hold initially since all the variables in x are set to 0,
and the nonbasic variables have no bounds.

The main loop of the algorithm checks if there exists a basic variable
that violates its bounds. If there is no such variable, then both the basic
and nonbasic variables satisfy their bounds. Owing to invariant In-1, this
means that the current assignment α satisfies (5.8), and the algorithm returns
“Satisfiable”.

Otherwise, let xi be a basic variable that violates its bounds, and assume,
without loss of generality, that α(xi) > ui, i.e., the upper bound of xi is
violated. How do we change the assignment to xi so it satisfies its bounds?
We need to find a way to reduce the value of xi. Recall how this value is
specified:

118 5 Linear Arithmetic

xi =
∑

xj∈N
aijxj . (5.12)

The value of xi can be reduced by decreasing the value of a nonbasic variable
xj such that aij > 0 and its current assignment is higher than its lower bound
lj , or by increasing the value of a variable xj such that aij < 0 and its current
assignment is lower than its upper bound uj . A variable xj fulfilling one of
these conditions is said to be suitable. If there are no suitable variables, then
the problem is unsatisfiable and the algorithm terminates.

Let θ denote by how much we have to increase (or decrease) α(xj) in order
!" #$θ

to meet xi’s upper bound:

θ
.=

ui − α(xi)
aij

. (5.13)

Increasing (or decreasing) xj by θ puts xi within its bounds. On the other hand
xj does not necessarily satisfy its bounds anymore, and hence may violate the
invariant In-2. We therefore swap xi and xj in the tableau, i.e., make xi

nonbasic and xj basic. This requires a transformation of the tableau, which
is called the pivot operation. The pivot operation is repeated until either a
satisfying assignment is found, or the system is determined to be unsatisfiable.

The Pivot Operation

Suppose we want to swap xi with xj . We will need the following definition:

Definition 5.5 (pivot element, column and row). Given two variables
xi and xj, the coefficient aij is called the pivot element. The column of xj is
called the pivot column. The row i is called the pivot row.

A precondition for swapping two variables xi and xj is that their pivot element
is nonzero, i.e., aij += 0. The pivot operation (or pivoting) is performed as
follows:

1. Solve row i for xj .
2. For all rows l += i, eliminate xj by using the equality for xj obtained from

row i.

The reader may observe that the pivot operation is also the basic operation
in the well-known Gaussian variable elimination procedure.

Example 5.6. We continue our running example. As described above, we
initialize α(xi) = 0. This corresponds to point (A) in Fig. 5.1. Recall the
tableau and the bounds:

x y

s1 1 1

s2 2 −1

s3 −1 2

2 ≤ s1

0 ≤ s2

1 ≤ s3

5.2 The Simplex Algorithm 119

The lower bound of s1 is 2, which is violated. The nonbasic variable that is
the lowest in the ordering is x. The variable x has a positive coefficient, but
no upper bound, and is therefore suitable for the pivot operation. We need to
increase s1 by 2 in order to meet the lower bound, which means that x has to
increase by 2 as well (θ = 2). The first step of the pivot operation is to solve
the row of s1 for x:

s1 = x + y ⇐⇒ x = s1 − y . (5.14)

This equality is now used to replace x in the other two rows:

s2 = 2(s1 − y) − y ⇐⇒ s2 = 2s1 − 3y (5.15)

s3 = −(s1 − y) + 2y ⇐⇒ s3 = −s1 + 3y (5.16)

Written as a tableau, the result of the pivot operation is:

s1 y

x 1 −1

s2 2 −3

s3 −1 3

α(x) = 2
α(y) = 0
α(s1) = 2
α(s2) = 4
α(s3) = −2

This new state corresponds to point (B) in Fig. 5.1.
The lower bound of s3 is violated; this is the next basic variable that is

selected. The only suitable variable for pivoting is y. We need to add 3 to s3

in order to meet the lower bound. This translates into

θ =
1 − (−2)

3
= 1 . (5.17)

After performing the pivot operation with s3 and y, the final tableau is:

s1 s3

x 2/3 −1/3

s2 1 −1

y 1/3 1/3

α(x) = 1
α(y) = 1
α(s1) = 2
α(s2) = 1
α(s3) = 1

This assignment α satisfies the bounds, and thus {x .→ 1, y .→ 1} is a satisfying
assignment. It corresponds to point (C) in Fig. 5.1.

Selecting the pivot element according to a fixed ordering for the basic and
nonbasic variable ensures that no set of basic variables is ever repeated, and
hence guarantees termination (no cycling can occur). For a detailed proof
see [71]. This way of selecting a pivot element is called Bland’s rule.

120 5 Linear Arithmetic

5.2.4 Incremental Problems

Decision problems are often constructed in an incremental manner, that
is, the formula is strengthened with additional conjuncts. This can make a
once satisfiable formula unsatisfiable. One scenario in which an incremental
decision procedure is useful is the DPLL(T) framework, which we study in
Chap. 11.

The general simplex algorithm is well-suited for incremental problems.
First, notice that any constraint can be disabled by removing its correspond-
ing upper and lower bounds. The equality in the tableau is afterwards redun-
dant, but will not render a satisfiable formula unsatisfiable. Second, the pivot
operation performed on the tableau is an equivalence transformation, i.e., it
preserves the set of solutions. We can therefore start the procedure with the
tableau we have obtained from the previous set of bounds.

The addition of upper and lower bounds is implemented as follows:

• If a bound for a nonbasic variable was added, update the values of the
nonbasic variables according to the tableau to restore In-2.

• Call Algorithm 5.2.1 to determine if the new problem is satisfiable. Start
with step 5.

Furthermore, it is often desirable to remove constraints after they have
been added. This is also relevant in the context of DPLL(T) because this al-
gorithm activates and deactivates constraints. Normally constraints (or rather
bounds) are removed when the current set of constraints is unsatisfiable. After
removing a constraint the assignment has to be restored to a point at which it
satisfied the two invariants of the general simplex algorithm. This can be done
by simply restoring the assignment α to the last known satisfying assignment.
There is no need to modify the tableau.

5.3 The Branch and Bound Method

Branch and Bound is a widely used method for solving integer linear pro-
grams. As in the case of the simplex algorithm, Branch and Bound was
developed for solving the optimization problem, but the description here fo-
cuses on an adaptation of this algorithm to the decision problem.

The integer linear systems considered here have the same form as described
in Sect. 5.2, with the additional requirement that the value of any variable in
a satisfying assignment must be drawn from the set of integers. Observe that
it is easy to support strict inequalities simply by adding 1 to or subtracting 1
from the constant on the right-hand side.

Definition 5.7 (relaxed problem). Given an integer linear system S, its
relaxation is S without the integrality requirement (i.e., the variables are not
required to be integer).

