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Abstract. A data structure is said to be persistent when any update
operation returns a new structure without altering the old version. This
paper introduces a new notion of persistence, called semi-persistence,
where only ancestors of the most recent version can be accessed or up-
dated. Making a data structure semi-persistent may improve its time
and space complexity. This is of particular interest in backtracking al-
gorithms manipulating persistent data structures, where this property is
usually satisfied. We propose a proof system to statically check the valid
use of semi-persistent data structures. It requires a few annotations from
the user and then generates proof obligations that are automatically dis-
charged by a dedicated decision procedure.

1 Introduction

A data structure is said to be persistent when any update operation returns a new
structure without altering the old version. In purely applicative programming,
data structures are automatically persistent [16]. Yet this notion is more general
and the exact meaning of persistent is observationally immutable. Driscoll et al.
even proposed systematic techniques to make imperative data structures per-
sistent [9]. In particular, they distinguish partial persistence, where all versions
can be accessed but only the newest can be updated, from full persistence where
any version can be accessed or updated. In this paper, we study another notion
of persistence, which we call semi-persistence.

One of the main interests of a persistent data structure shows up when it is
used within a backtracking algorithm. Indeed, when we are back from a branch,
there is no need to undo the modifications performed on the data structure:
we simply use the old version, which persisted, and start a new branch. One
can immediately notice that full persistence is not needed in this case, since we
are reusing ancestors of the current version, but never siblings (in the sense of
another version obtained from a common ancestor). We shall call semi-persistent
a data structure where only ancestors of the newest version can be updated. Note
that this notion is different from partial persistence, since we need to update
ancestors, and not only to access them.

A semi-persistent data structure can be more efficient than its fully persis-
tent counterpart, both in time and space. An algorithm using a semi-persistent
data structure may be written as if it was operating on a fully persistent data
structure, provided that we only backtrack to ancestor versions. Checking the



correctness of a program involving a semi-persistent data structure amounts to
showing that

– first, the data structure is correctly used ;
– second, the data structure is correctly implemented.

This article only addresses the former point. Regarding the latter, we simply
give examples of semi-persistent data structures. Proving the correctness of these
implementations is out of the scope of this paper (see Section 5).

Our approach consists in annotating programs with user pre- and postcondi-
tions, which mainly amounts to expressing the validity of the successive versions
of a semi-persistent data structure. By validity, we mean being an ancestor of
the newest version. Then we compute a set of proof obligations which express
the correctness of programs using a weakest precondition-like calculus [8]. These
obligations lie in a decidable logical fragment, for which we provide a sound and
complete decision procedure. Thus we end up with an almost automatic way of
checking the legal use of semi-persistent data structures.

Related work. To our knowledge, this notion of semi-persistence is new. How-
ever, there are several domains which are somehow connected to our work, ei-
ther because they are related to some kind of stack analysis, or because they
are providing decision procedure for reachability issues. First, works on escape
analysis [12, 4] address the problem of stack-allocating values; we may think that
semi-persistent versions that become invalid are precisely those which could be
stack-allocated, but it is not the case as illustrated by example g above. Second,
works on stack analysis to ensure memory safety [14, 18, 19] provide methods to
check the consistent use of push and pop operations. However, these approaches
are not precise enough to distinguish between two sibling versions (of a given
semi-persistent data structure) which are both upper in the stack. Regarding
the decidability of our proof obligations, our approach is similar to other works
regarding reachability in linked data structures [15, 3, 17]. However, our logic
is much simpler and we provide a specific decision procedure. Finally, we can
mention Knuth’s dancing links [13] as an example of a data structure specifi-
cally designed for backtracking algorithms; but it is still a traditional imperative
solution where an explicit undo operation is performed in the main algorithm.

This paper is organized as follows. First, Section 2 gives examples of semi-
persistent data structures and shows the benefits of semi-persistence with some
benchmarks. Then our formalization of semi-persistence is presented in two
steps: Section 3 introduces a small programming language to manipulate semi-
persistent data structures, and Section 4 defines the proof system which checks
the valid use of semi-persistent data structures. Section 5 concludes with possible
extensions. A long version of this paper, including proofs, is available online [7].

