
SMS of Death: from analyzing to attacking mobile phones on a large scale

Collin Mulliner, Nico Golde and Jean-Pierre Seifert

Security in Telecommunications

Technische Universität Berlin and Deutsche Telekom Laboratories

D-10587, Berlin, Germany

{collin,nico,jpseifert}@sec.t-labs.tu-berlin.de

Abstract—tbw

Keywords: Mobile Phones, SMS, Vulnerability Analysis,
Denial-of-Service, Large Scale Attack.

I. INTRODUCTION

In the recent years a lot of effort has been put in to

analyzing and attacking smart phones [1], [2], [3], [4],

[5], [6], [7], [8], totally neglecting the so-called feature

phones. Feature phones, mobile phones that have advanced

capabilities besides voice calling and text messaging but

are not considered smart phones, make up for the largest

percentage of mobile devices currently deployed on mobile

networks around the world. In comparison, smart phones

only account for about 16% of all mobile phones [9]. This

gap of security analysis to popularity most likely roots from

the fact that smart phones are closer to desktop computers,

and, therefore, are easier to analyze. Feature phones, on the

other hand, are highly embedded systems that are closed

for developers. This results in having billions (there are

4.6 billion mobile phone subscribers) of possible vulnerable

mobile devices out in the field, just waiting to be taken

advantage of by a knowledgeable attacker who launches

large scale attacks against mobile users and operators around

the world.

In this paper, we investigate the security of feature phones

and the possibility for large scale attacks based on vulner-

abilities discovered in those.

We present a novel approach to the vulnerability analysis

of feature phones, more specifically for their SMS client

implementations. SMS is interesting because it is the feature

that exists on every mobile phone. Further, security issues

related to SMS messaging can be exploited from almost

anywhere in the world, and, thus present the ideal attack

vector against those devices. To the best of our knowledge,

no attempt has been made before to analyze or test feature

phones for security vulnerabilities.

Analyzing feature phones is difficult for several reasons.

First of all, feature phones are completely closed devices,

without any possibilities for developing native applications

or debugging. Further, analyzing the part of the phone that

interacts with the mobile phone network is hard since we

have a large black box between us and the target device.

The mobile phone network. As a consequence, the testing

becomes time consuming, unreliable, and costly.

We address these problems by building our own GSM

network using equipment that can be bought on the public

market. We use this network not only for sending SMS

messages to the phones we analyze, but further use it to

develop a sophisticated monitoring system. The monitoring

system replaces our need for debuggers and other tools that

are normally required for thorough vulnerability analysis.

Vulnerability analysis was conducted using fuzzing. We

chose fuzzing as the testing technique because we did not

have access to source code. Further, using fuzzing we can

design tests once and use them to analyze an arbitrary

number of mobile phones and thus be very efficient.

So far, we have found numerous vulnerabilities in feature

phones soled by the six market leading mobile phones

manufacturers. The vulnerabilities are security critical since

the allow to remotely crash and reboot the entire phone. In

the event disconnecting the phone from the mobile network

and thus interrupting calls and data connections. Such bugs

and attacks have existed before on the Internet, known as

Ping-of-Death [10]. We believe this represents a serious

threat against mobile telephony world wide.

To complete our research we further analyzed the effect

of such attacks no the mobile phone core network. We

came to two interesting findings. First, the mobile phone

network can be abused to amplify our Denial-of-Service

attacks. Second, through attacking mobile phones one can

attack the mobile phone network itself.

The main contributions of this paper are:

• Vulnerability Analysis of Feature Phones: We intro-

duce a novel method to conduct vulnerability analysis

of feature phones based on fuzzing. Our method is

based on a small GSM basestation that is available on

the public market. We solve the major issue of such

analysis: the monitoring for crashes and other misbe-

havior. We present multiple solutions for monitoring

such devices while fuzzing them. Further, our method

proves that once a system, such as GSM, becomes

partially open, the security of the entire system, includ-

ing the parts that are still closed, can be analyzed and

exploited.

• Bugs Present in Most Phones: We show that vulner-

abilities exist in most mobile phones that are deployed

on mobile networks around the world today. The bugs

we discovered can be used for carrying out large scale

Denial-of-Service attacks.

• Attack Impact: We show that a small number of bugs

in the most popular mobile phone brands is enough to

take down a significant number of all mobile phones

around the world. We further show that bugs present

in mobile phones can possible be use to attack the

mobile phone network infrastructure.

The rest of this paper is structured in the following way.

In Section II we discuss related work and show how our

research is different from previous work in this area. In Sec-

tion III explain how we selected our targets for analysis and

attacks. In Section IV we show in great detail how to analyze

feature phones for security vulnerabilities. In Section V we

layout methods to use the vulnerabilities discovered by us for

large scale attacks on mobile communication. In Section VI

we present methods for detecting and preventing the attacks

we designed. In Section VII we briefly conclude.

II. RELATED WORK

Related work is separated into four parts. First, smart

phone vulnerability analysis. Second, mobile and feature

phone bugs, which where all found by pure accident. Third,

studies on attacks against mobile phone networks. Forth,

Denial-of-Service (DoS) attacks since we are going to

present a large scale mobile phone DoS attack in this paper.

In [3] the authors build a framework for security analysis

of Multimedia Messaging Service (MMS) client implemen-

tations on smart phones. The authors conducted fuzzed-

based testing of a Windows Mobile device. They found

and exploited several vulnerabilities of which some lead

to arbitrary code execution. In [11] the authors build a

framework for conducting vulnerability analysis for Short

Message Service (SMS) client implementations on smart

phones. Particular the iPhone, Android, and Windows Mo-

bile. They found several vulnerabilities. These could be

used to disconnect these types of smart phones from the

mobile phone network and could execute arbitrary code

on the iPhone. Because of the popularity of especially the

iPhone and Android-based devices many researchers poke

these operating systems and publish vulnerabilities for them.

Other bugs such as the Curse-of-Silence [12] named bug for

Symbian OS (it prevents a phone from further receiving any

SMS after being attacked) where found by accident.

In the area of mobile phones bugs and vulnerabilities all

finds occurred by accident since no real academic testing

has been conducted before. We believe that some internal

testing is being conducted by some manufactures since

there exits commercial software for such purpose [13]. Over

the last few years a small number of bugs haven been

discovered by individuals. The WAP-Push vCard against

Sony Ericsson phones [14] that lead an attacked phone to

reboot. Nokia phones [15] contained a bug in the vCard

parser that could be abused to remotely crash a phone by

sending it special manipulated vCard through SMS. Some

mobile phones produced by Siemens contained a bug [16]

that would shutdown the phone when displaying a SMS

message that contained a special character.

Traynor at el. show in [17] that SMS messages sent from

the Internet can be used to carry out a Denial-of-Service

attack against mobile networks. The attack focused on

blocking the mobile network’s control channels, therefore,

no more calls could be initiated. A study on the capabilities

of a mobile phone botnet [18] shows that it could be

used to carry out an Denial-of-Service attack against an

operator network. Their attack works by overloading the

Home Location Register (HLR) through massively triggering

state changes through the zombie phones.

Denial-of-Service attacks such as the one presented in this

work have been studied in a wide area. Attacks ranging from

the Web, to DNS [19]. More interesting in our context are

attacks that disable real-world systems and processes such

as emergency services [20] or even postal services [21].

The work presented in this paper is different in many

aspects. First, we focus on feature phones rather than smart

phones. We do this because feature phones are much more

popular than smart phones, therefore, attacks against feature

phones have a larger impact. In our work we present a secu-

rity testing framework for analyzing SMS implementations

of any kind of mobile phone. We used this framework to

analyze feature phones of the most popular manufacturers

in the world, as shown in Section III. We do this since this

has not been done so far. Second, we show how one can

use bugs and vulnerabilities in popular mobile phones to

carry out large scale attacks against mobile phone users and

mobile network operators world wide. The kind of attack

shown by us can be used by the script kiddy next door and

organized crime in order to make money.

III. TARGET SELECTION

To achieve maximum impact with an attack it makes sense

to go after the most popular devices. This is what happens

with trojans and botnets, the botmasters go after Microsoft

Windows because it is the dominant operating system.