5.3 The Branch and Bound Method 121

We denote the relaxed problem of S by relaxed(S). Assume the existence of
a procedure LPfeasible , which receives a linear system S as input, and returns
“Unsatisfiable” if S is unsatisfiable and a satisfying assignment otherwise.
LPfeasible can be implemented with, for example, a variation of General-
Simplex (Algorithm 5.2.1) that outputs a satisfying assignment if S is satis-
fiable. Using these notions, Algorithm 5.3.1 decides an integer linear system of
constraints (recall that only conjunctions of constraints are considered here).

!

"

#

$

Algorithm 5.3.1: Feasibility-Branch-and-Bound

Input: An integer linear system S
Output: “Satisfiable” if S is satisfiable, “Unsatisfiable” otherwise

1. procedure Search-integral-solution(S)
2. res = LPfeasible (relaxed(S));
3. if res = “Unsatisfiable” then return ; ! prune branch
4. else
5. if res is integral then ! integer solution found

abort(“Satisfiable”);
6. else
7. Select a variable v that is assigned a nonintegral value r;
8. Search-integral-solution (S ∪ (v ≤ /r0));
9. Search-integral-solution (S ∪ (v ≥ 1r2));

10. ! no integer solution in this branch

11. procedure Feasibility-Branch-and-Bound(S)
12. Search-integral-solution(S);
13. return (“Unsatisfiable”);

The idea of the algorithm is simple: it solves the relaxed problem with
LPfeasible ; if the relaxed problem is unsatisfiable, it backtracks because there
is also no integer solution in this branch. If, on the other hand, the relaxed
problem is satisfiable and the solution returned by LPfeasible happens to be
integral, it terminates – a satisfying integral solution has been found. Oth-
erwise, the problem is split into two subproblems, which are then processed
with a recursive call. The nature of this split is best illustrated by an example.

Example 5.8. Let x1, . . . , x4 be the variables of S. Assume that LPfeasible

returns the solution
(1, 0.7, 2.5, 3) (5.18)

in line 2. In line 7, Search-integral-solution chooses between x2 and x3,
which are the variables that were assigned a nonintegral value. Suppose that

122 5 Linear Arithmetic

x2 is chosen. In line 8, S (the linear system solved at the current recursion
level) is then augmented with the constraint

x2 ≤ 0 (5.19)

and sent for solving at a deeper recursion level. If no solution is found in this
branch, S is augmented instead with

x2 ≥ 1 (5.20)

and, once again, is sent to a deeper recursion level. If both these calls return,
this implies that S has no satisfying solution, and hence the procedure re-
turns (backtracks). Note that returning from the initial recursion level causes
the calling function Feasibility-Branch-and-Bound to return “Unsatisfi-
able”.

Algorithm 5.3.1 is not complete: there are cases for which it will branch
forever. As noted in [71], the system 1 ≤ 3x − 3y ≤ 2, for example, has no
integer solutions but unbounded real solutions, and causes the basic Branch
and Bound algorithm to loop forever. In order to make the algorithm complete,
it is necessary to rely on the small-model property that such formulas have (we
used this property earlier in Sect. 4.5). Recall that this means that if there is
a satisfying solution, then there is also such a solution within a finite bound,
which, for this theory, is also computable. This means that once we have
computed this bound on the domain of each variable, we can stop searching
for a solution once we have passed it. A detailed study of this bound in the
context of optimization problems can be found in [139]. The same bounds are
applicable to the feasibility problem as well. Briefly, it was shown in [139] that
given an integer linear system S with an M ×N coefficient matrix A, then if
there is a solution to S, then one of the extreme points of the convex hull of
S is also a solution, and any such solution x0 is bounded as follows:

x0
j ≤ ((M + N) · N · θ)N for j = 1, . . . , N , (5.21)

where θ is the maximal element in the coefficient matrix A or in the vector b.
Thus, (5.21) gives us a bound on each of the N variables, which, by adding it
as an explicit constraint, forces termination.

Finally, let us mention that Branch and Bound can be extended in a
straightforward way to handle the case in which some of the variables are
integers while the others are real. In the context of optimization problems,
this problem is known by the name mixed integer programming.

5.3.1 Cutting-Planes

Cutting-planes are constraints that are added to a linear system that remove
only noninteger solutions; that is, all satisfying integer solutions, if they exist,

5.3 The Branch and Bound Method 123

Aside: Branch and Bound for Integer Linear Programs
When Branch and Bound is used for solving an optimization problem, it
becomes somewhat more complicated. In particular, there are various pruning
rules based on the value of the current objective function (a branch is pruned
if it is identified that it cannot contain a solution better than what is already
at hand from another branch). There are also various heuristics for choosing
the variable on which to split and the first branch to be explored.

satisfying assignments

Fig. 5.2. The dots represent integer solutions. The thin dotted line represents a
cutting-plane – a constraint that does not remove any integral solution

remain satisfying, as demonstrated in Fig. 5.2. These new constraints improve
the tightness of the relaxation in the process of solving integer linear systems.

Here, we describe a family of cutting planes called Gomory cuts. We first
illustrate this technique with an example, and then generalize it.

Suppose that our problem includes the integer variables x1, . . . , x3, and
the lower bounds 1 ≤ x1 and 0.5 ≤ x2. Further, suppose that the final tableau
of the general simplex algorithm includes the constraint

x3 = 0.5x1 + 2.5x2 , (5.22)

and that the solution α is {x3 .→ 1.75, x1 .→ 1, x2 .→ 0.5}, which, of course,
satisfies (5.22). Subtracting these values from (5.22) gives us

x3 − 1.75 = 0.5(x1 − 1) + 2.5(x2 − 0.5) . (5.23)

We now wish to rewrite this equation so the left-hand side is an integer:

x3 − 1 = 0.75 + 0.5(x1 − 1) + 2.5(x2 − 0.5) . (5.24)

124 5 Linear Arithmetic

The two right-most terms must be positive because 1 and 0.5 are the lower
bounds of x1 and x2, respectively. Since the right-hand side must add up to
an integer as well, this implies that

0.75 + 0.5(x1 − 1) + 2.5(x2 − 0.5) ≥ 1 . (5.25)

Note, however, that this constraint is unsatisfied by α since by construction
all the elements on the left other than the fraction 0.75 are equal to zero under
α. This means that adding this constraint to the relaxed system will rule out
this solution. On the other hand since it is implied by the integer system of
constraints, it cannot remove any integer solution.

Let us generalize this example into a recipe for generating such cutting
planes. The generalization refers also to the case of having variables assigned
their upper bounds, and both negative and positive coefficients. In order to
derive a Gomory cut from a constraint, the constraint has to satisfy two
conditions: First, the assignment to the basic variable has to be fractional;
Second, the assignments to all the nonbasic variables have to correspond to
one of their bounds. The following recipe, which relies on these conditions, is
based on a report by Dutertre and de Moura [71].