2 Examples of Semi-Persistent Data Structures

We explain how to implement semi-persistent arrays, lists and hash tables and
we present benchmarks to show the benefits of semi-persistence.



Arrays. Semi-persistent arrays can be implemented by modifying the persistent
arrays introduced by Baker [1]. The basic idea is to use an imperative array
for the newest version of the persistent array and indirections for old versions.
For instance, starting with an array a0 initialized with 0, and performing the
successive updates a1 = set(a0, 1, 7), a2 = set(a1, 2, 8) and a3 = set(a2, 5, 3),
we end up with the following situation:

When accessing or updating an old version, e.g. a1, Baker’s solution is to first
perform a rerooting operation, which makes a1 point to the imperative array by
reversing the linked list of indirections:

But if we know that we are not going to access a2 and a3 anymore, we can save
this list reversal. All we need to do is to perform the assignments contained in
this list:

Thus it is really easy to turn these persistent arrays into a semi-persistent data
structure, which is more efficient since we save some pointer assignments. This
example is investigated in more details in [6].

Lists. As a second example, we consider an immutable data structure which we
make semi-persistent. The simplest and most popular example is the list data
structure. To make it semi-persistent, the idea is to reuse cons cells between
successive conses to the same list. For instance, given a list l, the cons opera-
tion 1::l allocates a new memory block to store 1 and a pointer to l. Then a
successive operation 2::l could reuse the same memory block if the list is used
in a semi-persistent way. Thus we simply need to replace 1 by 2. To do this, we
must maintain for each list the previous cons, if any.

Hash Tables. Combining (semi-)persistent arrays with (semi-)persistent lists,
one easily gets (semi-)persistent hash tables.

Benchmarks. We present some benchmarks to show the benefits of semi-persistence.
Each of the previous three data structures has been implemented in Ocaml1.
Each data structure is tested the same way and compared to its fully per-
sistent counterpart. The test consists in simulating a backtracking algorithm
with branching degree 4 and depth 6, operating on a single data structure. N

1 The full code is available in the long version of this paper [7].



successive update operations are performed on the data structure between two
branchings points.

The following table gives timings for various values of N . The code was
compiled with the Ocaml native-code compiler (ocamlopt -unsafe) on a dual
core Pentium 2.13GHz processor running under Linux. The timings are given in
seconds and correspond to CPU time obtained using the UNIX times system
call.

N 200 1000 5000 10000

persistent arrays 0.21 1.50 13.90 30.5
semi-persistent arrays 0.18 1.10 7.59 17.3

persistent lists 0.18 2.38 50.20 195.0
semi-persistent lists 0.11 0.76 8.02 31.1

persistent hash tables 0.24 2.15 19.30 43.1
semi-persistent hash tables 0.22 1.51 11.20 28.2

As we can see, the speedup ratio is always greater than 1 and almost reaches
7 (for semi-persistent lists). Regarding memory consumption, we compared the
total number of allocated bytes, as reported by Ocaml’s garbage collector. For
the tests corresponding to the last column (N = 10000) semi-persistent data
structures always used much less memory than persistent ones: 3 times less for
arrays, 575 times less for lists and 1.5 times less for hash tables. The dramatic
ratio for lists is easily explained by the fact that our benchmark program reflects
the best case regarding memory allocation (allocation in one branch is reused in
other branches, which all have the same length).

3 Programming with Semi-Persistent Data Structures

This section introduces a small programming language to manipulate semi-
persistent data structures. In order to keep it simple, we assume that we are
operating on the successive versions of a single, statically allocated, data struc-
ture. Multiple data structures and dynamic allocation are discussed in Section 5.