We determined that feature phones are the dominate type

of mobile phones. They account for 83% of the U.S. mobile

market [22], smart phones in comparison just make for 16%

of all mobile phones world wide [9].

Most of the definitions of the term feature phone are a

bit fuzzy. A lose definition of the term is: every mobile

phone that is neither a dumb phone nor a smart phone is

considering a feature phone. Dump phones are phones with

minimal functionality, often they only support voice calls

and sending SMS messages, just basic functionality. Feature

phones have less functionality than smart phones but still

more than dumb phones. Feature phones have proprietary

operating systems (firmware), have additional features (thus

the term feature) such as playing music, surfing the web, and

running simple applications (mostly J2ME [23]). Despite

this lack of functionality (compared to smart phones) they

are quite popular because they are cheap and offer long

battery life.

Technically interesting is the fact that feature phones are

based on a single processor that implements the baseband,

the applications, and user interface. Smart phones usually

consist of two processors. The consequence of this is that a

simple bug on a feature phone may bring down the complete

system.

Mobile phones are produced by many different manufac-

turers that all have their own OS, therefore, targeting a single

one of them will not result in global effect. Since we can not

simply target all mobile phone platforms we have to select

the few ones that have enough market share to be of global

relevance.

To determine the major mobile phone manufacturers we

analyzed various market reports: World wide [24] and Euro-

pean [25] market share. Market shares in the United States

[26] and in Germany [27]. The essence of these market

reports are shown in Table I. Table I(a) shows Germany

and Table I(b) shows the popularity for the United Stats,

interesting is that those tables are almost the opposite of

each other. Tables I(c) shows Europe and Table I(d) shows

the world wide popularity.

Through this analysis we got a clear picture about the

top manufacturers. These seem to be: Nokia, Samsung,

LG, Sony Ericsson, and Motorola. We further

chose to add Micromax [28] to the list of interesting mobile

phone manufacturers because we read [29] that they are the

third most popular brand of mobile phones in India. Thus,

a nice example of a targeted attack against a country.

IV. SECURITY ANALYSIS OF FEATURE PHONES

Analyzing feature phones for security vulnerabilities is

hard for several reasons. No access to source code of the

OS and applications. No existing native-SDKs, therefore,

no chance to run native code on the device and further no

access to a debugger.

Because of these reasons we choose to conduct fuzzed-

based testing. The test would run on our own GSM network.

In order to monitor for misbehavior, crashes, and to find

the related bugs we designed our own monitoring system.

Throughout this Section we will first describe the setup of

our GSM network. Followed by the way we send SMS

messages in this setup. Than we will describe our novel

monitoring setup. The final part of the Section will discuss

Table I
MOBILE PHONE MANUFACTURER MARKET SHARE

(a) Germany, November 2009

Manufacturer Market Share

Nokia 35.4%

Sony Ericsson 22.0%

Samsung 15.0%

Motorola 8.6%

Siemens 5.4%

(b) U.S.A., May 2010

Manufacturer Market Share

Samsung 22.4%

LG 21.5%

Motorola 21.2%

RIM 8.7%

Nokia 8.1%

(c) Europe, June 2010

Manufacturer Market Share

Nokia 32.8%

Samsung 12.5%

LG 4.1%

Sony Ericsson 3.7%

Apple 3.0%

RIM 2.4%

Others 3.0%

(d) World, for the year 2009

Manufacturer Market Share

Nokia 38%

Samsung 20%

LG 10%

Sony Ericsson 5%

Motorola 5%

ZTE 4.5%

Kyocera 4%

RIM 3.5%

Sharp 2.6%

Apple 2.2%

Others 5%

test cases and the resulting bugs we discovered through our

work.

A. Network Setup

Since we want to send large amounts of SMS messages we

decided to build our own GSM network rather than sending

SMS messages over a real network. On the one hand this

has the advantage of not costing any money and on the

other hand we don’t risk to interfere with the telco network.

We want to avoid crashing telco network equipment by

either content or quantity of SMS messages. Using our own

network further guarantees us to create reproducible results

since we control the entire system and are not left with

guessing in the case something does not work as expected.

In addition the delivery of SMS messages is much faster

on our small network compared to a production setup of a

Figure 1. Our setup: The laptop that runs OpenBSC and the fuzzing tools, the nanoBTS, and some of the phones we analyzed.

mobile operator. Further, network operators can not spy on

us while we conducting our testing.

On the hardware side we decided to use an ip.access

nanoBTS [30] which is a small, fairly cheap (about 5000

Euro) GSM Base Transceiver Station (BTS) that provides

an A-bis over IP interface. The A-bis interface is used

to communicate between the BTS and the Base Station

Controller (BSC). The BSC part of our setup is driven by

OpenBSC [31]. OpenBSC is a Free Software BSC imple-

mentation of the A-bis protocol which implements a minimal

version of the BSC, Mobile Switching Center (MSC), Home

Location Register (HLR), Authentication Center (AuC) and

Short Message Service Center (SMSC) components of a

GSM network. Figure 1 shows a picture of our setup.

As GSM operates on a licensed frequency spectrum we

had to carry out our experiments in an Faraday cage. Our

Faraday cage is a 3x3 meter room with a filtered power

supply and fiber optic network connection. In side the room

we have working space for three people and our GSM

network equipment. A malicious party would of course not

bother with this kind of setup.

Utilizing this setup we are able to send SMS messages

to a mobile phone. OpenBSC allows us to either send a

text message from its telnet interface to a subscriber of our

choice or it processes an SMS message that it received Over-

the-Air in store and forward fashion. As we later see the

telnet interface is not feasible for fuzzing since we need the

ability to closely control all parameters in the encoded SMS

format as well as a way to inject binary payloads.

Using a mobile phone to inject SMS messages into the

network is no option as this would be very slow as we

show later. Instead we built a software framework based

on a modified version of OpenBSC that allows us to:

• Inject pre-encoded SMS into the phone network

• Extensive logging of fuzzing related feedback from the

phone

• Logging of non-feedback events, i.e. a crash resulting

in losing connection to the network

• Automatic detection of SMS that caused a certain event

• Process malformed SMS with OpenBSC

• Smart fuzzing of various SMS features

• Ability to fuzz multiple phones at once

• Sending SMS at higher rate than on a real network

SMS [32] PDUs exist in two formats, SMS SUBMIT

and SMS DELIVER. In [11] fuzzing was based on the

SMS DELIVER format and SMS were directly injected on

the smart phones. We utilize our GSM network for fuzzing,

and, therefore, our fuzzed SMS are based on SMS SUBMIT.

In a typical GSM network, shown in Figure 6, an SMS

message that is sent from a mobile device is transferred

Over-the-Air to the Base Transceiver Station (BTS) of an

operator in SMS SUBMIT format. Every BTS is handled

by a Base Station Controller (BSC) that is interacting with

a Mobile Switching Center (MSC) which acts as the central

entity handling traffic in the network. The MSC relays the

SMS message to the responsible Short Message Service

Center (SMSC) which is usually a combination of software

and hardware and its job is to forward and relay the message

to the destination phone or other SMSCs (in case of inter-

operator messages or an operator with multiple SMSCs).

In our setup OpenBSC acts as BSC, MSC and SMSC.

We wont get into detail on the mechanism of finding and

routing messages to responsible destinations as this is not

important in the fuzzing setup since there is only one SMSC.

During the final transmission to the destination the SMS will

get converted to SMS DELIVER, this is taken care of by

OpenBSC.

B. Sending SMS Messages

OpenBSC itself does not provide an interface to submit

pre-encoded SMS messages to the network but only a

telnet interface to submit text SMS messages that are than

converted into the corresponding encoding. We added a new

telnet interface command to OpenBSC that allows us to

submit SMS messages directly in SMS SUBMIT format.

This fills an internal SMS data structure with the data that

is used to store the SMS message in an SQLite database

that is used by OpenBSC as part of the SMSC functionality.