Consider the i-th constraint:

xi =
∑

xj∈N
aijxj , (5.26)

where xi ∈ B. Let α be the assignment returned by the general simplex
algorithm. Thus,

α(xi) =
∑

xj∈N
aijα(xj) . (5.27)

We now partition the nonbasic variables to those that are currently assigned
their lower bound and those that are currently assigned their upper bound:

J = {j | xj ∈ N ∧ α(xj) = lj}
K = {j | xj ∈ N ∧ α(xj) = uj} .

(5.28)

Subtracting (5.27) from (5.26) taking the partition into account yields

xi − α(xi) =
∑

j∈J

aij(xj − lj) −
∑

j∈K

aij(uj − xj) . (5.29)

Let f0 = α(xi)− /α(xi)0. Since we assumed that α(xi) is not an integer then
0 < f0 < 1. We can now rewrite (5.29) as

xi − /α(xi)0 = f0 +
∑

j∈J

aij(xj − lj) −
∑

j∈K

aij(uj − xj) . (5.30)

Note that the left-hand side is an integer. We now consider two cases.

5.3 The Branch and Bound Method 125

• If
∑

j∈J aij(xj − lj) −
∑

j∈K aij(uj − xj) > 0 then, since the right-hand
side must be an integer,

f0 +
∑

j∈J

aij(xj − lj) −
∑

j∈K

aij(uj − xj) ≥ 1 . (5.31)

We now split J and K as follows:

J+ = {j | j ∈ J ∧ aij > 0}
J− = {j | j ∈ J ∧ aij < 0}
K+ = {j | j ∈ K ∧ aij > 0}
J− = {j | j ∈ K ∧ aij < 0}

(5.32)

Gathering only the positive elements in the left-hand side of (5.31) gives
us:

∑

j∈J+

aij(xj − lj) −
∑

j∈K−

aij(uj − xj) ≥ 1 − f0 , (5.33)

or, equivalently,
∑

j∈J+

aij

1 − f0
(xj − lj) −

∑

j∈K−

aij

1 − f0
(uj − xj) ≥ 1 . (5.34)

• If
∑

j∈J aij(xj − lj) −
∑

j∈K aij(uj − xj) ≤ 0 then again, since the right-
hand side must be an integer,

f0 +
∑

j∈J

aij(xj − lj) −
∑

j∈K

aij(uj − xj) ≤ 0 . (5.35)

Eq. (5.35) implies that
∑

j∈J−

aij(xj − lj) −
∑

j∈K+

aij(uj − xj) ≤ −f0 . (5.36)

Dividing by −f0 gives us

−
∑

j∈J−

aij

f0
(xj − lj) +

∑

j∈K+

aij

f0
(uj − xj) ≥ 1 . (5.37)

Note that the left-hand side of both (5.34) and (5.37) is greater than zero.
Therefore these two equations imply

∑

j∈J+

aij

1 − f0
(xj − lj) −

∑

j∈J−

aij

f0
(xj − lj)

+
∑

j∈K+

aij

f0
(uj − xj) −

∑

j∈K−

aij

1 − f0
(uj − xj) ≥ 1 . (5.38)

Since each of the elements on the left-hand side is equal to zero under the
current assignment α, this assignment α is ruled out by the new constraint. In
other words, the solution to the linear problem augmented with the constraint
is guaranteed to be different from the previous one.

126 5 Linear Arithmetic

5.4 Fourier–Motzkin Variable Elimination

5.4.1 Equality Constraints

Similarly to the simplex method, the Fourier–Motzkin variable elimination
algorithm takes a conjunction of linear constraints over real variables. Let m
denote the number of such constraints, and let x1, . . . , xn denote the variables
used by these constraints.

As a first step, equality constraints of the following form are eliminated:

n∑

j=1

ai,j · xj = bi . (5.39)

We choose a variable xj that has a nonzero coefficient ai,j in an equality
constraint i. Without loss of generality, we assume that xn is the variable
that is to be eliminated. The constraint (5.39) can be rewritten as

xn =
bi

ai,n
−

n−1∑

j=1

ai,j

ai,n
· xj . (5.40)

Now we substitute the right-hand side of (5.40) for xn into all the other
constraints, and remove constraint i. This is iterated until all equalities are
removed.

We are left with a system of inequalities of the form

m∧

i=1

n∑

j=1

ai,jxj ≤ bi . (5.41)

5.4.2 Variable Elimination

The basic idea of the variable elimination algorithm is to heuristically choose
a variable and then to eliminate it by projecting its constraints onto the rest
of the system, resulting in new constraints.

Example 5.9. Consider Fig. 5.3(a): the constraints

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
3
4
≤ z ≤ 1 (5.42)

form a cuboid. Projecting these constraints onto the x and y axes, and thereby
eliminating z, results in a square which is given by the constraints

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 . (5.43)

Figure 5.3(b) shows a triangle formed by the constraints

5.4 Fourier–Motzkin Variable Elimination 127

0

1
x

0

1y

0

z

0

x

0

y

(a)

5 10 15 20 25
x

2.5
5

7.5
10

12.5
15

17.5

y

x ! 10 " y

y ! 15

y # 20 $ x

5 10 15 20 25
x

2.5
5

7.5
10

12.5
15

17.5

y

(b)

Fig. 5.3. Projection of constraints: (a) a cuboid is projected onto the x and y axes;
(b) a triangle is projected onto the x axis

x ≤ y + 10, y ≤ 15, y ≥ −x + 20 . (5.44)

The projection of the triangle onto the x axis is a line given by the constraints

5 ≤ x ≤ 25 . (5.45)

Thus, the projection forms a new problem with one variable fewer, but possibly
more constraints. This is done iteratively until all variables but one have been
eliminated. The problem with one variable is trivially decidable.

The order in which the variables are eliminated may be predetermined,
or adjusted dynamically to the current set of constraints. There are various
heuristics for choosing the elimination order. A standard greedy heuristic gives
priority to variables that produce fewer new constraints when eliminated.

Once again, assume that xn is the variable chosen to be eliminated. The
constraints are partitioned according to the coefficient of xn. Consider the
constraint with index i:

n∑

j=1

ai,j · xj ≤ bi . (5.46)

By splitting the sum, (5.46) can be rewritten into

ai,n · xn ≤ bi −
n−1∑

j=1

ai,j · xj . (5.47)

If ai,n is zero, the constraint can be disregarded when we are eliminating xn.
Otherwise, we divide by ai,n. If ai,n is positive, we obtain

xn ≤ bi

ai,n
−

n−1∑

j=1

ai,j

ai,n
· xj . (5.48)

128 5 Linear Arithmetic

Thus, if ai,n > 0, the constraint is an upper bound on xn. If ai,n < 0, the
constraint is a lower bound. We denote the right-hand side of (5.48) by βi.

!" #$βi

Unbounded Variables

It is possible that a variable is not bounded both ways, i.e., it has either only
upper bounds or only lower bounds. Such variables are called unbounded
variables. Unbounded variables can be simply removed from the system to-
gether with all constraints that use them. Removing these constraints can
make other variables unbounded. Thus, this simplification stage iterates until
no such variables remain.