3.1 Syntax

The syntax of our language is as follows:

e ::= x | c | p | f e | let x = e in e

| if e then e else e
d ::= fun f (x : ι) = {φ} e {ψ}
ι ::= semi | δ | bool

A program expression is either a variable (x), a constant (c), a pointer (p), a
function call, a local variable introduced by a let binding, or a conditional.
The set of function names f includes some primitive operations (introduced in



the next section). A function definition d introduces a function f with exactly
one argument x of type ι, a precondition φ, a body and a postcondition ψ. A
type ι is either the type semi of the semi-persistent data structure, the type δ
of the values it contains, or the type bool of booleans. The syntax of pre- and
postconditions will be given later in Section 4. A program ∆ is a finite set of
mutually recursive functions.

3.2 Primitive Operations

We may consider three kinds of operations on semi-persistent data structures:
update operations backtracking to a given version and creating a new successor,
which becomes the newest version; destructive access operations backtracking to
a given version, which becomes the newest version, and then accessing it; and
non-destructive access operations accessing an ancestor of the newest version,
without modifying the data structure.

Since update and destructive access operations both need to backtrack, it
is convenient to design a language based on the following three primitives:
backtrack, which backtracks to a given version, making it the newest version;
branch which builds a new successor of a given version, assuming it is the newest
version; and acc, which accesses a given version, assuming it is a valid version.
Then update and destructive access operations can be rephrased in terms of the
above primitives:

upd e = branch (backtrack e)
dacc e = acc (backtrack e)

3.3 Operational Semantics

We equip our language with a small step operational semantics, which is given
in Figure 1. One step of reduction is written e1, S1 → e2, S2 where e1 and e2 are
program expressions and S1 and S2 are states. A value v is either a constant c or
a pointer p. Pointers represent versions of the semi-persistent data structure. A
state S is a stack p1, . . . , pm of pointers, pm being the top of the stack. The se-
mantics is straightforward, except for primitive operations. Primitive backtrack
expects an argument pn designating a valid version of the data structure, that is
an element of the stack. Then all pointers on top of pn are popped from the stack
and pn is the result of the operation. Primitive branch expects an argument pn

being the top of the stack and pushes a new value p, which is also the result
of the operation. Finally, primitive acc expects an argument pn designating a
valid version, leaves the stack unchanged and returns some value for version pn,
represented by A(pn). (We leave A uninterpreted since we are not interested in
the values contained in the data structure.)

Note that reduction of backtrack pn or acc pn is blocked whenever pn is
not an element of S, which is precisely what we intend to prevent.



E ::= [] | f E | let x = E in e | if E then e else e

v ::= c | p
S ::= p · · · p

if true then e1 else e2, S → e1, S

if false then e1 else e2, S → e2, S

let x = v in e, S → e{x← v}, S
f v, S → e{x← v}, S if fun f (x : ι) = {φ} e {ψ} ∈ ∆

backtrack pn, p1 · · · pnpn+1 · · · pm → pn, p1 · · · pn

branch pn, p1 · · · pn → p, p1 · · · pnp p fresh
acc pn, p1 · · · pnpn+1 · · · pm → A(pn), p1 · · · pnpn+1 · · · pm

E[e1], S1 → E[e2], S2 if e1, S1 → e2, S2 and E 6= []

Fig. 1. Operational Semantics

3.4 Type System with Effect

We introduce a type system to characterize well-formed programs. Our language
is simply typed and thus type-checking is immediate. Meanwhile, we infer the
effect ǫ of each expression, as an element of the boolean lattice ({⊥,⊤},∧,∨).
This boolean indicates whether the expression modifies the semi-persistent data
structure (⊥ meaning no modification and ⊤ a modification). Effects will be
used in the next section to simplify constraint generation. Each function is given
a type τ , as follows:

τ ::= (x : ι)→ǫ {φ} ι {ψ}

The argument is given a type and a name (x) since it is bound in both precon-
dition φ and postcondition ψ. Type τ also indicates the latent effect ǫ of the
function, which is the effect resulting from the function application.

A typing environment Γ is a set of type assignments for variables (x : ι),
constants (c : ι) and functions (f : τ). It is assumed to contain at least type
declarations for the primitives, as follows:

backtrack : (x : semi)→⊤ {φbacktrack} semi{ψbacktrack}
branch : (x : semi)→⊤ {φbranch} semi{ψbranch}

acc : (x : semi)→⊥ {φacc} δ {ψacc}

where pre- and postcondition are given later. As expected, both backtrack and
branch modify the semi-persistent data structure and thus have effect ⊤, while
the non-destructive access acc has effect ⊥.

