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PJ1 Final Submission

● SSL server-side implementation
● CGI
● Daemonize 



  

SSL – Stuff you already know!

● Standard behind secure communication on the 
Internet.

● Data encrypted before it leaves your computer 
and decrypted only at the computer.

● Hope is it is impossible to crack and eavesdrop!
● Can be used with HTTP, POP3, Telnet etc.



  

OpenSSL

● Can do a lot more than SSL
● Message digests
● Encryption and decryption of files
● Digital certificates
● Digital signatures
● Random number generation



  

Setup domain name

● Create a DNS hostname for yourself with a free 
account at DynDNS (or already have a domain 
name...)

● Don't buy anything, they offer free subdomains 
and scripts/programs to  
auto-update the DNS mapping for you.  

http://dyn.com/dns/dyndns-free/
http://dyn.com/support/clients/


  

Set up CA and get certificate

● Add the 15-441 Carnegie Mellon University 
Root CA to your browser (import certificate, 
usually somewhere in preferences)

● Obtain your own private key and public 
certificate from the 15-441 CMU CA.

https://gs9671.sp.cs.cmu.edu/keyserver/


  

Implementation

●  Use the OpenSSL library, here is a link to their documentation.

●  Create a second server socket in addition to the first one, use the passed in SSL 
port from the commandline arguments.

●  Add this socket to the select() loop just like your normal HTTP server socket.

●  Whenever you accept connections, wrap them with the SSL wrapping functions.

●   Use the special read() and write() SSL functions to read and write to these 
special connected clients

●    In the select() loop, you need to know if a socket you are dealing with is SSL 
wrapped or not

●    Use appropriate IO depending on the 'type' of socket---although use select() for 
all fd's

●    Use your private key and certificate file that you obtained earlier.

http://www.openssl.org/docs/ssl/ssl.html


  

Open SSL headers 

/* OpenSSL headers */

#include <openssl/bio.h>

#include <openssl/ssl.h>

#include <openssl/err.h>



  

Global Initilization

● SSL_library_init() 

● registers the available SSL/TLS ciphers and 
digests.

● SSL_load_error_strings()

● Provide readable error messages.



  

SSL_METHOD

● To describe protocol versions 
● SSLv1, SSLv2 and TLSv1

SSL_METHOD* meth = TLSv1_method();



  

SSL_CTX

● Context object
● Store context information (keying material)
● Reused for all connections

SSL_CTX* ctx = SSL_CTX_new(meth);



  

SSL_CTX_use_certificate_file()

● Loads the first certificate stored in file into ctx. 
● The formatting type of the certificate must be 

specified from the known types
●  SSL_FILETYPE_PEM 
● SSL_FILETYPE_ASN1.
● Our CA generates files of PEM format

int SSL_CTX_use_certificate_file(SSL_CTX *ctx, 

const char *file, int type);



  

SSL_CTX_use_PrivateKey_file()

● Adds the first private key found in file to ctx.
● The formatting type of the certificate must be 

specified from the known types:
●  SSL_FILETYPE_PEM
● SSL_FILETYPE_ASN1. 
● Our CA generates files of PEM format

int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const 

char *file, int type);



  

Initialization Steps

● Global System Initialize
● SSL_library_init()

● SSL_load_error_strings()

● Initialize SSL_METHOD and SSL_CTX
● meth=SSLv23_method();

● ctx=SSL_CTX_new(meth);

● Loading keys
● SSL_CTX_use_certificate_file(...)

● SSL_CTX_use_PrivateKey_file(...)



  

SSL_new()

● Creates a new SSL structure 
● Inherits the settings of the underlying context.

SSL* ssl = SSL_new(ctx);



  

SSL_set_fd()

● Connect the SSL object with a file descriptor 

int SSL_set_fd(SSL *ssl, int fd);



  

SSL_accept

● SSL_accept - wait for a TLS/SSL client to 
initiate a TLS/SSL handshake

int SSL_accept(SSL *ssl)



  

SSL_read and SSL_write

● SSL_read to read bytes from a TLS/SSL connection 
     int SSL_read(SSL *ssl, void *buf, int num);

● SSL_write to write bytes to a TLS/SSL connection
    int SSL_write(SSL *ssl, const void *buf, int num);