Bounded Variables

If xn has both an upper and a lower bound, the algorithm enumerates all
pairs of lower and upper bounds. Let u ∈ {1, . . . , m} denote the index of an
upper-bound constraint, and l ∈ {1, . . . , m} denote the index of a lower-bound
constraint for xn, where l += u. For each such pair, we have

βl ≤ xn ≤ βu . (5.49)

The following new constraint is added:

βl ≤ βu . (5.50)

The Formula (5.50) may simplify to 0 ≤ bk, where bk is some constant smaller
than 0. In this case, the algorithm has found a conflicting pair of constraints
and concludes that the problem is unsatisfiable. Otherwise, all constraints
that involve xn are removed. The new problem is solved recursively as before.

Example 5.10. Consider the following set of constraints:

x1 −x2 ≤ 0
x1 −x3 ≤ 0

−x1 +x2 +2x3 ≤ 0
−x3 ≤ −1 .

(5.51)

Suppose we decide to eliminate the variable x1 first. There are two upper
bounds on x1, namely x1 ≤ x2 and x1 ≤ x3, and one lower bound, which is
x2 + 2x3 ≤ x1.

Using x1 ≤ x2 as the upper bound, we obtain a new constraint 2x3 ≤ 0,
and using x1 ≤ x3 as the upper bound, we obtain a new constraint x2+x3 ≤ 0.
Constraints involving x1 are removed from the problem, which results in the
following new set:

2x3 ≤ 0
x2 +x3 ≤ 0

−x3 ≤ −1 .
(5.52)

5.5 The Omega Test 129

Next, observe that x2 is unbounded (as it has no lower bound), and hence
the second constraint can be eliminated, which simplifies the formula. We
therefore progress by eliminating x2 and all the constraints that contain it:

2x3 ≤ 0
−x3 ≤ −1 .

(5.53)

Only the variable x3 remains, with a lower and an upper bound. Combining
the two into a new constraint results in 1 ≤ 0, which is a contradiction. Thus,
the system is unsatisfiable.

The simplex method in its basic form, as described in Sect. 5.2, allows only
nonstrict (≤) inequalities.4 The Fourier–Motzkin method, on the other hand,
can easily be extended to handle a combination of strict (<) and nonstrict
inequalities: if either the lower or the upper bound is a strict inequality, then
so is the resulting constraint.

5.4.3 Complexity

In each iteration, the number of constraints can increase in the worst case
from m to m2/4, which results overall in m2n

/4n constraints. Thus, Fourier–
Motzkin variable elimination is only suitable for a relatively small set of con-
straints and a small number of variables.

5.5 The Omega Test

5.5.1 Problem Description

The Omega test is an algorithm to decide the satisfiability of a conjunction
of linear constraints over integer variables. Each conjunct is assumed to be
either an equality of the form

n∑

i=1

aixi = b (5.54)

or a nonstrict inequality of the form

n∑

i=1

aixi ≤ b . (5.55)

The coefficients ai are assumed to be integers; if they are not, by making
use of the assumption that the coefficients are rational, the problem can be
transformed into one with integer coefficients by multiplying the constraints
4 There are extensions of Simplex to strict inequalities. See, for example, [70].

130 5 Linear Arithmetic

by the least common multiple of the denominators. In Sect. 5.6, we show how
strict inequalities can be transformed into nonstrict inequalities.

The runtime of the Omega test depends on the size of the coefficients ai. It
is therefore desirable to transform the constraints such that small coefficients
are obtained. This can be done by dividing the coefficients a1, . . . , an of each
constraint by their greatest common divisor g. The resulting constraint is
called normalized. If the constraint is an equality constraint, this results in

n∑

i=1

ai

g
xi =

b

g
. (5.56)

If g does not divide b exactly, the system is unsatisfiable. If the constraint is
an inequality, one can tighten the constraint by rounding down the constant:

n∑

i=1

ai

g
xi ≤

⌊
b

g

⌋
. (5.57)

More simplifications of this kind are described in Sect. 5.6.

Example 5.11. The equality 3x + 3y = 2 can be normalized to x + y = 2/3,
which is unsatisfiable. The constraint 8x+6y ≤ 0 can be normalized to obtain
4x + 3y ≤ 0. The constraint 1 ≤ 4y can be tightened to obtain 1 ≤ y.

The Omega test is a variant of the Fourier–Motzkin variable elimination
algorithm (Sect. 5.4). As in the case of that algorithm, equality and inequality
constraints are treated separately; all equality constraints are removed before
inequalities are considered.

5.5.2 Equality Constraints

In order to eliminate an equality of the form of (5.54), we first check if there
is a variable xj with a coefficient 1 or −1, i.e., |aj | = 1. If yes, we transform
the constraint as follows. Without loss of generality, assume j = n. We isolate
xn:

xn =
b

an
−

n−1∑

i=1

ai

an
xi . (5.58)

The variable xn can now be substituted by the right-hand side of (5.58) in all
constraints.

If there is no variable with a coefficient 1 or −1, we cannot simply divide
by the coefficient, as this would result in nonintegral coefficients. Instead, the
algorithm proceeds as follows: it determines the variable that has the nonzero
coefficient with the smallest absolute value. Assume again that xn is chosen,
and that an > 0. The Omega test transforms the constraints iteratively until
some coefficient becomes 1 or −1. The variable with that coefficient can then
be eliminated as above.

5.5 The Omega Test 131

For this transformation, a new binary operator m̂od , called symmetric
!" #$a m̂od b

modulo, is defined as follows:

a m̂od b
.= a − b ·

⌊
a

b
+

1
2

⌋
. (5.59)

The symmetric modulo operator is very similar to the usual modular arith-
metic operator. If a mod b < b/2, then a m̂od b = a mod b. If a mod b is greater
than or equal to b/2, b is deducted, and thus

a m̂od b =
{

a mod b : a mod b < b/2
(a mod b) − b : otherwise .

(5.60)

We leave the proof of this equivalence as an exercise (see Problem 5.12).
Our goal is to derive a term that can replace xn. For this purpose, we

define m
.= an + 1, introduce a new variable σ, and add the following new

constraint:
n∑

i=1

(ai m̂od m)xi = mσ + b m̂od m . (5.61)

We split the sum on the left-hand side to obtain

(an m̂od m)xn = mσ + b m̂od m −
n−1∑

i=1

(ai m̂od m)xi . (5.62)

Since an m̂od m = −1 (see Problem 5.14), this simplifies to:

xn = −mσ − b m̂od m +
n−1∑

i=1

(ai m̂od m)xi . (5.63)

The right-hand side of (5.63) is used to replace xn in all constraints. Any
equality from the original problem (5.54) is changed as follows:

n−1∑

i=1

aixi + an

(
−mσ − b m̂od m +

n−1∑

i=1

(ai m̂od m)xi

)
= b , (5.64)

which can be rewritten as

−anmσ +
n−1∑

i=1

(ai + an(ai m̂od m))xi = b + an(b m̂od m) . (5.65)

Since an = m − 1, this simplifies to

−anmσ +
∑n−1

i=1 ((ai − (ai m̂od m)) + m(ai m̂od m))xi =
b − (b m̂od m) + m(b m̂od m) .