Given a typing environment Γ , the judgment Γ ⊢ e : ι, ǫ means “e is a well-
formed expression of type ι and effect ǫ” and the judgment Γ ⊢ d : τ means “d is
a well-formed function definition of type τ”. Typing rules are given in Figure 2.
They assume judgments Γ ⊢ φ pre and Γ ⊢ ψ post ι for the well-formedness of
pre- and postconditions respectively, to be defined later in Section 4.1. Note that
there is no typing rule for pointers, to prevent their explicit use in programs.



Var
x : ι ∈ Γ

Γ ⊢ x : ι,⊥
Const

c : ι ∈ Γ

Γ ⊢ c : ι,⊥

App
f : (x : ι1)→

ǫ2 {φ} ι2 {ψ} ∈ Γ Γ ⊢ e : ι1, ǫ1

Γ ⊢ f e : ι2, ǫ1 ∨ ǫ2

Ite
Γ ⊢ e1 : bool, ǫ1 Γ ⊢ e2 : ι, ǫ2 Γ ⊢ e3 : ι, ǫ3

Γ ⊢ if e1 then e2 else e3 : ι, ǫ1 ∨ ǫ2 ∨ ǫ3

Let
Γ ⊢ e1 : ι1, ǫ1 Γ, x : ι1 ⊢ e2 : ι2, ǫ2

Γ ⊢ let x = e1 in e2 : ι2, ǫ1 ∨ ǫ2

Fun
x : ι1 ⊢ φ pre x : ι1 ⊢ ψ post ι2 Γ, x : ι1 ⊢ e : ι2, ǫ

Γ ⊢ fun f (x : ι1) = {φ} e {ψ} : (x : ι1)→
ǫ {φ} ι2 {ψ}

Fig. 2. Typing Rules

A program ∆ = d1, . . . , dn is well-typed if each function definition di can be
given a type τi such that d1 : τ1, . . . , dn : τn ⊢ di : τi for each i. The types τi can
easily be obtained by a fixpoint computation, starting will all latent effects set
to ⊥, since effect inference is clearly a monotone function.

3.5 Examples

Let us consider the following two functions f and g:

fun f x0 = {valid(x0)}
let x1 = upd x0 in

let x2 = upd x0 in

acc x2

fun g x0 = {valid(x0)}
let x1 = upd x0 in

let x2 = upd x0 in

acc x1

Each function expects a valid version x0 of the data structure as argument and
successively build two successors x1 and x2 of x0. Then f accesses x2, which is
valid, and g accesses x1, which is illegal. Let us check this on the operational
semantics. Let S be a state composed of a single pointer p. The reduction of f p
in S runs as follows:

f p, p→ let x1 = upd p in let x2 = upd p inacc x2, p

→ let x1 = p1 in let x2 = upd p inacc x2, pp1

→ let x2 = upd p in acc x2, pp1

→ let x2 = p2 in acc x2, pp2

→ acc p2, pp2

→ A(p2), pp2p3

and ends on the value A(p2). On the contrary, the reduction of g p in S blocks
on g p, p→ . . .→ acc p1, pp2.



4 Proof System

This section introduces a theory for semi-persistence and a proof system for this
theory. First we define the syntax and semantics of logical annotations. Then
we compute a set of constraints for each program expression, which is proved to
express the correctness of the program with respect to semi-persistence. Finally
we give a decision procedure to solve the constraints.

