LECTURE 3 Analysis of Stresses: at Considera pointq in somesortofstructural memberlikeas showningure below.Assuming thatat pointexist.q a planestateofstressexist.i.e.thestateofstate stressis todescribebya parameters ax,cyandrxyThesestressescouldbe indicate a on thetwodimensional diagramas shownbelow: Thisis a commenwayof representing thestresses.it mustbe realizea thatthematerialis unawareofwhatwe havecalledthexand yaxes.i.e.the materialhasto resisttheloadsirrespective lessof howwe wishto namethemorwhetherthey are horizontal, vertical orotherwise furthermore,thematerialwillfailwhenthestresses exceedbeyonda permissible value.Thus,a fundamental problemin engineering designis to determine the maximumnormalstressor maximumshearstressatany particular pointin a body.Thereis no reasonto believeapriorithatox,rsyandrxyarethe maximumvalue.Ratherthe maximumstressesmayassociatesthemselves withsomeotherplaneslocatedat9. Thus,itbecomesimperative to determine thevaluesof69andre.inorderttoachievethisletus considerthe following. Shear stress: P L Theseareparallel M lftheappliedloadP consistsoftwoequalandoppositeparallelforcesnotinthesameline,thanthereis a tendencyfor onepartofthebodytoslideoverorshearfrom the otherpartacrossanysectionLM.ifthecrosssectionat LMmeasuredparalleltothe loadisA,thentheaveragevalueof shearstress1.= P/A.The shearstressis tangential totheareaoverwhichitacts. lfthe shear stress varies then atapointthen I may bedened asT= LimE 5A>D59"-K Complementary shearstress: : ')b > A >> B x 5' D C * lfe = 90°theBCwillbeparalleltoABandr9= 0,i.e.therewillbeonlydirect stressor normalstress. Byexaminingthe equations(1) and (2),the followingconclusionsmaybe drawn (i) Thevalue ofdirectstress :59 ismaximum andisequal tocywhen9=900. (ii) Theshearstress rehasa maximum value of0.5crywhen6=450 (iii) Thestresses0'9 and G9are notsimplytheresolutionofoy Materialsubjectedto pure shear: considerthe elementshownto whichshearstresses havebeenappliedto the sides ABand DC A -1, i ty, B 1. l.pry Complementaryshearstresses of equalvaluebut of oppositeeffectare then set up on the sides AD and BC in orderto preventthe rotationof the element.Sincethe appliedand complementary shearstressesare of equalvalueon the xand yplanes. Therefore,theyare bothrepresentedbythe symbolrxy. Nowconsidertheequilibriumof portionof PBC Assumingunitdepthand resolvingnormalto PCor in the directionofce c9.PC.1= TXy.PB.COS9.1+ tXy.BC.sin6.1 = 'cXy.PB.cos9 + rxy.BC.sine NowwritingPBand BC in terms of PCso that it cancelsoutfrom the two sides PB/PC= sine BC/PC= cos6 c9.PC.1 =rXy.cosesin6PC+ rxy.cose.sin6PC <59 =Zrxysinecose 69= rXy.2.sinBcos6 05 =1 It _sin2t? (1) Nowresolvingforcesparallelto PCor in the direction19.thenTXYPC .1 = 1Xy.PBsin9 1:Xy.BCcos9 ve sign has beenput becausethis componentisin the same directionas thatofre. againconvertingthe variousquantitiesin terms of PCwe have rxypc. 1=1xy.PB.sin26 - 1Xy.PCcos26 =[rXy(cos29 sin20)] =1.'xyCOS29 or T3= - T 00328 (2) the negativesign meansthatthe sense ofre is oppositeto thatofassumed one. Letus examinethe equations(1) and (2) respectively Fromequation(1) Le, 69= Txysin26 Theequation (1) represents thatthemaximum value ofceisrxywhen9=45°. Letus take intoconsiderationthe equation(2)which statesthat 19= Cxy cos26 itindicates thatthe maximum value ofreisrxywhen6=00or900.ithasavalue zerowhen9=450. From equation (1)itmaybenoticed thatthenormal componentce hasmaximum andminimum values of+rXy (tension) and~rXy (compression) onplane at: 45°tothe appliedshearand on these planesthe tangentialcomponentreis zero. Hencethesystemofpureshearstressesproduces andequivalentdirect stresssystem,onesetcompressive andonetensileeachlocatedat45°totheoriginalshear directionsas depictedin the gure below: YXJ x. N V M 531: 45:3}: ' Tn m :9" 1 g_ ,3, T DP. TN? are x M Nowconsidera rectangularelementofunitdepth,subjectedto a systemoftwo directstressesbothtensile,6x and cyactingrightanglesto eachother. for equilibriumofthe portionABC,resolvingperpendiculartoAC G9.AC.1=6ysin e.AB.1+cXcos 9. BC.1 convertingABand BC in terms ofAC so thatACcancelsoutfrom the sides 63=crysinze4-rsxcosze Futher,recallingthatcos26 sin29= cos26or (1 ~ cos26)/2= sin20 Simiiarly(1+ cos26)/2= coszq Hencebythesetransformationsthe expressionfor <59 reducesto =1/26y(1 COS29)+1/2GX(1 + cos29) On rearrangingthe varioustermswe get (3) Nowresolvingparallelto AC sq.AC.1=~1:Xy..cos9.AB.1+ rXy.BC.sin9.1 The ve sign appearsbecausethis componentis in the same directionas thatofAC. Againconvertingthe variousquantitiesin terms ofAC so thatthe ACcancelsoutfrom the two sides. :rB.r-\C.1 = [1100ssin crysinEcost?]AC T5= [0, oyjsincns L Q0*) sin2E <4> Conclusions: Thefollowingconclusionsmaybe drawnfrom equation(3)and (4) (i) Themaximum directstress wouldbeequal to(ixorcywhich everisthegreater, when6=00or900 (ii) Themaximum shearstressintheplaneoftheappliedstressesoccurswhen6=45° Trnax : (U1 ; 03) GotoHome