(5.66)

132 5 Linear Arithmetic

Note that ai − (ai m̂od m) is equal to m/ai/m + 1/20, and thus all terms are
divisible by m. Dividing (5.66) by m results in

−anσ+
n−1∑

i=1

(/ai/m+1/20+(ai m̂od m))xi = /b/m+1/20+(b m̂od m) . (5.67)

The absolute value of the coefficient of σ is the same as the absolute value
of the original coefficient an, and it seems that nothing has been gained by
this substitution. However, observe that the coefficient of xi can be bounded
as follows (see Problem 5.13):

|/ai/m + 1/20 + (ai m̂od m)| ≤ 5
6
|ai| . (5.68)

Thus, the absolute values of the coefficients in the equality are strictly smaller
than their previous values. As the coefficients are always integral, repeated
application of equality elimination eventually generates a coefficient of 1 or −1
on some variable. This variable can then be eliminated directly, as described
earlier (see (5.58)).

Example 5.12. Consider the following formula:

−3x1 +2x2 = 0
3x1 +4x2 = 3 .

(5.69)

The variable x2 has the coefficient with the smallest absolute value (a2 = 2).
Thus, m = a2 + 1 = 3, and we add the following constraint (see (5.61)):

(−3 m̂od 3)x1 + (2 m̂od 3)x2 = 3σ . (5.70)

This simplifies to x2 = −3σ. Substituting −3σ for x2 results in the following
problem:

−3x1 −6σ = 0
3x1 −12σ = 3 .

(5.71)

Division by m results in
−x1 −2σ = 0

x1 −4σ = 1 .
(5.72)

As expected, the coefficient of x1 has decreased. We can now substitute x1 by
4σ + 1, and obtain −6σ = 1, which is unsatisfiable.

5.5.3 Inequality Constraints

Once all equalities have been eliminated, the algorithm attempts to find a
solution for the remaining inequalities. The control flow of Algorithm 5.5.1 is
illustrated in Fig. 5.4. As in the Fourier–Motzkin procedure, the first step is
to choose a variable to be eliminated. Subsequently, the three subprocedures

5.5 The Omega Test 133

Real-Shadow, Dark-Shadow, and Gray-Shadow produce new constraint sets,
which are solved recursively.

Note that many of the subproblems generated by the recursion are actu-
ally identical. An efficient implementation uses a hash table that stores the
solutions of previously solved problems.

!

"

#

$

Algorithm 5.5.1: Omega-Test

Input: A conjunction of constraints C
Output: “Satisfiable” if C is satisfiable, and “Unsatisfiable” otherwise

1. if C only contains one variable then
2. Solve and return result; ! (solving this problem is trivial)
3.
4. Otherwise, choose a variable v that occurs in C;
5. CR := Real-Shadow(C, v);
6. if Omega-Test(CR) = “Unsatisfiable” then ! Recursive call
7. return “Unsatisfiable”;
8.
9. CD := Dark-Shadow(C, v);

10. if Omega-Test(CD) = “Satisfiable” then ! Recursive call
11. return “Satisfiable”;
12.
13. if CR = CD then ! Exact projection?
14. return “Unsatisfiable”;
15.
16. C1

G, . . . , Cn
G := Gray-Shadow(C, v);

17. for all i ∈ {1, . . . , n} do
18. if Omega-Test(Ci

G) = “Satisfiable” then ! Recursive call
19. return “Satisfiable”;
20.
21. return “Unsatisfiable”;

Checking the Real Shadow

Even though the Omega test is concerned with constraints over integers, the
first step is to check if there are integer solutions in the relaxed problem,
which is called the real shadow. The real shadow is the same projection that
the Fourier–Motzkin procedure uses. The Omega test is then called recursively
to check if the projection contains an integer. If there is no such integer, then
there is no integer solution to the original system either, and the algorithm
concludes that the system is unsatisfiable.

134 5 Linear Arithmetic

Check

real shadow

Check

Check

dark shadow

gray shadow

No integer solution

Integer solution

Integer solution

No integer solution

No integer solution in DARK shadow

Possible integer solution

UNSAT

SAT

UNSAT

SAT

Fig. 5.4. Overview of the Omega test

Assume that the variable to be eliminated is denoted by z. As in the case
of the Fourier–Motzkin procedure, all pairs of lower and upper bounds have
to be considered. Variables that are not bounded both ways can be removed,
together with all constraints that contain them.

Let β ≤ bz and cz ≤ γ be constraints, where c and b are positive integer
constants and γ and β denote the remaining linear expressions. Consequently,
β/b is a lower bound on z, and γ/c is an upper bound on z. The new constraint
is obtained by multiplying the lower bound by c and the upper bound by b:

Lower bound Upper bound

β ≤ bz cz ≤ γ
cβ ≤ cbz cbz ≤ bγ

(5.73)

The existence of such a variable z implies

cβ ≤ bγ . (5.74)

Example 5.13. Consider the following set of constraints:

2y ≤ x
8y ≥ 2 +x
2y ≤ 3 −x .

(5.75)

The triangle spanned by these constraints is depicted in Fig. 5.5. Assume that
we decide to eliminate x. In this case, the combination of the two constraints

5.5 The Omega Test 135

2y ≤ x and 8y ≥ 2 + x results in 8y − 2 ≥ 2y, which simplifies to y ≥ 1/3.
The two constraints 2y ≤ x and 2y ≤ 3 − x combine into 2y ≤ 3 − 2y, which
simplifies to y ≤ 3/4. Thus, 1/3 ≤ y ≤ 3/4 must hold, which has no integer
solution. The set of constraints is therefore unsatisfiable.

0.5 1 1.5 2 2.5 3
x

0.25

0.25
0.5

0.75
1

1.25
1.5

y

2 y x 2 y 3 x

8 y 2 x

0.5 1 1.5 2 2.5 3
x

0.25

0.25
0.5

0.75
1

1.25
1.5

y

Fig. 5.5. Computing the real shadow: eliminating x

The converse of this observation does not hold, i.e., if we find an integer
solution within the real shadow, this does not guarantee that the original
set of constraints has an integer solution. This is illustrated by the following
example.

0.5 1 1.5 2 2.5 3
x

0.25

0.25
0.5

0.75
1

1.25
1.5

y

2 y x 2 y 3 x

8 y 2 x

0.5 1 1.5 2 2.5 3
x

0.25

0.25
0.5

0.75
1

1.25
1.5

y

Fig. 5.6. Computing the real shadow: eliminating y

Example 5.14. Consider the same set of constraints as in Example 5.13.
This time, eliminate y instead of x. This projection is depicted in Fig. 5.6.