Modifying the existing text message interface to be capable

of handling binary encoded SMS messages would have

been no option. Messages submitted over this interface are

instantly transmitted to the subscriber if he is attached to

the network. This means opening a channel, initiating a

data connection, sending the message and tearing down

the connection. This works but is very slow. About seven

seconds per message. This is also the reason why we didn’t

want to use a mobile phone to send our fuzzed-messages

in the first place. Our way of injecting messages is much

faster and works in the following way. First, we use our new

telnet interface to inject messages in the SUBMIT format.

This way we can add many hundreds or thousand messages

to the SMSC database. Second, we send these messages.

This ideally only opens the channel once, sends out all SMS

message to the recipient and than close the connection. This

greatly improves the speed at which we can fuzz since the

actual message transfer only takes about one second.

In essence we removed the sending mobile phone and

replace it by a direct interface to the network. This way we

don’t require any modifications on the phones. By default

OpenBSC only stores the parsed values in the database and

the decoded text. As in our case we don’t only send simple

text messages we also added storing the complete encoded

SMS message into the database. This also allows us to easily

replay SMS messages that may have caused problems by

simply selecting the column from the database.

C. Monitoring for Crashes

In fuzz-based testing monitoring is one of the essential

parts. Without good monitoring one will not catch any bugs.

OpenBSC itself already has an error handler which takes

care of errors reported from the phone which we modified

to fit our fuzzing case. The default error handler doesn’t

differ between errors and causes the SMS sending process

to stop in case of an error. The only difference is a Memory

Exceeded error which causes OpenBSC to dispatch a

signal handler to wait for an SMMA signal (released short

message memory) indicating that there is space again.

The mobile phone as well as the MSC is usually di-

vided into separated layers for transferring and processing

a message. As visible in Figure 2 they consist of a Short

Message Transport Layer (SM-TL), Short Message Relay

Layer (SM-RL) and the Connection Sublayer (CM-Sub).

The SM-TL [33] receives and relays message that it receives

from the application layer in TPDU form (Transport Protocol

Data Unit), this is the original encoding form which will

Figure 2. Mobile terminated SMS

be described at a later point in this paper. The message

is passed to the SM-RL to transport the TPDU to the

mobile station. At this point the TPDU is encapsulated as

an RPDU. As soon as a connection is established between

the mobile station and the network the RPDU is transferred

Over-the-Air encapsulated in a CP-DATA unit that is part

of Short Message Control Protocol (SM-CP). Both sides

communicate via their CM-SLs with each other. The CM-

SL on the phone side will unpack the CPDU and forward

the encapsulated TPDU to the Transport Layer using an RP-

DATA unit. At this point the mobile phone stack has already

done sanity checks on the content of the SMS and parsed it.

The resulting reply, passed to CM-Sub, will include either

an acknowledgement of the SMS message and it will than

be passed to the higher layers. From there it will end up in

the user interface or an error message is encapsulated and

sent back to the network. For our monitoring we need to log

these replies carefully to observe the status of the phone.

From the wide variety of error messages a phone can

reply to a received SMS messages, defined in [34], we

observed during our fuzzing experiments that all of the

tested phones either reply with a Protocol Error or

Insufficient Mandatory Information message

in the case of malformed messages. These two responses

besides the memory error have been the only errors that we

observed in practice. We added code to flag such an SMS

message as invalid in the database and continue delivering

the next SMS that hasn’t been flagged as invalid. OpenBSC

would otherwise continue trying to retransmit the malformed

SMS message and thus block further delivery for the specific

recipient.

SMS messages are usually sent over a SDCCH (Slow

Dedicated Control Channel) or a SACCH (Slow Associated

Control Channel), the details of such a channels are not

important for the scope of this paper. However the use of

such a logical channel is an important measurement to detect

mobile phone crashes. Such a channel will be established

between the BTS and the phone on the start of an SMS

Figure 3. Logical view of our setup.

delivery by paging the phone on a broadcast channel. As we

explained earlier, we only open the channel once and send

a batch of messages using this one channel. The channel

related signalling between the BSC and the BTS happens

over the A-bis interface over highly standardized protocols.

We added modifications to the A-bis Radio Signalling Link

code of OpenBSC that allows us to check if a channel tear

down happens in an usual error condition, log when this

happens and which phone was previously assigned to this

channel.

So while we lack possibilities to conduct traditional

debugging methods on the device itself we can use the open

part - OpenBSC - to do some debugging on the other end

of the point-to-point connection.

The difference to traditional debugging techniques is that

we are limited towards the technical reason and impact of

such an error condition in the meaning that we are not

able to peak at register values and other software related

details. However it is enough to be able to reliably detect and

reproduce the error. Using this method it also possible to find

code execution flaws. However exploiting them and getting

to know the details about the specific behavior requires the

effort of reverse engineering the firmware for a specific

model. We try to avoid such a large scale test of phones

but these bugs are a good base for further investigations

such as reverse engineering of firmware.

In the next step we’ve written a script that parses the

log file, evaluates it and takes actions in order to determine

which SMS message caused a problem.

When delivering an SMS message to a recipient under

the assumption that he is associated with the cell in practice

three things can happen. Either the message is accepted and

acknowledged. It is rejected with a reason indicating the

error. Third, an unexpected error occurs. Such an unexpected

error can be that the phone just disconnected because it

crashed or due to other reasons the received message is

never acknowledged. In the latter case OpenBSC stores the

SMS message in the database, increases a delivery attempt

counter and tries to retransmit the SMS message when the

phone associates with the cell again. For our fuzzing results

this means that this method detects bugs in which the SMS

message either results in a phone crash after it accepted the

message or already during receiving it in which it will never

be acknowledged and OpenBSC continuously tries to deliver

the SMS message.

Detecting the SMS message that caused such an error

condition than is rather easy. Our script checks the error

condition and if it is because of the loss of a channel it first

looks up the database to find SMS messages that have a

delivery count that is bigger or equal to one and the message

is not marked as sent (meaning it was not acknowledged). In

this case we can with a high probability say that the found

SMS message caused the problem. If there is no message

the script just checks which messages have been sent in a

certain time interval around the occurrence of the log entry.

During our testing we decided that a one minute time interval

works well enough to have a small amount of prospective

SMS messages that could’ve caused a problem. Figure 3

shows the logical view of our monitoring setup.

D. Additional Monitoring Techniques

Additionally to the above OpenBSC setup we have devel-

oped more methods for monitoring for abnormal behavior.

USB Cable: By hooking-up the phone via it’s USB data

cable we can monitor if the connection is broken (USB

device disconnects) during testing. This would be a hint

about abnormal behavior.

Bluetooth: Similar to connecting the USB cable Blue-

tooth can be used to check if a device crashes or hangs.

Our monitor script connects to the device using a Bluetooth

virtual serial connection (RFCOMM). It connects to the

RFCOMM channel for the phone’s dial-up service. The

script calls recv(2) and blocks since the client normally is

supposed to send data to the phone. When the phone crashes

or hangs the physical Bluetooth connection is interrupted

and recv(2) returns, thus signalling us that something went

wrong.

J2ME: Almost every modern feature phone supports

J2ME [23] and this is the only way for us to do measure-

ments on the phone since they don’t run native applications.

Applications running on the mobile phone can register a

handler in an SMS registry similar to binding an application

to a TCP/UDP port. SMS can make use of a UDH [33] (User

Data Header) that indicates that a certain SMS message is

addressed to a specific SMS-port. When the phone receives

a message this header field will be parsed and the message

is forwarded to the application registered for this port.

Our J2ME application that is installed to the fuzzed phone

registers to a specific port and receives SMS messages on

it. For each chunk of fuzzed SMS messages we inject an

valid message that is addressed to this port. The application

than replies with an SMS message back to a special number

that is not assigned to a phone. Figure 3 shows this as the

J2ME echo server. The message is just saved to the SMS

database. This allows us to easily lookup the count of SMS

Field Size

TP-Message-Type-Indicator 2 byte

TP-Reject-Duplicates 1 byte

TP-Validity-Period-Format 1 byte

TP-Reply-Path 1 bit

TP-User-Data-Header-Indicator 1 bit

TP-Status-Report-Request 1 bit

TP-Message-Reference 1 byte

TP-Destination-Address 2-12 byte

TP-Protocol-Identifier 1 byte

TP-Data-Coding-Scheme 1 byte

TP-Validity-Period 1 byte/7 byte

TP-User-Data-Length 1 byte

TP-User-Data depends on DCS/UDL

Figure 4. Format of the SMS SUBMIT PDU.

messages for this special number in the database and check

if it increased or not. If not, it is very likely that some odd

behavior was triggered. This kind of monitoring is useful to

identify bugs that block the phone from processing received

messages such as happened here [12].