4.1 Theory of Semi-Persistence

The syntax of annotations is as follows:

term t ::= x | p | prev(t)
atom a ::= t = t | path(t, t)

postcondition ψ ::= a | ψ ∧ ψ
precondition φ ::= a | φ ∧ φ | ψ ⇒ φ | ∀x. φ

Terms are built from variables, pointers and a single function symbol prev.
Atoms are built from equality and a single predicate symbol path. A postcondi-
tion ψ is restricted to a conjunction of atoms. A precondition is a formula φ built
from atoms, conjunctions, implications and universal quantifications. A negative
formula (i.e. appearing on the left side of an implication) is restricted to a con-
junction of atoms. We introduce two different syntactic categories ψ and φ for
formulae but one can notice that φ actually contains ψ. This syntactic restric-
tion on formulae is justified later in Section 4.5 when introducing the decision
procedure. In the remainder of the paper, a “formula” refers to the syntactic
category φ. Substitution a of term t for a variable x in a formula φ is written
φ{x← t}. We denote by S(A) the set of all subterms of a set of atoms A.

The typing of terms and formulae is straightforward, assuming that prev

has signature semi → semi. Function postconditions may refer to the function
result, represented by the variable ret . Formulae can only refer to variables of
type semi (including variable ret). We write Γ ⊢ φ to denote a well-formed
formula φ in a typing environment Γ .

We now give the semantics of program annotations. The main idea is to
express that a given version is valid if and only if it is an ancestor of the newest
version. To illustrate this idea, the following figure shows the successive version
trees for the sequence of declarations x1 = upd x0, x2 = upd x1, x3 = upd x1

and x4 = upd x0:

The newest version is pictured as a black node, other valid versions as white
nodes and invalid ones as gray nodes.

The meaning of prev and path is to define the notion of ancestor: prev(x)
is the immediate ancestor of x and path(x, y) holds whenever x is an ancestor
of y. The corresponding theory can be axiomatized as follows:



Definition 1. The theory T is defined as the combination of the theory of equal-
ity and the following axioms:

(A1) ∀x. path(x, x)
(A2) ∀xy. path(x, prev(y))⇒ path(x, y)
(A3) ∀xyz. path(x, y) ∧ path(y, z)⇒ path(x, z)

We write |= φ if φ is valid in any model of T .

The three axioms (A1)–(A3) exactly define path as the reflexive transitive closure
of prev−1, since we consider validity in all models of T and therefore in those
where path is the smallest relation satisfying axioms (A1)–(A3). Note that prev
is a total function and that there is no notion of “root” in our logic. Thus a
version always has an immediate ancestor, which may or may not be valid.

To account for the modification of the newest version as program execu-
tion progresses, we introduce a “mutable” variable cur to represent the newest
version. This variable does not appear in programs: its scope is limited to anno-
tations. The only way to modify its contents is to call the primitive operations
backtrack and branch. We are now able to give the full type expressions for
the three primitive operations:

backtrack :
(x : semi)→⊤ {path(x, cur )} semi{ret = x ∧ cur = x}

branch :
(x : semi)→⊤

{cur = x} semi{ret = cur ∧ prev(cur) = x}
acc :

(x : semi)→⊥ {path(x, cur )} δ {true}

As expected, effect ⊤ for the first two reflects the modification of cur . The valid-
ity of function argument x is expressed as path(x, cur) in operations backtrack
and acc. Note that acc has no postcondition (written true and which could
stand for the tautology cur = cur) since we are not interested in the values
contained in the data structure.

We are now able to define the judgements used in Section 3.4 for pre- and
postconditions. We write Γ ⊢ φ pre as syntactic sugar for Γ, cur : semi ⊢ φ.
Similarly, Γ ⊢ ψ post ι is syntactic sugar for Γ, cur : semi, ret : ι ⊢ ψ when
return type ι is semi and for Γ, cur : semi ⊢ ψ otherwise. Note that since Γ only
contains the function argument x in typing rule Fun, the function precondition
may only refer to x and cur , and its postcondition to x, cur and ret .