● NOTE:
● The data are received in records (with a maximum record size of 

16kB for SSLv3/TLSv1). 
● Only when a record has been completely received, it can be 

processed (decryption and check of integrity)



  

SSL_shutdown

● Shuts down an active TLS/SSL connection. 
● Sends the ``close notify'' shutdown alert to the 

peer.

 int SSL_shutdown(SSL *ssl);



  

SSL Wrapping, send and recv data

● Create new SSL structure using SSL_new()
● Connect it to the socket using SSL_set_fd()
● Perform handshake using SSL_accept()
● Read and write using SSL_read() and 

SSL_write()
● Perform shutdown at the end, also need to clear 

state and close underlying I/O socket etc.
● As always, check for return value and handle 

errors appropriately!



  

BIO - Optional

● I/O abstraction provided by OpenSSL
● Hides the underlying I/O and can set up 

connection with any I/O (socket, buffer, ssl etc)
● BIOs can be stacked on top of each other using 

push and pop!
● NOTE: You don't have to necessarily use BIO 

for this project! The next few slides describe 
creating BIO and working with it.



  

BIO_new() 

● Returns a new BIO using method type.
● Check BIO_s_socket(), BIO_f_buffer(), BIO_f_ssl() 
● Check BIO_new_socket()

   BIO *  BIO_new(BIO_s_socket());

BIO_set_fd(sbio, sock, BIO_NOCLOSE);



  

SSL_set_bio()

● Connects the BIOs rbio and wbio for the read 
and write operations of the TLS/SSL 
(encrypted) side of ssl

void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio)



  

 Example of Stacking BIOs 

 

 buf_io = BIO_new(BIO_f_buffer()); 

 /* create a buffer BIO */

 ssl_bio = BIO_new(BIO_f_ssl());           

/* create an ssl BIO */

 BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE);       

/* assign the ssl BIO to SSL */

 BIO_push(buf_io, ssl_bio);       



  

BIO_read() and BIO_write()

● Attempts to read len bytes from BIO b and 
places the data in buf.
int BIO_read(BIO *b, void *buf, int len);

● Attempts to write len bytes from buf to BIO b.
int BIO_write(BIO *b, const void *buf, int len);



  

 

Foreground Processes 
and 

Background processes (daemons)



  

How to daemonize?

Orphaning 
● Fork the process to create a copy (child)
● Let parent exit!
● The child will become child of init process 

– Start operating in the background

int i, lfp, pid = fork();

if (pid < 0) exit(EXIT_FAILURE); /* fork error */

if (pid > 0) exit(EXIT_SUCCESS); /* parent exits */

/* child (daemon) continues */



  

How to daemonize?

Process Independency
● Process inherits parent's controlling tty
● Server should not receive signals 
● Detach from its controlling tty
● Operate independently from other processes

setsid() /*obtain a new process group*/



  

How to daemonize?

Inherited Descriptors and Std I/0 Descriptors
● Close all open descriptors inherited
● Standard I/O descriptors (stdin 0, stdout 1, stderr 2)
● Open and connect to /dev/null

for (i = getdtablesize(); i >= 0; --i) close(i);

/* close all descriptors*/
i = open(“/dev/null”,O_RDWR); /*open stdin */

dup(i)

dup(i)



  

How to daemonize?

File Creation Mask
● Servers run as super-user
● Need to protect the files they create
● Filecreation mode is 750 (complement of 027)

umask(027);



  

How to daemonize?

Running directory
● Server should run in a known directory

chdir(“/servers/”)



  

How to daemonize?

Mutual Exclusion 
● We want only one copy of the server (file locking)
● Record pid of the running instance!
● 'cat lisod.lock' instead of 'ps -ef | grep lisod'
  lfp = open(lock_file, O_RDWR|O_CREAT|O_EXCL, 0640);

  if (lfp < 0)

    exit(EXIT_FAILURE); /* can not open */

if (lockf(lfp, F_TLOCK, 0) < 0)

    exit(EXIT_SUCCESS); /* can not lock */

/* only first instance continues */

sprintf(str, "%d\n", getpid());

write(lfp, str, strlen(str)); /*record pid to lockfile */



  

How to daemonize?

Catching signals
● Process may receive signal from a user or a 

process
● Catch those signals and behave accordingly.
● Signal_Handler function in the sample code



  

How to daemonize?

● Logging
● Assignment – you need to log to file!



  

Questions?
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