E. SMS Encoding

Before we go into details of our test cases we provide a

brief introduction to the SMS SUBMIT encoding as defined

in [32] and shown in Figure 4.

TP-Message-Type-Indicator when set properly is used to

indicate that the message is an SMS SUBMIT message.

Only the fields TP-Protocol-Identifier, TP-Data-Coding-

Scheme, TP-User-Data-Length, TP-User-Data are interest-

ing for fuzzing. The remaining fields just describe how

the SMS message should be delivered or how SMSCs and

mobile phones should generally handle them.

TP-Protocol-Identifier is used to describe the type of the

messaging service being used. This refers to a higher layer

protocol or inter-working being used.

TP-Data-Coding-Scheme as described in [35] is used to

indicate a certain message class, which alphabet is used to

encode TP-User-Data. Whether the payload is compressed

and to indicate if new messages are waiting for the customer

(used in certain countries to indicate waiting voice-mails for

example). Message class 1 is usually the default for normal

text messages and indicates that should be stored on the

mobile phone while a class of 2 is used to signal that the

messages should be stored on the SIM card. 2 bits in this

field are used to encode the GSM alphabet [35] that was

used to encode the TP-User-Data payload. This can be either

the default 7 bit, 8 bit or 16 bit alphabet and a reserved

value. Together with the TP-User-Data fields TP-Protocol-

Identifier and TP-Data-Coding-Scheme are our main targets

for fuzzing. The receiving mobile phone than reassembles

the message based on this information.

Field Size

UDHL 1 byte

IEI1 1 byte

IEIDL1 1 byte

IEID1 n bytes

...

IEIn 1 byte

IEIDLn 1 byte

IEIDn n byte

Figure 5. The User Data Header

However these fields are not enough to cover the com-

plete range of possible SMS features. If the TP-User-Data-

Header-Indicator bit is set this indicates that TP-User-Data

includes a User-Data-Header (UDH).

The User-Data-Header (UDH) is used to provide addi-

tional control information just like headers in IP packets.

This includes port addressing, headers for concatenated

messages, text formatting and other information. UDHL

specifies the length of the complete UDH and is followed

by one or multiple headers. IEI are so called Information

Elements [32]. A one byte identifier specifying the type of

header, IEDL specifies the length of the header element and

IEID is the actual header data. The UDH with a number if

Information Elements is shown in Figure 5.

F. Fuzzing Test-cases

We’ve implemented a Python library to create SMS PDUs

(Protocol Data Unit) and used this to develop a variety of

fuzzers. This includes fuzzers for vCard, vCalendar, Ex-

tended Messaging Service, multipart, SIM-Data-Download,

WAP push service indication, flash SMS, MMS indication,

UDH, simple text messages and various others fuzzing only

specific fields and not features. Some of these features

can also be combined. For example most of the features

can either consist of single SMS message or be part of a

multipart sequence by adding the corresponding multipart

UDH.

For the scope of this paper we focused on fuzzing

multipart, MMS indication (WAP push), simple text, flash

SMS, and simple text messages with protocol ID/data coding

scheme combinations. These test cases cover a wide variety

of different SMS features.

Multipart: SMS originally was designed to send up

to 140 bytes of user data. Due to 7-bit encoding it is

possible to send up to 160 bytes. However various SMS

features rely on the possibility to send more data, e.g.

binary encoded data. Multipart SMS allow this by splitting

payload across a number of SMS messages. This is achieved

by using a multipart UDH chunk (IEI: 0x00, IEL: 0x03).

This UDH chunk comprises three one byte values. The first

byte encodes a reference number that should be random

and the same in all message parts that belong to the same

multipart sequence. Based on this value the phone is later

able to reassemble the message. The second byte indicates

the number of parts in the sequence and the last byte

specifies the current chunk number. By fuzzing these three

values we were mainly looking abnormal behavior related

to combinations of the current chunk ID and the number

of chunks in a sequence. For example missing chunk and

chunk IDs higher than the number of total chunks.

MMS indication: When a subscriber receives an MMS

(Multimedia Messaging Service) message the MMSC sends

an MMS notification indication message [36] that contains

the URL to the MMS content. The phone than starts a GPRS

connection to download the content. This MMS indication is

in fact a binary encoded WAP-push message sent via SMS.

The notification can also contain additional variable length

fields for subject, transaction ID and sender name. There

are no length fields for these values. They are simple zero

terminated hex strings. MMS indication messages can also

consist of multipart sequences. Therefore, our fuzzing target

were the variable length field values included in the message

seeking for classic issues like buffer overflow vulnerabilities.

Simple text: Implementations of decoders for simple

7 bit encoded SMS often work with a GSM alphabet

represented for example with an array. The decoder first

needs to unpack the 7 bit encoded values and convert them to

bytes. After this step it can lookup the character values in the

GSM alphabet table. Our fuzzers mixed valid 7 bit sequences

with invalid encodings that would result in no corresponding

array index. This could trigger all kinds of implementation

bugs but most noteworthy out of bounds access resulting in

null pointer exceptions and the like.

TP-Protocol-Identifier/TP-Data-Coding-Scheme: As

already outlined the combination of both of these fields

yields to how the message is displayed and treated on the

phone. Both of these fields are one byte values and also cover

several rather unpopular features and reserved values. With

fuzzing combinations of these values with random lengths

of user data payload we were aiming for odd behavior and

bugs in code paths that are often unused by normal SMS

traffic.

Flash SMS: Flash SMS are directly displayed on

the phone without any user interaction and the user can

optionally save the message to the phone memory. Our

observations made it clear that often the code that renders the

flash SMS message on the display is not the same as the one

that displays a normal message from the menu. Therefore,

it can be prone to the same implementation flaws as simple

text messages. Additionally to this, flash SMS can consist of

multipart chunks and there are several combinations of TP-

Protocol-Identifier and TP-Data-Coding-Scheme that cause

the phone to display the SMS as flash message. Our flash

SMS fuzzers aim to cover a combination of all of the above

possible implementation weaknesses.

G. Fuzzing Trial

After each fuzzing-test-run we evaluate the log generated

by our monitoring script. All of the bugs described later

in this paper were triggered by one or very few SMS

message and reproducing problems from log entries often

could be done without any problems. However fuzzing

phones is not great fun as we stumbled across various

forms of strange behavior. Problems we faced included non-

standard conform message replies and all sorts of weird

behavior. Some phones weren’t properly reporting memory

exhaustion. Others didn’t notice free memory until a reboot.

Some didn’t display a received SMS message on the user

interface which made it hard to tell if the phone accepted a

message or silently discarded it on the phone. Almost every

phone we fuzzed needed a hard reset at one point because it

became simply unusable for unknown reason or the mass of

messages or a specific SMS needed to be deleted from the

SIM card using another phone. The biggest problem with

hard resets is that a lot of manufacturers don’t seem to do

what the name hard reset suggest, bring the phone into a

fresh manufacturer state. From what we know this is done as

a feature for customers in order to ensure no personal data is

lost. The behavior also differed between phones of the same

manufacturer. When testing a bug on the Samsung Corbi it

was always enough to remove the offending SMS message

from the phones SIM card while the Samsung S5230 needed

an additional hard reset. Things like this have been very time

consuming during the fuzzing but this is also noteworthy as

it seems to be hard for phone customers to 100% get rid of

personal information from the phone when i.e. selling the

phone.

In summary we stumbled across a lot of annoyances which

are not important from a security point of view but in our

overall impression most of the feature phones we tested

behaved rather fragile when handling SMS messages.