4.2 Constraints

We now define the set of constraints associated to a given program. This is
mostly a weakest precondition calculus, which is greatly simplified here since we
have only one mutable variable (namely cur). For a program expression e and a
formula φ we write this weakest precondition C(e, φ). This is formula expressing



framef (φ) = φf{x← ret} ∧ ∀ret ′. ψf{ret ← ret ′, x← ret} ⇒ φ{ret ← ret ′}

if f : (x : ι)→⊥ {φf} ι
′ {ψf}

framef (φ) = φf{x← ret} ∧ ∀ret ′cur ′. ψf{ret ← ret ′, x← ret , cur ← cur ′} ⇒
φ{ret ← ret ′, cur ← cur ′}

if f : (x : ι)→⊤ {φf} ι
′ {ψf}

C(v, φ) = φ{ret ← v}
C(if e1 then e2 else e3, φ) = C(e1, C(e2, φ) ∧ C(e3, φ))

C(let x = e1 in e2, φ) = C(e1, C(e2, φ){x← ret})
C(f e1, φ) = C(e1, framef (φ))

C(fun f (x : ι) = {φ} e {ψ}) = ∀x.∀cur . φ⇒ C(e,ψ)

Fig. 3. Constraint synthesis

the conditions under which φ will hold after the evaluation of e. Note that cur
may appear in φ, denoting the result of e, but does not appear in C(e, φ) anymore.
For a function definition d we write C(d) the formula expressing its correctness,
that is the fact that the function precondition implies the weakest precondition
obtained from the function postcondition, for any function argument and any
initial value of cur . The definition for C(e, φ) is given in Figure 3. This is a
standard weakest precondition calculus, except for the conditional rule. Indeed,
one would expect a rule such as

C(if e1 then e2 else e3, φ) =
C(e1, (ret = true⇒ C(e2, φ)) ∧ (ret = false⇒ C(e3, φ)))

but since φ cannot test the result of condition e1 (φ may only refer to variables
of type semi), the conjunction above simplifies to C(e2, φ) ∧ C(e3, φ).

The constraint synthesis for a function call, C(f e1, φ), is the only nontrivial
case. It requires precondition φf to be valid and postcondition ψf to imply the
expected property φ. Universal quantification is used to introduce f ’s results
and side-effects. We use the effect in f ’s type to distinguish two cases: either
effect is ⊥ which means that cur is not modified and thus we only quantify over
f ’s result (hence we get for free the invariance of cur); or effect is ⊤ and we
quantify over an additional variable cur ′ which stands for the new value of cur .
To simplify this definition, we introduce a formula transformer framef (φ) which
builds the appropriate postcondition for argument e1.

4.3 Examples

Simple Example. Let us consider again the two functions f and g from Sec-
tion 3.5, valid(x0) being now expressed as path(x0, cur). We compute the as-



sociated constraints for an empty postcondition true. The constraint C(f) is

∀x0. ∀cur. path(x0, cur)⇒
path(x0, cur) ∧
∀x1. ∀cur1. (prev(x1) = x0 ∧ cur1 = x1)⇒
path(x0, cur1) ∧
∀x2. ∀cur2. (prev(x2) = x0 ∧ cur2 = x2)⇒
path(x2, cur2) ∧ ∀ret . true⇒ true

It can be split into three proof obligations, which are the following universally
quantified sequents:

path(x0, cur) ⊢ path(x0, cur)

path(x0, cur), prev(x1) = x0, cur1 = x1 ⊢ path(x0, cur1)

path(x0, cur), prev(x1) = x0,

cur1 = x1, prev(x2) = x0, cur2 = x2 ⊢ path(x2, cur2)

The three of them hold in theory T and thus f is correct. Similarly, the constraint
C(g) can be computed and split into three proof obligations. The first two are
exactly the same as for f but the third one is slightly different:

path(x0, cur), prev(x1) = x0,

cur1 = x1, prev(x2) = x0, cur2 = x2 ⊢ path(x1, cur2)

In that case it does not hold in theory T .

Backtracking Example. As a more complex example, let us consider a backtrack-
ing algorithm. The pattern of a program performing backtracking on a persistent
data structure is a recursive function bt looking like

fun bt (x : semi) = . . . bt(upd x) . . . bt(upd x) . . .