136 5 Linear Arithmetic

We obtain 2/3 ≤ x ≤ 2, which has two integer solutions. The triangle, on the
other hand, contains no integer solution.

The real shadow is an overapproximating projection, as it contains more
solutions than does the original problem. The next step in the Omega test is
to compute an underapproximating projection, i.e., if that projection contains
an integer solution, so does the original problem. This projection is called the
dark shadow.

Checking the Dark Shadow

The name dark shadow is motivated by optics. Assume that the object we
are projecting is partially translucent. Places that are “thicker” will project
a darker shadow. In particular, a dark area in the shadow where the object is
thicker than 1 must have at least one integer above it.

After the first phase of the algorithm, we know that there is a solution
to the real shadow, i.e., cβ ≤ bγ. We now aim at determining if there is an
integer z such that cβ ≤ cbz ≤ bγ, which is equivalent to

∃z ∈ Z.
β

b
≤ z ≤ γ

c
. (5.76)

Assume that (5.76) does not hold. Let i denote /β/b0, i.e., the largest integer
that is smaller than β/b. Since we have assumed that there is no integer
between β/b and γ/c,

i <
β

b
≤ γ

c
< i + 1 (5.77)

holds. This situation is illustrated in Fig. 5.7.

︸ ︷︷ ︸
i + 1γ

c
β
bi

︸ ︷︷ ︸
≥ 1

c≥ 1
b

Fig. 5.7. Computing the dark shadow

Since β/b and γ/c are not integers themselves, the distances from these
points to the closest integer are greater than the fractions 1/b and 1/c, respec-
tively:

β

b
− i ≥ 1

b
(5.78)

i + 1 − γ
c
≥ 1

c
. (5.79)

5.5 The Omega Test 137

The proof is left as an exercise (Problem 5.11). By summing (5.78) and (5.79),
we obtain

β

b
+ 1 − γ

c
≥ 1

c
+

1
b

, (5.80)

which is equivalent to

cβ − bγ ≥ −cb + c + b . (5.81)

By multiplying this inequality by −1, we obtain

bγ − cβ ≤ cb − c − b . (5.82)

In order to show a contradiction to our assumption, we need to show the
negation of (5.82). Exploiting the fact that c, b are integers, the negation of
(5.82) is

bγ − cβ ≥ cb − c − b + 1 , (5.83)

or simply

bγ − cβ ≥ (c − 1)(b − 1) . (5.84)

Thus, if (5.84) holds, our assumption is wrong, which means that we have a
guarantee that there exists an integer solution.

Observe that if either c = 1 or b = 1, the formula (5.84) is identical to the
real shadow (5.74), i.e., the dark and real shadow are the same. In this case,
the projection is exact, and it is sufficient to check the real shadow. When
choosing variables to eliminate, preference should be given to variables that
result in an exact projection, that is, to variables with coefficient 1.

Checking the Gray Shadow

We know that any integer solution must also be in the real shadow. Let R
!" #$R

denote this area. Now assume that we have found no integer in the dark
shadow. Let D denote the area of the dark shadow.

!" #$D
Thus, if R and D do not coincide, there is only one remaining area in

which an integer solution can be found: an area around the dark shadow,
which, staying within the optical analogy, is called the gray shadow.

Any solution must satisfy

cβ ≤ cbz ≤ bγ . (5.85)

Furthermore, we already know that the dark shadow does not contain an
integer, and thus we can exclude this area from the search. Therefore, be-
sides (5.85), any solution has to satisfy (5.82):

138 5 Linear Arithmetic

cβ ≤ cbz ≤ bγ ∧ bγ − cβ ≤ cb − c − b . (5.86)

This is equivalent to

cβ ≤ cbz ≤ bγ ∧ bγ ≤ cb − c − b + cβ , (5.87)

which implies
cβ ≤ cbz ≤ cb − c − b + cβ . (5.88)

Dividing by c, we obtain

β ≤ bz ≤ β +
cb − c − b

c
. (5.89)

The Omega test proceeds by simply trying possible values of bz between these
two bounds. Thus, a new constraint

bz = β + i (5.90)

is formed and combined with the original problem for each integer i in the
range 0, . . . , (cb − c − b)/c. If any one of the resulting new problems has a
solution, so does the original problem.

The number of subproblems can be reduced by determining the largest
coefficient c of z in any upper bound for z. The new constraints generated for
the other upper bounds are already covered by the constraints generated for
the upper bound with the largest c.

5.6 Preprocessing

In this section, we examine several simple preprocessing steps for both linear
and integer linear systems without objective functions. Preprocessing the set
of constraints can be done regardless of the decision procedure chosen.

5.6.1 Preprocessing of Linear Systems

Two simple preprocessing steps for linear systems are the following:

1. Consider the set of constraints

x1 + x2 ≤ 2, x1 ≤ 1, x2 ≤ 1 . (5.91)

The first constraint is redundant. In general, for a set:

S =

a0x0 +
n∑

j=1

ajxj ≤ b, lj ≤ xj ≤ uj for j = 0, . . . , n

 , (5.92)

the constraint

5.6 Preprocessing 139

a0x0 +
n∑

j=1

ajxj ≤ b (5.93)

is redundant if ∑

j|aj>0

ajuj +
∑

j|aj<0

aj lj ≤ b . (5.94)

To put this in words, a “≤” constraint in the above form is redundant if
assigning values equal to their upper bounds to all of its variables that
have a positive coefficient, and assigning values equal to their lower bounds
to all of its variables that have a negative coefficient, results in a value less
than or equal to b, the constant on the right-hand side of the inequality.

2. Consider the following set of constraints:

2x1 + x2 ≤ 2, x2 ≥ 4, x1 ≤ 3 . (5.95)

From the first and second constraints, x1 ≤ −1 can be derived, which
means that the bound x1 ≤ 3 can be tightened. In general, if a0 > 0, then

x0 ≤

b −
∑

j|j>0,aj>0

aj lj −
∑

j|aj<0

ajuj

 /a0 , (5.96)

and if a0 < 0, then

x0 ≥

b −
∑

j|aj>0

aj lj −
∑

j|j>0,aj<0

ajuj

 /a0 . (5.97)

5.6.2 Preprocessing of Integer Linear Systems

The following preprocessing steps are applicable to integer linear systems:

1. Multiply every constraint by the smallest common multiple of the coeffi-
cients and constants in this constraint, in order to obtain a system with
integer coefficients.5

2. After the previous preprocessing has been applied, strict inequalities can
be transformed into nonstrict inequalities as follows:

∑

1≤i≤n

aixi < b (5.98)

is replaced with ∑

1≤i≤n

aixi ≤ b − 1 . (5.99)

The case in which b is fractional is handled by the previous preprocessing
step.