H. Results

During our fuzz-testing we discovered quite a number of

bugs that lead to security vulnerabilities. The bugs mostly

lead to phones crashing and rebooting and in the event

disconnecting them from the mobile network, and thus

interrupting established voice calls and data connections.

During the testing we even managed to bricked a couple of

phones. We didn’t investigate the bricking in-depth because

this would have gotten quite expensive. We have a good

idea of what causes the bricking and we reported it to the

manufacturer. Further some of the phones crash during the

process of receiving the SMS message, and, therefore, fail

to acknowledge the message thus causing re-transmission of

the SMS message by the network.

Below we present the bugs we discovered on each plat-

form:

Nokia S40: On our Nokia test devices 6300, 6233,

6131 NFC we found a bug in the flash SMS implemen-

tation. By sending a certain flash SMS the phone crashes

and triggers a the ”Nokia white-screen-of-death”. This also

results in the phone disconnecting and re-connecting again

to the mobile phone network. The interesting thing about

this issue is that the SMS actually never reaches the mobile

phone. The phone will crash before it can fully process and

and acknowledge the message. On the one hand this has

the side effect that the GSM network performs a Denial-of-

Service attack for free as it continuously tries to transmit the

message to the phone. One the other hand this has a side

effect on the phone since there seems to be a watchdog in

place that is monitoring such crashes. This watchdog shuts

down the phone after 3 to 5 crashes depending on the delay

between the crashes.

Sony Ericsson: Sony Ericsson devices W800i,

W810i, W890i, Aino have a problem similar to the

Nokia S40 phones. When combining certain payload

lengths together with a specific protocol identifier value

it is possible to knock the phone off the network. In this

case there is no watchdog but one SMS message is enough

to force a reboot of the phone. Just like in the Nokia

case this SMS message will never be acknowledge by the

phone thus the GSM network will continuously re-transmits

the message to the victim when it re-associates with the

network.

LG: When a subscriber receives an MMS (Multimedia

Messaging Service) message the MMSC (Multimedia Mes-

saging Service Center) sends an MMS indication message

that contains the URL to the MMS content. The phone

than starts a GPRS connection to download the content.

This MMS indication is in fact a binary encoded WAP-

push SMS message that can also contains additional variable

length fields for subject, transaction ID and sender name.

Our device the, LG GM360, seems to do insufficient bounds

checking when parsing these values. This allows us to

construct a multipart message with large field values that

crash the phone and thus force an unexpected reboot when

receiving the message or when trying to open the SMS

message on the phone.

Motorola: Like mentioned before SMS supports telematic

inter-working with other networks. By sending an SMS

message that specifies an Internet electronic mail inter-

working combined with certain characters in the payload

it is possible to knock the phone off the mobile network.

On receiving the message the phone shows a flashing white

screen similar to the one shown by the Nokia phones. The

phone is not completely rebooting but restarting the user

interface and network connectivity. This process takes a

few seconds and depending on the payload it is possible to

achieve this twice in a row with one message. We verified

this on the Razor, Rokr, and the SVLR L7 – older but

extremely popular devices.

Samsung: Multipart UDH chunks are commonly used

for payloads that span over multiple SMS messages. The

header chunk for multipart messages is simple. It contains

a reference number to identify the series of chunks and is

used by the phone to reassemble the parts. It also consists of

a number indicating the current part number (the parts are

reassembled in order of their part numbers) and an additional

field specifying the overall number of all parts belonging to

a certain reference number.

Our Samsung phones S5230 Star, Corbi, S3250

do not properly validating such multipart sequences. This

enables one to craft messages that show up as a very large

SMS message on the phone. When opening such a message

the phone tries to reassemble the message and crashes.

Depending on the exact model between one and three SMS

messages are needed to trigger the bug.

Micromax: The Micromax X114 is prone to a similar

issue like the Samsung phones but behaves slightly different.

When sending a multipart SMS that contains a higher chunk

ID than the overall number of chunks and a reference ID that

hasn’t been used yet the phone receives the SMS message

without instantly crashing. However a few seconds after

the receipt the display turns black for some seconds before

the phone disconnects and reconnects to the network. This

process takes a couple of seconds after which the phone

displays ”Message not ready” for a short time. Besides this

a victim won’t notice the message.

I. Validation and Extended Testing

After the initial fuzz-testing we needed to validate our

results. This is necessary since we tested in a closed envi-

ronment – our own GSM network. We need to validate if the

bugs and vulnerabilities found by us can be triggered in the

real world. For the validation we put a active SIM card into

our test phones and connected them to a real mobile phone

network. We send the SMS PDUs that trigger the bugs using

another mobile phone. Through this testing we validated all

the bugs described in the last Section.

During our fuzzing tests we deactivated the security PIN

on the SIM cards we used in the target phones so that we

didn’t have to enter the PIN on every reboot. We re-enabled

the security PIN and fired the problematic SMS messages

towards the target phones. We wanted to determine if the

reboot of the phones is in a way that it also reboots the

baseband and the SIM card. If the SIM card is blocked after

reboot the phone is not reconnected to the GSM network,

and, thus, the user is cut off permanently. We determined

that this is true for our LG, Samsung, and Nokia devices.

J. Bug Characterization

We group the discovered bugs depending on the software

layer they trigger. We later use this for designing our attacks.

The first group are bugs that require user interaction such

as the bug we discovered in the Samsung mobile phones.

Here the user has to view the message in order to trigger

the bug.

The second group are bugs that crash without user in-

teraction. These bugs trigger the moment the phone has

completed receiving the entire message and starts processing

it. In this group we put the bugs we found on the Motorola,

LG, and Micromax devices.

The third and last group are bugs that trigger at a lower

layer of the software stack. With lower layer we mean during

the process of receiving the SMS message from the network.

A crash during the transfer process means that the process

is not completed and the network believes the message is

not successfully delivered to the phone. We categorize the

bugs discovered in our Nokia S40 and the Sony Ericsson

devices in this third group.

V. IMPLEMENTING THE ATTACK

The attacks we are presenting attempt to interrupt mo-

bile phone-based communication through crashing mobile

handsets using SMS messages that trigger software bugs.

The attacks can be carried out on a large scale because we

discovered bugs in the mobile phone platforms of all major

handset manufacturers.

In this Section we layout how one can implement such

a large scale attacks. This Section is separated in to the

following parts. First, we discuss hit-list generation and

sending of SMS messages. Second, we show how to further

optimize attacks. Finally, we discuss actual attack scenarios

and the impact of those scenarios.

A. Build a Hit-List

To launch an attack phone numbers of mobile phones need

to be acquired since just sending SMS messages to every

possible number will fail. Further, sending SMS messages to

a large number of unconnected phone numbers ”dark address

space” could trigger some kind of fraud prevention system,

such as observed on the Internet to detect worms [37].

Further for the described attack only phone numbers that

are connected to a mobile phone are of interest. Depending

on the kind of attack a different set of phone numbers is

required. In one case an attack might be targeted towards a

specific mobile operator, therefore, only phone numbers that

are connected to the specific operator are of interest.

Creating a hit-list for different countries is another prob-

lem as number assignment works different everywhere.

In this Section we discuss multiple methods for number

harvesting to create a hit-list for our attacks.

Regulatory Databases: In [17] Enck at el. show multiple

methods on how to create a hit-list of mobile phone numbers

in the United States. They use databases from the North

American Numbering Plan (NANP). Here one can check

which operator manages a certain exchange code. If such

an exchange code is managed by a known wireless operator

such at AT&T Wireless it is likely that all numbers within

this exchange are connected to a mobile phone. Given that

a specific number is connected at all.

In Germany mobile network operators have their own area

codes. In Germany the list of mobile network area codes can

be easily acquired from the agencies website [38]. The same

is true in many countries around the world, some examples

are: United Kingdom1, in Australia2, in Italy3, and in Korea4.

The regulatory database information can be used for

many purposes. It can be used as input when running

queries against an HLR and when pulling data from address

databases.