Function bt takes a data structure x as argument and makes recursive calls on
several successors of x. This is precisely a case where the data structure may be
semi-persistent, as motivated in the introduction. To capture this pattern in our
framework, we simply need to consider two successive calls bt(upd x), which can
be written as follows:

fun bt (x : semi) =
let = bt(upd x) in bt(upd x)

Function bt obviously requires a precondition stating that x is a valid version of
the semi-persistent data structure. This is not enough information to discharge
the proof obligations: the second recursive call bt(upd x) requires x to be valid,
which possibly could no longer be the case after the first recursive call. Therefore
a postcondition for bt is needed to ensure the validity of x:

fun bt (x : semi) =
{ path(x, cur ) }
let = bt(upd x) in bt(upd x)
{ path(x, cur ) }



Then it is straightforward to check that constraint C(bt) is valid in theory T .

4.4 Soundness

In the remainder of this section, we consider a program ∆ = d1, . . . , dn whose
constraints are valid, that is |= C(d1) ∧ · · · ∧ C(dn). We are going to show that
the evaluation of this program will not block.

For this purpose we first introduce the notion of validity with respect to a
state of the operational semantics:

Definition 2. A formula φ is valid in a state S = p1, . . . , pn, written S |= φ, if
it is valid in any model M for T such that

{

prev(pi+1) = pi for all 1 ≤ i < n

cur = pn

Then we show that this validity is preserved by the operational semantics. To
do this, it is convenient to see the evaluation contexts as formula transformers,
as follows:

E E[φ]
[] φ

let x = E1 in e2 E1[C(e2, φ){x← ret}]
if E1 then e2 else e3 E1[C(e2, φ) ∧ C(e3, φ)]

f E1 E1[framef (φ)]

There is a property of commutation between contexts for programs and contexts
for formulae:

Lemma 1. S |= C(E[e], φ) if and only if S |= C(e, E[φ]).

We now want to prove preservation of validity, that is if S |= C(e, φ) and
e, S → e′, S′ then S′ |= C(e′, φ). Obviously, this does not hold for any state S,
program e and formula φ. Indeed, if S ≡ p1p2, e ≡ upd p1 and φ ≡ prev(p2) = p1,
then C(e, φ) is

path(p1, cur) ∧ ∀ret ′cur ′. (prev(ret ′) = p1 ∧ cur ′ = ret ′)⇒ prev(p2) = p1

which holds in S. But S′ ≡ p1p for a fresh p, e′ ≡ p, and C(e′, φ) is prev(p2) = p1

which does not hold in S′ (since p2 does not appear in S′ anymore). Fortunately,
we are not interested in the preservation of C(e, φ) for any formula φ, but only for
formulae which arise from function postconditions. As pointed out in Section 4.1,
a function postcondition may only refer to x, cur and ret only. Therefore we
are only considering formulae C(e, φ) where x is the only free variable (cur
and ret do not appear in formulae C(e, φ) anymore). This excludes the formula
prev(p2) = p1 in the example above.

We are now able to prove preservation of validity:

Lemma 2. Let S be a state, φ be a formula and e a program expression. If
S |= C(e, φ) and e, S → e′, S′ then S′ |= C(e′, φ).

Finally, we prove the following progress property:

Theorem 1. Let S be a state, φ be a formula and e a program expression. If
S |= C(e, φ) and e, S →∗ e′, S′ 6→, then e′ is a value.



4.5 Decision Procedure

We now show that constraints are decidable and we give a decision procedure.
First, we notice that any formula φ is equivalent to a conjunction of formulae
of the form ∀x1. . . . ∀xn. a1 ∧ · · · ∧ am ⇒ a, where the ai’s are atoms. This re-
sults from the syntactic restrictions on pre- and postconditions, together with
the weakest preconditions rules which are only using postconditions in nega-
tive positions. Therefore we simply need to decide whether a given atom is the
consequence of other atoms.

We denote byH⋆ the congruence closure of a setH of hypotheses {a1, . . . , am}.
Obviously S(H⋆) = S(H) since no new term is created. H⋆ is finite and can be
computed as a fixpoint.

Algorithm 1 For any atom a such that S({a}) ⊆ S(H), the following algo-
rithm, decide(H, a), decides whether H |= a.

