

Angels (OpenSSL) and D(a)emons

Athula Balachandran
Wolfgang Richter

PJ1 Final Submission

● SSL server-side implementation
● CGI
● Daemonize

SSL – Stuff you already know!

● Standard behind secure communication on the
Internet.

● Data encrypted before it leaves your computer
and decrypted only at the computer.

● Hope is it is impossible to crack and eavesdrop!
● Can be used with HTTP, POP3, Telnet etc.

OpenSSL

● Can do a lot more than SSL
● Message digests
● Encryption and decryption of files
● Digital certificates
● Digital signatures
● Random number generation

Setup domain name

● Create a DNS hostname for yourself with a free
account at DynDNS (or already have a domain
name...)

● Don't buy anything, they offer free subdomains
and scripts/programs to
auto-update the DNS mapping for you.

http://dyn.com/dns/dyndns-free/
http://dyn.com/support/clients/

Set up CA and get certificate

● Add the 15-441 Carnegie Mellon University
Root CA to your browser (import certificate,
usually somewhere in preferences)

● Obtain your own private key and public
certificate from the 15-441 CMU CA.

https://gs9671.sp.cs.cmu.edu/keyserver/

Implementation

● Use the OpenSSL library, here is a link to their documentation.

● Create a second server socket in addition to the first one, use the passed in SSL
port from the commandline arguments.

● Add this socket to the select() loop just like your normal HTTP server socket.

● Whenever you accept connections, wrap them with the SSL wrapping functions.

● Use the special read() and write() SSL functions to read and write to these
special connected clients

● In the select() loop, you need to know if a socket you are dealing with is SSL
wrapped or not

● Use appropriate IO depending on the 'type' of socket---although use select() for
all fd's

● Use your private key and certificate file that you obtained earlier.

http://www.openssl.org/docs/ssl/ssl.html

Open SSL headers

/* OpenSSL headers */

#include <openssl/bio.h>

#include <openssl/ssl.h>

#include <openssl/err.h>

Global Initilization

● SSL_library_init()

● registers the available SSL/TLS ciphers and
digests.

● SSL_load_error_strings()

● Provide readable error messages.

SSL_METHOD

● To describe protocol versions
● SSLv1, SSLv2 and TLSv1

SSL_METHOD* meth = TLSv1_method();

SSL_CTX

● Context object
● Store context information (keying material)
● Reused for all connections

SSL_CTX* ctx = SSL_CTX_new(meth);

SSL_CTX_use_certificate_file()

● Loads the first certificate stored in file into ctx.
● The formatting type of the certificate must be

specified from the known types
● SSL_FILETYPE_PEM
● SSL_FILETYPE_ASN1.
● Our CA generates files of PEM format

int SSL_CTX_use_certificate_file(SSL_CTX *ctx,

const char *file, int type);

SSL_CTX_use_PrivateKey_file()

● Adds the first private key found in file to ctx.
● The formatting type of the certificate must be

specified from the known types:
● SSL_FILETYPE_PEM
● SSL_FILETYPE_ASN1.
● Our CA generates files of PEM format

int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const

char *file, int type);

Initialization Steps

● Global System Initialize
● SSL_library_init()

● SSL_load_error_strings()

● Initialize SSL_METHOD and SSL_CTX
● meth=SSLv23_method();

● ctx=SSL_CTX_new(meth);

● Loading keys
● SSL_CTX_use_certificate_file(...)

● SSL_CTX_use_PrivateKey_file(...)

SSL_new()

● Creates a new SSL structure
● Inherits the settings of the underlying context.

SSL* ssl = SSL_new(ctx);

SSL_set_fd()

● Connect the SSL object with a file descriptor

int SSL_set_fd(SSL *ssl, int fd);

SSL_accept

● SSL_accept - wait for a TLS/SSL client to
initiate a TLS/SSL handshake

int SSL_accept(SSL *ssl)

SSL_read and SSL_write

● SSL_read to read bytes from a TLS/SSL connection
 int SSL_read(SSL *ssl, void *buf, int num);

● SSL_write to write bytes to a TLS/SSL connection
 int SSL_write(SSL *ssl, const void *buf, int num);