Web Scraping: Web Scraping is a technique to collect

data from the Word Wide Web through automated query-

ing of search engines using scripted tools. In [17] the

authors easily found a number of phone numbers in the

United States using this technique. Finding German mobile

phone numbers can be easily done through queries like

"+49151*" site:.de. Further online phonebooks [39]

today also include mobile phone numbers. These sites often

allow wildcard searches, and, therefore, can be abused to

harvest mobile phone numbers.

HLR Queries: Some Bulk SMS providers [40] offer a

service to query the Home Location Register (HLR) for a

mobile phone number. These queries are very cheap (we

found one for only 0.006 Euro) and answers the question

if a mobile phone number exists and where it is connected.

Together with the information from the regulatory databases

one can easily generate a list of a few thousand mobile phone

numbers that belong to a specific mobile network operator.

B. Sending SMS Messages

SMS messages can be sent by a mobile phone that

provides either an API that allows to send arbitrary binary

messages or thru it’s AT command interface. We used the

AT interface for most of our testing and validation. To carry

out any kind of large scale attack a way for delivering

large quantities of SMS messages for low price is needed.

Multiple options exist to achieve this:

Bulk SMS Operators: Bulk SMS operators such as [41],

[40], [42] offer mass SMS sending from the Internet pro-

viding various methods ranging from HTTP to FTP and the

specialized SMPP (Short Messaging Peer Protocol). Bulk

SMS operators are so-called External Short Message Entity

(EMSE) that are often connected via Internet to the mobile

operators but sometimes have their own SS7 connection to

the Public Switched Telephone Network (PSTN). Figure 6

shows the various connections of an EMSE. All Bulk SMS

operators operate in the same way. You pay them money

and they deliver your arbitrary SMS messages to the given

destination(s). No questions asked. Most of the APIs support

sending a single message and a list of recipients. Prices

1http://en.wikipedia.org/wiki/Telephone numbers in the United Kingdom
2http://en.wikipedia.org/wiki/Telephone numbers in Australia
3http://en.wikipedia.org/wiki/Telephone numbers in Italy
4http://en.wikipedia.org/wiki/Telephone numbers in Korea

Figure 6. SMS relevant structure of a mobile network operator (MNO) network and the links to the PSTN, ESMEs, and other MNOs.

range from 0.1 to 0.01 Euro depending on the volume and

destination of the messages.

Mobile Phone Botnets: A botnet consisting of hijacked

mobile or smart phones [43] could also be used for such

attacks since every mobile phone is capable of sending SMS

messages. A mobile botnet has the distinct advantage of

free message delivery and high anonymity for the attacker.

Further using a mobile phone botnet one could circumvent

restrictions Bulk SMS operator might have in different

countries.

SS7 Access: With direct access to the Signaling System

7 (SS7) of the Public Switched Telephone Network (PSTN)

an attacker can very easily send SMS messages in large

quantities, for example to send SMS spam [44]. Figure 6

shows the basic network connections of a mobile network

operator. SMS sending via SS7 further has the advantage of

not being easily traceable, thus a attacker can stay hidden

for a longer period of time. Further SS7 sent SMS messages

are not restricted in terms of content or header information

such as opposed by some of the Bulk SMS operators.

C. Identifying Phones to Reduce the Number of Messages

There is one issue left with our attack. That is how can

one determine the type of mobile phone that is connected

to a specific phone number. If money does not play a

role in carrying out the attack this issue is easily resolved.

The attacker just sends multiple SMS messages, each one

containing the payload for a specific type of phone, to

each phone number. One of the messages will trigger the

bug if the phone is vulnerable at all. This works well

but is not optimal. To reduce the number of messages an

attacker has to send we developed a technique that allows

the attacker determine what kind of phone is connected to a

specific phone number. Actually we can only determine if a

specific malicious message has an effect on the phone that

is connected to a specific number.

Our method abuses a specific feature present in the SMS

standard. This feature is call recipient notification, it is

indicated through the TP-Status-Report-Request flag in an

SMS message. If the flag is set the SMSC notifies the sender

of the message when the recipient has received the message.

Most Bulk SMS operators support this feature through their

APIs. Our method works by measuring the delay between

sending the message and receiving the reception notification.

The technique works like this: First, we send the message

containing the payload for crash(1). Second, when we re-

ceive the receipt for that message we send the payload for

crash(2). Third, we measure the time difference between the

two notifications. If the difference is equal we continue with

the next payload. If the difference between both notifications

is significant we determine that the first message crashed

the phone. The phone needed to reboot and register on the

network before being able to accept the next message. If

there is no notification we determine that the phone didn’t

receive the message because it crashed before completely

accepting the message. Forth, we continue until all crash

payloads are send. If non of them trigger the phone number

is removed from the hit-list. The method can be optimized

through ordering the crash payloads according to the popu-

larity of mobile phones in the targeted country.

With this method an attacker can build a hit-list with

matching bug-to-phone-number. This optimized hit-list can

be used for highly targeted attacks. For example against

the network operator himself as we describe in Section V-E

where we detail our attack scenarios.

D. Network Assisted Attack Amplification

Some of the bugs we discovered prevent the phone from

acknowledging the SMS message to the network. Figure 2

shows the states that happen during a message transfer

from the network to the phone. In the case of some of our

bugs (Nokia S40 and Sony Ericsson; Bug Characterization

Section IV-J) the message RP-ACK is not send by the phone.

This leads the network to believe that the message was not

received, therefore, the SMSC will try to resend the SMS

message to the phone. This re-delivery attempt is a perfect

attack amplifier loosely similar to smurf attacks [45] on IP

networks.

Through our testing trials of sending malicious SMS

messages over real operator networks we discovered that

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 1 2 3 4 5 6 7 8 9 10 11

m
in

u
te

delivery attempt

Vodafone Germany
E-Plus Germany

O2 Germany
T-Mobile Germany

Figure 7. Timing of SMS message delivery attempts.

operators have different re-transmit timings. Further they

also seem to have different transmit queues. We measured

the delivery timings of some German mobile network opera-

tors in order to determine how one could abuse the delivery

attempts for improving our Denial-of-Service attacks. We

conducted the test by attacking one of our Sony Ericsson de-

vices and monitoring the phone using the Bluetooth method

described in Section IV-D.

Figure 7 shows the delivery timings for Vodafone, T-

Mobile, O2 (Telefonica), and E-Plus. The initial delivery

attempt is at minute 0. These show that all operators do a first

re-transmit after 1 minute, and a few more re-transmits every

5 minutes. In addition to what Figure 7 shows Vodafone

does an additional re-delivery 24 hours after the last delivery

shown in the graph. O2 also attempts a additional re-delivery

20 hours after the last delivery shown in the graph.

Through the same test we determined that SMS messages

are not queued but have an individual re-transmit timer.

That means an attacker can send multiple malicious SMS

messages to a victim’s phone with a short delay between

each message and thus can increase the effect of the network

assisted attack through sending multiple messages.

E. Attack Scenarios and Impact

There are multiple possible attack scenarios such as or-

ganized crime going after the end-user, the mobile operator,

and the manufacturer to pressure for money. Attacks could

also be carried out for fun by script kiddys or a like. Below

we discuss some scenarios that seem likely.

Individuals: Individuals could be pressed to pay some

amount of money in order to keep their phone operational.

Such as happened with the Ikke.A [43] worm that requested

the user to pay 5 Euros in order to get back the control over

their iPhone. In our case the victim could be forced to send

a text message to an premium rate number in order to be

taken of the hit-list.

Another attack against an individual or a group could aim

to prevent them from communicating. This can be efficiently

carried out if the target phone uses a SIM card with the

security PIN enabled, as we describe in Section IV-I.

Operators: Operators could be threatened to have all their

customers attacked. Such an attack would mainly kill the

operators reputation as being reliable. Further the operator

might loose money due to people being unable to call and

send text messages – also for this to hurt the attack must

be carried out on very large scale for a longer time. Maybe

customers terminate their contract with the operator.

Further the operator’s mobile network can be attacked

directly or as an side effect of an large attack against it’s

users. This could work when thousands of attacked phones

drop of the network and try to re-connect at the same time.