5 This assumes that the coefficients and constants in the system are rational. The
case in which the coefficients can be nonrational is of little value and is rarely
considered in the literature.

140 5 Linear Arithmetic

For the special case of 0–1 linear systems (integer linear systems in
which all the variables are constrained to be either 0 or 1), some preprocessing
steps are illustrated by the following examples:

1. Consider the constraint
5x1 − 3x2 ≤ 4 , (5.100)

from which we can conclude that

x1 = 1 =⇒ x2 = 1 . (5.101)

Hence, the constraint
x1 ≤ x2 (5.102)

can be added.
2. From

x1 + x2 ≤ 1, x2 ≥ 1 , (5.103)

we can conclude x1 = 0.

Generalization of these examples is left for Problem 5.8.

5.7 Difference Logic

5.7.1 Introduction

A popular fragment of linear arithmetic is called difference logic.

Definition 5.15 (difference logic). The syntax of a formula in difference
logic is defined by the following rules:

formula : formula ∧ formula | atom
atom : identifier − identifier op constant

op : ≤ | <

Here, we consider the case in which the variables are defined over Q, the
rationals. A similar definition exists for the case in which the variables are de-
fined over Z (see Problem 5.18). Solving both variants is polynomial, whereas,
recall, linear arithmetic over Z is NP-complete.

Some other convenient operands can be modeled with the grammar above:

• x − y = c is the same as x − y ≤ c ∧ y − x ≤ −c.
• x − y ≥ c is the same as y − x ≤ −c.
• x − y > c is the same as y − x < −c.
• A constraint with one variable such as x < 5 can be rewritten as x−x0 < 5,

where x0 is a special variable not used so far in the formula, called the
“zero variable”. In any satisfying assignment, its value must be 0.

5.7 Difference Logic 141

As an example,
x < y + 5 ∧ y ≤ 4 ∧ x = z − 1 (5.104)

can be rewritten in difference logic as

x − y < 5 ∧ y − x0 ≤ 4 ∧ x − z ≤ −1 ∧ z − x ≤ 1. (5.105)

A more important variant, however, is one in which an arbitrary Boolean
structure is permitted. We describe one application of this variant by the
following example.

Example 5.16. We are given a finite set of n jobs, each of which consists of
a chain of operations. There is a finite set of m machines, each of which can
handle at most one operation at a time. Each operation needs to be performed
during an uninterrupted period of given length on a given machine. The job-
shop scheduling problem is to find a schedule, that is, an allocation of the
operations to time intervals on the machines that has a minimal total length.

More formally, given a set of machines

M = {m1, . . . ,mm} , (5.106)

job J i with i ∈ {1, . . . , n} is a sequence of ni pairs of the form (machine,
duration):

J i = (mi
1, d

i
1), . . . , (m

i
ni

, di
ni

) , (5.107)

such that mi
1, . . . ,m

i
ni

are elements of M . The durations can be assumed to
be rational numbers. We denote by O the multiset of all operations from all
jobs. For an operation v ∈ O, we denote its machine by M(v) and its duration
by τ(v).

A schedule is a function that defines, for each operation v, its starting time
S(v) on its specified machine M(v). A schedule S is feasible if the following
three constraints hold.

First, the starting time of all operations is greater than or equal to 0:

∀v ∈ O. S(v) ≥ 0 . (5.108)

Second, for every pair of consecutive operations vi, vj ∈ O in the same job,
the second operation does not start before the first ends:

S(vi) + τ(vi) ≤ S(vj) . (5.109)

Finally, every pair of different operations vi, vj ∈ O scheduled on the same
machine (M(vi) = M(vj)) is mutually exclusive:

S(vi) + τ(vi) ≤ S(vj) ∨ S(vj) + τ(vj) ≤ S(vi) . (5.110)

The length of the schedule S is defined as

max
v∈O

S(v) + τ(v) , (5.111)

142 5 Linear Arithmetic

and the objective is to find a schedule S that minimizes this length. As usual,
we can define the decision problem associated with this optimization problem
by removing the objective function and adding a constraint that forces the
value of this function to be smaller than some constant.

It should be clear that a job-shop scheduling problem can be formulated
with difference logic. Note the disjunction in (5.110).

5.7.2 A Decision Procedure for Difference Logic

Recall that in this chapter we present only decision procedures for conjunctive
fragments, and postpone the problem of solving the general case to Chap. 11.

Definition 5.17 (inequality graph for nonstrict inequalities). Let S be
a set of difference predicates and let the inequality graph G(V,E) be the graph
comprising of one edge (x, y) with weight c for every constraint of the form
x − y ≤ c in S.

Given a difference logic formula ϕ with nonstrict inequalities only, the in-
equality graph corresponding to the set of difference predicates in ϕ can be
used for deciding ϕ, on the basis of the following theorem.

Theorem 5.18. Let ϕ be a conjunction of difference constraints, and let G
be the corresponding inequality graph. Then ϕ is satisfiable if and only if there
is no negative cycle in G.

The proof of this theorem is left as an exercise (Problem 5.15). The exten-
sion of Definition 5.17 and Theorem 5.18 to general difference logic (which
includes both strict and nonstrict inequalities) is left as an exercise as well
(see Problem 5.16).

By Theorem 5.18, deciding a difference logic formula amounts to search-
ing for a negative cycle in a graph. This can be done with the Bellman–
Ford algorithm [54] for finding the single-source shortest paths in a directed
weighted graph, in time O(|V | · |E|) (to make the graph single-source, we in-
troduce a new node and add an edge with weight 0 from this node to each
of the roots of the original graph). Although finding the shortest paths is not
our goal, we exploit a side-effect of this algorithm: if there exists a negative
cycle in the graph, the algorithm finds it and aborts.

5.8 Problems

5.8.1 Warm-up Exercises

Problem 5.1 (linear systems). Consider the following linear system, which
we denote by S:

x1 ≥ −x2 + 11
5

x1 ≤ x2 + 1
2

x1 ≥ 3x2 −3 .
(5.112)

5.8 Problems 143

(a) Check with simplex whether S is satisfiable, as described in Sect. 5.2.
(b) Using the Fourier–Motzkin procedure, compute the range within which

x2 has to lie in a satisfying assignment.
(c) Consider a problem S′, similar to S, but where the variables are forced

to be integer. Check with Branch and Bound whether S′ is satisfiable. To
solve the relaxed problem, you can use a simplex implementation (there
are many of these on the Web).

5.8.2 The Simplex Method

Problem 5.2 (simplex). Compute a satisfying assignment for the following
problem using the general simplex method:

2x1 +2x2 +2x3 +2x4 ≤ 2
4x1 +x2 +x3 −4x4 ≤ −2
x1 +2x2 +4x3 +2x4 = 4 .