● NOTE:
● The data are received in records (with a maximum record size of

16kB for SSLv3/TLSv1).
● Only when a record has been completely received, it can be

processed (decryption and check of integrity)

SSL_shutdown

● Shuts down an active TLS/SSL connection.
● Sends the ``close notify'' shutdown alert to the

peer.

 int SSL_shutdown(SSL *ssl);

SSL Wrapping, send and recv data

● Create new SSL structure using SSL_new()
● Connect it to the socket using SSL_set_fd()
● Perform handshake using SSL_accept()
● Read and write using SSL_read() and

SSL_write()
● Perform shutdown at the end, also need to clear

state and close underlying I/O socket etc.
● As always, check for return value and handle

errors appropriately!

BIO - Optional

● I/O abstraction provided by OpenSSL
● Hides the underlying I/O and can set up

connection with any I/O (socket, buffer, ssl etc)
● BIOs can be stacked on top of each other using

push and pop!
● NOTE: You don't have to necessarily use BIO

for this project! The next few slides describe
creating BIO and working with it.

BIO_new()

● Returns a new BIO using method type.
● Check BIO_s_socket(), BIO_f_buffer(), BIO_f_ssl()
● Check BIO_new_socket()

 BIO * BIO_new(BIO_s_socket());

BIO_set_fd(sbio, sock, BIO_NOCLOSE);

SSL_set_bio()

● Connects the BIOs rbio and wbio for the read
and write operations of the TLS/SSL
(encrypted) side of ssl

void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio)

 Example of Stacking BIOs

 buf_io = BIO_new(BIO_f_buffer());

 /* create a buffer BIO */

 ssl_bio = BIO_new(BIO_f_ssl());

/* create an ssl BIO */

 BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE);

/* assign the ssl BIO to SSL */

 BIO_push(buf_io, ssl_bio);

BIO_read() and BIO_write()

● Attempts to read len bytes from BIO b and
places the data in buf.
int BIO_read(BIO *b, void *buf, int len);

● Attempts to write len bytes from buf to BIO b.
int BIO_write(BIO *b, const void *buf, int len);

Foreground Processes
and

Background processes (daemons)

How to daemonize?

Orphaning
● Fork the process to create a copy (child)
● Let parent exit!
● The child will become child of init process

– Start operating in the background

int i, lfp, pid = fork();

if (pid < 0) exit(EXIT_FAILURE); /* fork error */

if (pid > 0) exit(EXIT_SUCCESS); /* parent exits */

/* child (daemon) continues */

How to daemonize?

Process Independency
● Process inherits parent's controlling tty
● Server should not receive signals
● Detach from its controlling tty
● Operate independently from other processes

setsid() /*obtain a new process group*/

How to daemonize?

Inherited Descriptors and Std I/0 Descriptors
● Close all open descriptors inherited
● Standard I/O descriptors (stdin 0, stdout 1, stderr 2)
● Open and connect to /dev/null

for (i = getdtablesize(); i >= 0; --i) close(i);

/* close all descriptors*/
i = open(“/dev/null”,O_RDWR); /*open stdin */

dup(i)

dup(i)

How to daemonize?

File Creation Mask
● Servers run as super-user
● Need to protect the files they create
● Filecreation mode is 750 (complement of 027)

umask(027);

How to daemonize?

Running directory
● Server should run in a known directory

chdir(“/servers/”)

How to daemonize?

Mutual Exclusion
● We want only one copy of the server (file locking)
● Record pid of the running instance!
● 'cat lisod.lock' instead of 'ps -ef | grep lisod'
 lfp = open(lock_file, O_RDWR|O_CREAT|O_EXCL, 0640);

 if (lfp < 0)

 exit(EXIT_FAILURE); /* can not open */

if (lockf(lfp, F_TLOCK, 0) < 0)

 exit(EXIT_SUCCESS); /* can not lock */

/* only first instance continues */

sprintf(str, "%d\n", getpid());

write(lfp, str, strlen(str)); /*record pid to lockfile */

How to daemonize?

Catching signals
● Process may receive signal from a user or a

process
● Catch those signals and behave accordingly.
● Signal_Handler function in the sample code

How to daemonize?

● Logging
● Assignment – you need to log to file!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