This can cause an overload of the back-end infrastructure

such as the HLR. A similar attack is described in [17]. This

kind of attack seems likely since mobile networks are not

optimized for this specific kind of requests. It is not normal

that thousands of phones try to connect and authenticate at

the same time over and over again. To optimize this DoS

attack, the attacker needs to make sure to target phones

connected to different BTSs and MSCs (Figure 6) of the

targeted operator in order to circumvent bottlenecks such as

the air interface at the BTS. A clogged air interface would

throttle the attack.

Manufacturers: Likewise manufacturers could be threat-

ened to have their brand name destroyed or weakened by

attacking random people owning their specific brand of

mobile phones. The attack could cost them twice. Once for

the bad reputation and second for replacement devices. Even

if the phones are not broken victims of such an attack will

still try to claim their device broken to get an replacement.

Public Distress: A careful placed attack during a time

of public distress could lead to large scale problems and

maybe even a panic. Such as happened to the country of

Estonia [46] in 2007 when a group of people carried out

a Denial-of-Service attack against the countries Internet in-

frastructure. Also in emergency situations of any kind having

certain people without communication is bad. Not every

country has special infrastructure for emergency personal,

and, therefore, rely on mobile phones to communicate. This

is even true in countries like Germany where every police

officer carries a mobile phone since their two-way-radios are

often not usable.

VI. COUNTER MEASURES

In this Section we present counter measures to detect and

prevent the kind of attacks we developed. First, we present

a mechanism to detect our and similar attacks through

monitoring for a specific misbehavior. Second, we discuss

filtering of SMS messages. Filtering can be done on either

the phones themselves or on the network. We discuss the

advantages and disadvantages of each of them. Third, we

briefly discuss amplification attacks. Forth, we close with a

brief rant on missing firmware updates for feature phones.

A. Detection

To prevent our attacks operators first need to be able to

detect them. Detection is not very easy since the operator

does not get to look inside the phone during runtime.

Therefore, the only possible way is to monitor the phone

through the network. We propose the following:

• Monitor Phone Connectivity Status: Monitor if a

phone disconnects from the network right after receiv-

ing an SMS message.

• Log last N SMS Messages: Log the last N SMS

messages send to a particular phone in order to analyze

possible malicious messages after a crash was detected.

Use the message as input for SMS filters/firewall.

• Use IMEI to Detect Phone Type: The brand and

type of a mobile phone can be derived from the IMEI

(International Manufacturer Equipment Identity). This

is useful to correlated malicious SMS messages to a

specific brand and type of phone.

Using this technique it is be possible to catch malicious

SMS messages that cause phones to reboot and loose

network connectivity. This should especially help to catch

unknown payloads that cause crashes. Such a monitor is also

capable to detect if a large attack is on the way by correlating

multiple SMS-receive-disconnect events in a certain time-

frame.

B. SMS Filtering

SMS filtering can be implemented in two ways. Directly

on the phone and on the operator’s network. Both possi-

bilities have benefits and drawbacks, that we are going to

discuss in the following:

Phone Side SMS Filtering: would need to be done right

after the modem of the phone received and demodulated all

the frames carrying the SMS message and before pushing

it up the application stack. The filter would need to parse

the SMS message and check for known bad messages just

like an signature-based anti virus software or a packet filter

firewall would do it. The problem with this solution is the

update of the signatures. Of course the parser in the SMS

filter must be bug free otherwise the attack just moves from

the phone software to the filter software. Also devices that

are already in the field would not profit from such a filter

since only new phones will have this. Also newer phones

will like not contain bugs that are known at the time they

are manufactured. Therefore, we believe network side filters

make more sense.

Network Side SMS Filtering: takes place on the SMSC

of the mobile network operator. Therefore, it can inspect all

incoming and outgoing SMS messages. There are multiple

advantages of network side filtering. First, the filter software

runs on the network, therefore, it covers all mobile phones

connected to that network. Second, changing the filter rules

can be done in one central place. Third, malicious SMS

messages are not sent out to the destination mobile phones,

therefore, reducing network load during an attack.

Network side filters also have drawbacks. First, if a phone

is roaming in a other operators network the SMS message

does not travel through the network of the home operator.

Thus the filters are not touched. This is the only advantage

of phone side SMS filtering. In this case the user becomes

attackable as soon as he leaves his home network. For

traveling business people in Europe this is quite normal.

The GSMA already has a solution for this issue it is called

SMS homerouting, we discuss this briefly in the following

paragraph. The second issue with network side filtering is

privacy. In order to do SMS filtering the operator must be

allowed to inspect SMS messages this could be an issue in

some countries where mobile telephony falls under special

regulations.

SMS Homerouting as specified in [47] only comes into

play when the receiver phone is roaming.

Without homerouting the sender-side-SMSC queries the

HLR for the SMSC of the receiver. The HLR tells the sender-

SMSC that the receiver is currently roaming and the SMSC

that is able to deliver the SMS message to the receiver. The

sender-SMSC than delivers the SMS message to that SMSC

which in turn delivers the message to the receiver.

With homerouting active the process looks like this. When

sender-side-SMSC queries the HLR of the receiver the HLR

always pretends that the receiver is in it’s home network (not

roaming), and, therefore, returns an fake-SMSC that is on

it’s own network. The sender-SMSC than sends the SMS

message as if the receiver was not roaming. The SMSC on

the receivers network than quires the HLR itself now the

HLR returns the real SMSC for the receiver, one another

operator’s network. The SMS is forward to that SMSC which

in turn delivers the message to the destination phone.

The important difference is that when homerouting is

implemented all SMS messages that are send to the sub-

scribers of an operator travel though that operator’s SMSCs.

Therefore, the operator is able to filter malicious SMS

messages send to his customers. Without homerouting only

phones that are on the home network can be protected.

C. Preventing Network Amplification

Attack amplification through re-transmissions of SMS

messages should be avoided since this greatly helps an

attacker. We suggest that operators should limit the number

of re-transmissions. Some operators re-send the messages 10

times, this seems not necessary.

D. Firmware Updates

Firmware updates to patch known vulnerabilities is one of

the best ways to eliminate security problems based on known

issues. The problem with feature phones is that firmware

updates are often not available and if available hard to install.

If available, the operator often has a customized firmware,

that again would need to be created after the firmware

update. If an update exists for a particular device the user

still has to know about it. This is rather difficult since feature

phones, other than modern smart phones, don’t notify the

user about the existence of an update. Further, some phones

can only be updated in specialized stores.

But firmware can also be updated Over-the-Air. This

is called FOTA (Firmware Over-the-Air) defined in the

Open Mobile Alliance Firmware Update Management Ob-

ject (FUMO) [48]. Operators need to deploy and use this

technology for pushing out firmware updates to feature

phones that otherwise will not get updated by their owners.

VII. CONCLUSIONS

In this paper we have shown how to conduct vulnerability

analysis of feature phones. Feature phones are not open in

anyway, the hard and software are both closed and thus don’t

support any classical debugging methods. Throughout our

work we have created analysis tools based on a small GSM

basestation. We use the basestation to send SMS payloads to

our test phones and to monitor their behavior. Through this

testing we were able to identify vulnerabilities in mobile

phones build by six major manufacturers. The discovered

vulnerabilities can be abused for Denial-of-Service attacks.

Our attacks are significant because of the popularity of the

affected models – an attacker could potentially interrupt

mobile communication on a large scale. Our further analysis

of the mobile phone network infrastructure revealed that

networks configured in a certain way can be used to amplify

our attack. Further, our attack can be used to not only attack

the mobile handsets but through their misbehavior can be

used to carry out an attack against the core of the mobile

phone network.

To detect and prevent these kind of attacks we suggest a

set of counter measures. We conceived a method to detect

our and similar attacks by monitoring for a specific behavior.

ACKNOWLEDGEMENTS

The authors would like to thank Charlie Miller and An-

dreas Krennmair for reviewing early versions of this paper.

Further we thank our colleague Borgaonkar Ravishankar and

Simon Schoar for helping us buy mobile phones from India

and supply us with phones for testing.