1. First we compute the congruence closure H⋆.
2. If a is of the form t1 = t2, we return true if t1 = t2 ∈ H⋆ and false

otherwise.
3. If a is of the form path(t1, t2), we build a directed graph G whose nodes are

the subterms of H⋆, as follows:

(a) for each pair of nodes t and prev(t) we add an edge from prev(t) to t;
(b) for each path(t1, t2) ∈ H

⋆ we add an edge from t1 to t2;
(c) for each t1 = t2 ∈ H

⋆ we add two edges between t1 and t2.

4. Finally we check whether there is a path from t1 to t2 in G.

Obviously this algorithm terminates since H⋆ is finite and thus so is G. We now
show soundness and completeness for this algorithm.

Theorem 2. decide(H, a) returns true if and only if H |= a.

Note: the restriction S({a}) ⊆ S(H) can be easily met by adding to H the
equalities t = t for any subterm t of a; it was only introduced to simplify the
proof above.

4.6 Implementation

We have implemented the whole framework of semi-persistence. The implemen-
tation relies on an existing proof obligations generator, Why [10]. This tool
takes annotated first-order imperative programs as input and uses a traditional
weakest precondition calculus to generate proof obligations. The language we
use in this paper is actually a subset of Why’s input language. We simply use
the imperative aspect to make cur a mutable variable. Then the resulting proof
obligations are exactly the same as those obtained by the constraint synthesis
defined in Section 4.2.

The Why tool outputs proof obligations in the native syntax of various exist-
ing provers. In particular, these formulas can be sent to Ergo [5], an automatic



prover for first-order logic which combines congruence closure with various built-
in decision procedures. We first simply axiomatized theory T using (A1)–(A3),
which proved to be powerful enough to verify all examples from this paper and
several other benchmark programs. Yet it is possibly incomplete (automatic the-
orem provers use heuristics to handle quantifiers in first-order logic). To achieve
completeness, and to assess the results of Section 4.5, we also implemented the-
ory T as a new built-in decision procedure in Ergo. Again we verified all the
benchmark programs.

5 Conclusion

We have introduced the notion of semi-persistent data structures, where update
operations are restricted to ancestors of the most recent version. Semi-persistent
data structures may be more efficient than their fully persistent counterparts,
and are of particular interest in implementing backtracking algorithms. We have
proposed an almost automatic way of checking the legal use of semi-persistent
data structures. It is based on light user annotations in programs, from which
proof obligations are extracted and automatically discharged by a decision pro-
cedure.

There is a lot of remaining work to be done. First, the language introduced in
Section 3, in which we check for legal use of semi-persistence, could be greatly en-
riched. Beside the missing features such as polymorphism or recursive datatypes,
it would be of particular interest to consider simultaneous use of several semi-
persistent data structures and dynamic creation of semi-persistent data struc-
tures. Regarding the former, one would probably need to express disjointness
of version subtrees, and thus to enrich the logical fragment used in annotations
with disjunctions and negations; we may lose decidability of the logic, though.
Regarding the latter, it would imply to express in the logic the freshness of the
allocated pointers and to maintain the newest versions for each data structures.

Another interesting direction would be to provide systematic techniques
to make data structures semi-persistent as previously done for persistence [9].
Clearly what we did for lists could be extended to tree-based data structures.
It would be even more interesting to formally verify semi-persistent data struc-
ture implementations, that is to show that the contents of any ancestor of the
version being updated is preserved. Since such implementations are necessarily
using imperative features (otherwise they would be fully persistent), proving
their correctness requires verification techniques for imperative programs. This
could be done for instance using verification tools such as SPEC# [2] or Ca-
duceus [11]. However, we would prefer verifying Ocaml code, as given in the
long version of this paper [7] for instance, but unfortunately there is currently
no tool to handle such code.
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Structure. In ACM SIGPLAN Workshop on ML, Freiburg, Germany, October
2007.

7. Sylvain Conchon and Jean-Christophe Filliâtre. Semi-Persistent Data Structures.
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