(5.113)

Problem 5.3 (complexity). Give a conjunction of linear constraints over
reals with n variables (that is, the size of the instance is parameterized) such
that the number of iterations of the general simplex algorithm is exponential
in n.

Problem 5.4 (difference logic with simplex). What is the worst-case run
time of the general simplex algorithm if applied to a conjunction of difference
logic constraints?

Problem 5.5 (strict inequalities with simplex). Extend the general sim-
plex algorithm with strict inequalities.

Problem 5.6 (soundness). Assume that the general simplex algorithm re-
turns “UNSAT”. Show a method for deriving a proof of unsatisfiability.

5.8.3 Integer Linear Systems

Problem 5.7 (complexity of ILP-feasibility). Prove that the feasibility
problem for integer linear programming is NP-hard.6

Problem 5.8 (0–1 ILP). A 0–1 integer linear system is an integer linear
system in which all variables are constrained to be either 0 or 1. Show how
a 0–1 integer linear system can be translated to a Boolean formula. What is
the complexity of the translation?

6 In fact it is NP-complete, but membership in NP is more difficult to prove. The
proof makes use of a small-model-property argument.

144 5 Linear Arithmetic

Problem 5.9 (simplifications for 0–1 ILP). Generalize the simplification
demonstrated in (5.100)–(5.103).

Problem 5.10 (Gomory cuts). Find Gomory cuts corresponding to the
following results from the general simplex algorithm:

1. x4 = x1 − 2.5x2 + 2x3 where α := {x4 .→ 3.25, x1 .→ 1, x2 .→ −0.5, x3 .→
0.5}, x2 and x3 are at their upper bound and x1 is at its lower bound.

2. x4 = −0.5x1−2x2−3.5x3 where α := {x4 .→ 0.25, x1 .→ 1, x2 .→ 0.5, x3 .→
0.5}, x1 and x3 are at their lower bound and x2 is at its upper bound.

5.8.4 Omega Test

Problem 5.11 (integer fractions). Show that

i + 1 − γ
c
≥ 1

c
.

Problem 5.12 (eliminating equalities). Show that

a m̂od b =
{

a mod b : a mod b < b/2
(a mod b) − b : otherwise (5.114)

holds. Use the fact that

a/b = /a/b0 +
a mod b

b
.

Problem 5.13 (eliminating equalities). Show that the absolute values of
the coefficients of the variables xi are reduced to at most 5/6 of their previous
values after substituting σ:

|/ai/m + 1/20 + (ai m̂od m)| ≤ 5/6|ai| . (5.115)

Problem 5.14 (eliminating equalities). The elimination of xn relies on
the fact that the coefficient of xn in the newly added constraint is −1. Let an

denote the coefficient of xn in the original constraint. Let m = an + 1, and
assume that an ≥ 2. Show that an m̂od m = −1.

5.9 Bibliographic Notes 145

5.8.5 Difference Logic

Problem 5.15 (difference logic). Prove Theorem 5.18.

Problem 5.16 (inequality graphs for difference logic). Extend Defini-
tion 5.17 and Theorem 5.18 to general difference logic formulas (i.e., where
both strong and weak inequalities are allowed).

Problem 5.17 (difference logic). Give a reduction of difference logic to
SAT. What is the complexity of the reduction?

Problem 5.18 (integer difference logic). Show a reduction from the prob-
lem of integer difference logic to difference logic.

5.9 Bibliographic Notes

The Fourier–Motzkin variable elimination algorithm is the earliest docu-
mented method for solving linear inequalities. It was discovered in 1826 by
Fourier, and rediscovered by Motzkin in 1936.

The simplex method was introduced by Danzig in 1947 [55]. There are sev-
eral variations of and improvements on this method, most notably the revised
simplex method, which most industrial implementations use. This variant has
an apparent advantage on large and sparse LP problems, which seem to char-
acterize LP problems in practice. The variant of the general simplex algorithm
that we presented in Sect. 5.2 was proposed by Dutertre and de Moura [70] in
the context of DPLL(T), a technique we describe in Chap. 11. Its main advan-
tage is that it works efficiently with incremental operations, i.e., constraints
can be added and removed with little effort.

Linear programs are a very popular modeling formalism for solving a wide
range of problems in science and engineering, finance, logistics and so on. See,
for example, how LP is used for computing an optimal placement of gates
in an integrated circuit [100]. The popularity of this method led to a large
industry of LP solvers, some of which are sold for tens of thousands of dollars
per copy. A classical reference to linear and integer linear programming is
the book by Schrijver [174]. Other resources on the subject that we found
useful include publications by Wolsey [204], Hillier and Lieberman [92], and
Vanderbei [196].

Gomory cutting-planes are due to a paper published by Ralph Gomory
in 1963 [89]. For many years, the operations research community considered
Gomory cuts impractical for large problems. There were several refinements
of the original method and empirical studies that revived this technique, es-
pecially in the context of the related optimization problem. See, for example,
the work of Balas et al. [72]. The variant we described is suitable for working
with the general simplex algorithm and its description here is based on [71].

The Omega test was introduced by Pugh as a method for deciding integer
linear arithmetic within an optimizing compiler [160]. It is an extension of the

146 5 Linear Arithmetic

Fourier–Motzkin variable elimination. For an example of an application of the
Omega test inside a Fortran compiler, see [2]. A much earlier work following
similar lines to those of the omega test is by Paul Williams [199]. Williams’
work, in turn, is inspired by Presburger’s paper from 1929 [159].

Difference logic was recognized as an interesting fragment of linear arith-
metic by Pratt [158]. He considered “separation theory”, which is the conjunc-
tive fragment of what we call difference logic. He observed that most inequali-
ties in verification conditions are of this form. Disjunctive difference logic was
studied in M. Mahfoudh’s PhD thesis [119] and in [120], among other places.
A reduction of difference logic to SAT was studied in [187] (in this particular
paper and some later papers, this theory fragment is called “separation logic”,
after Pratt’s separation theory – not to be confused with the separation logic
that is discussed in Chap. 8). The main reason for the renewed interest in this
fragment is due to interest in timed automata: the verification conditions
arising in this problem domain are difference logic formulas.

In general, the amount of research and writing on linear systems is im-
mense, and in fact most universities offer courses dedicated to this subject.
Most of the research was and still is conducted in the operations research
community.

5.10 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

li, ui Constants bounding the i-th variable from below and
above

113

m The number of linear constraints in the original prob-
lem formulation

114

n The number of variables in the original problem for-
mulation

114

A Coefficient matrix 115

x The vector of the variables in the original problem
formulation

115

B, N The sets of basic and nonbasic variables, respectively 116

continued on next page

5.10 Glossary 147

continued from previous page

First used
Symbol Refers to . . . on page . . .

α A full assignment (to both basic and nonbasic vari-
ables)

116

θ See (5.13) 118

βi Upper or lower bound 128

m̂od Symmetric modulo 131