REFERENCES

[1] Bernhard Müller. (2009) From 0 to 0-Day On Symbian.
https://www.sec-consult.com/files/SEC Consult Vulnerabil
ity Lab Pwning Symbian V1.03 PUBLIC.pdf.

[2] Chuanxiong Guo, Helen J. Wang, and Wenwu Zhu, “Smart-
phone attacks and defenses,” in Third ACM Workshop on Hot
Topics on Networks, 2004.

[3] C. Mulliner and G. Vigna, “Vulnerability Analysis of MMS
User Agents,” in Proceedings of the Annual Computer Secu-
rity Applications Conference (ACSAC), Miami, FL, December
2006.

[4] Charlie Miller. (2007, August) Exploiting the iPhone. http:
//securityevaluators.com/content/case-studies/iphone/.

[5] Charlie Miller, Mark Daniel, and Jake Honoroff. (2008,
October) Exploiting Android. http://securityevaluators.com/
content/case-studies/android/index.jsp.

[6] C. Miller, C. Mulliner. (2009, August) Fuzzing the Phone in
your Phone. http://www.blackhat.com/presentations/bh-usa-
09/MILLER/BHUSA09-Miller-FuzzingPhone-SLIDES.pdf.

[7] Vincenzo Iozzo and Philipp Weinmann, “iPhone Safari vul-
nerability allowed to steal the SMS database,” http://news.
cnet.com/8301-27080 3-20001126-245.html, March 2010.

[8] The Intrepidus Group, “WebOS: Examples of SMS
delivered injection flaws,” http://intrepidusgroup.com/insight
/2010/04/webos-examples-of-sms-delivered-injection-flaws/,
April 2010.

[9] Tomi Ahonen, Tomi Ahonen Almanac 2010 Mobile Telecoms
Industry Review, February 2010.

[10] (1996, October) Ping of Death. http://insecure.org/sploits/
ping-o-death.html.

[11] C. Mulliner and C. Miller, “Injecting SMS Messages into
Smart Phones for Security Analysis,” in Proceedings of the
3rd USENIX Workshop on Offensive Technologies (WOOT),
Montreal, Canada, August 2009.

[12] T. Engel. (2008, December) Remote SMS/MMS Denial
of Service - Curse Of Silence. http://berlin.ccc.de/∼tobias/
cursesms.txt.

[13] codenomicon. (2001) DEFENSICS. http://www.codenomi
con.com/defensics/.

[14] Mobile Security Lab. (2009, January) SonyEricsson WAP
Push Denial of Service. http://www.mseclab.com/?page id=
123.

[15] O. Whitehouse @stack Inc. (2003, February) Nokia Phones
Vulnerable to DoS Attacks. http://www.infoworld.com/article/
03/02/26/HNnokiados 1.html.

[16] B. Jurry XFocus Team. (2002, January) Siemens Mobile SMS
Exceptional Character Vulnerability. http://www.xfocus.org/
advisories/200201/2.html.

[17] W. Enck, P. Traynor, P. McDaniel and T. La Porta, “Exploit-
ing Open Functionality in SMS-Capable Cellular Networks,”
in Conference on Computer and Communications Security,
2005.

[18] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, T. La
Porta and P. McDaniel, “On Cellular Botnets: Measuring the
Impact of Malicious Devices on a Cellular Network Core,” in
ACM Conference on Computer and Communications Security
(CCS), November 2009.

[19] R. Farrow, “DNS Root Servers: Protecting the Internet,” 2003.

[20] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver, “Inside the slammer worm,” IEEE Security
and Privacy, vol. 1, pp. 33–39, 2003.

[21] Byers, Simon and Rubin, Aviel D. and Kormann, David,
“Defending against an Internet-based attack on the physical
world,” ACM Trans. Internet Technol., vol. 4, no. 3, pp. 239–
254, 2004.

[22] (2010, May) When It Comes to Apps, Feature Phones Are the
New Black. http://gigaom.com/2010/03/27/when-it-comes-to-
apps-feature-phones-are-the-new-black/.

[23] SUN Microsystems. Java Micro Edition. http://www.oracle.
com/technetwork/java/javame/index.html.

[24] Tomi T. Ahonen. (2010, February) Mobile Phone Market
Shares for year of 2009. http://communities-dominate.
blogs.com/brands/2010/02/phone-market-shares-for-year-of-
2009-and-last-quarter-2009.html.

[25] IDC. (2010, June) Western European Mobile Phone
Market Grows. http://www.idc.com/getdoc.jsp?containerId=
prUK22402810.

[26] ComScore. (2010, May) U.S. Mobile Subscriber Market
Share. http://comscore.com/Press Events/Press Releases/
2010/7/comScore Reports May 2010 U.S. Mobile
Subscriber Market Share.

[27] ——. (2010, November) German Mobile Market
Share. http://www.comscore.com/index.php/Press Events/
Press Releases/2010/1/comScore Reports November
2009 German Mobile Market Share.

[28] Micromax mobile. http://www.micromaxinfo.com/.

[29] (2010, April) Micromax becomes the third largest hand-
set manufacturer in India. http://www.topnews.in/micromax-
becomes-third-largest-handset-manufacturer-india-2260105.

[30] ip.access Ltd. nanoBTS 1800. http://www.ipaccess.com/
picocells/nanoBTS picocells.php.

[31] Harald Welte. (2008) OpenBSC. http://openbsc.osmocom.org/
trac/.

[32] 3rd Generation Partnership Project. (2004, September) 3GPP
TS 23.040 - Technical realization of the Short Message Ser-
vice (SMS). http://www.3gpp.org/ftp/Specs/html-info/23040.
htm.

[33] 3GPP/ETSI. (1998) 3GPP TS 03.40 Technical realization
of the Short Message Service. http://www.3gpp.org/ftp/specs/
html-info/0340.htm.

[34] ——. (1998) 3GPP TS 04.11 Point-to-Point (PP) Short
Message Service (SMS) Support on Mobile Radio Interface.
http://www.3gpp.org/ftp/specs/html-info/0411.htm.

[35] ——. (1998) 3GPP TS 03.38 Alphabets and language-specific
information. http://www.3gpp.org/ftp/Specs/html-info/0338.
htm.

[36] WAP Forum. (2002) WAP-209-WSP Wireless Applica-
tion Protocol MMS Encapsulation Protocol. http://www.
wapforum.com.

[37] (2005) Honeynet Project. http://project.honeynet.org.

[38] Bundesnetzagentur. Übersicht Numernraum. http://www. bun-
desnetzagentur.de/cln 1931/DE/Sachgebiete/Telekommunik
ation/RegulierungTelekommunikation/Nummernverwaltung/
UebersichtNummernraum/UerbersichtNrnRaum node.html.

[39] Das Örtliche. http://www.dasoertliche.de.

[40] Routo Messaging. http://www.routomessaging.com.

[41] Clickatell Bulk SMS Gateway. http://www.clickatell.com.

[42] Hay Systems Ltd. http://www.hslsms.com/.

[43] P.A. Porras, H. Saidi, V. Yegneswaran, “An Analysis of the
iKee.B iPhone Botnet,” in Proceedings of the 2nd Interna-
tional ICST Conference on Security and Privacy on Mobile
Information and Communications Systems (Mobisec), May
2010.

[44] cellular-news. (2010, November) A ”rising Tide” of SS7
Based Mobile Network Fraud. http://www.cellular-news.com/
story/46377.php.

[45] CERT. (1998, January) Advisory CA-1998-01 Smurf
IP Denial-of-Service Attacks. http://www.cert.org/advisories/
CA-1998-01.html.

[46] BBC News. (2007) Estonia hit by ’Moscow cyber war’. http:
//news.bbc.co.uk/2/hi/europe/6665145.stm.

[47] 3GPP. TR 23.840 Study into routeing of MT-SMs via the
HPLMN.

[48] Open Mobile Aliance. (2007) Firmware Update Man
agement Object. http://www.openmobilealliance.org/techni
cal/release program/docs/copyrightclick.aspx?pck=FUMO&
file=V1 0 4-20090828-A/OMA-TS-DM FUMO-V1 0 2-
20090828-A.pdf.

