
LECTURE 25 and 26

Simple Bending Theory OR Theory of Flexure for Initially Straight Beams

(The normal stress due to bending are called flexure stresses)

Preamble:

When a beam having an arbitrary cross section is subjected to a transverse loads the beam will bend. in addition to bending the other effects such as twisting and
buckling may occur, and to investigate a problem that includes all the combined effects of bending, twisting and buckling could become a complicated one. Thus we
are interested to investigate the bending effects alone, in orderto do so, we have to put certain constraints on the geometry ofthe beam and the manner ofloading.

Assumptions:

The constraints put on the geometrywould form the assumptions:

1. Beam is initially straight , and has a constant cross-section.

2. Beam is made of homogeneous material and the beam has a longitudinal plane of symmetry.

3. Resultantofthe applied loads lies in the plane ofsymmetry.

4. The geometryofthe overall member is such that bending not buckling is the primarycause offailure.

5. Elastic limit is nowhere exceeded and �E� is same in tension and compression.

6. Plane cross � sections remains plane before and after bending.
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Letus considera beam initiallyunstressed as shown in fig 1(a). Now the beam is subjected to a constant bending moment(i.e. �Zero Shearing Force�) along its length
as would be obtained byapplying equal couples at each end. The beam will bend to the radius R as shown in Fig 1(b)

As a result of this bending, the top �bers of the beam will be subjected to tension and the bottom to compression it is reasonable to suppose, therefore,that some
where between the two there are points at which the stress is zero. The locus of all such points is known as neutral axis. The radius of curvature R is then
measured to this axis. For symmetrical sections the N. A is the axis of symmetry but what ever the section N. A will always pass through the centre of the area or
centroid.

The above restrictions have been taken so as to eliminate the possibility of �twisting� of the beam.

Concept of pure bending:

Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force, a resultant shear force and a
resultant couple. in order to ensure that the bending effects alone are investigated, we shall put a constraint on the loading such that the resultant normal and the
resultant shear forces are zero on any cross-section perpendicularto the longitudinal axis of the member,

That means F = 0

since W = F = D or M: constant.

Thus, the zero shear force means that the bending moment is constant or the bending is same at every cross-section of the beam. Such a situation may be visualized
or envisaged when the beam or some portion of the beam, as been loaded only by pure couples at its ends. it must be recalled that the couples are assumed to be
loaded in the plane of symmetry.

Plane of Symmetry
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When a member is loaded in such a fashion it is said to be in pure bending. The examples of pure bending have been indicated in EX1and EX2 as shown below:

When a beam is subjected to pure bending are loaded bythe couples at the ends, certain cross-section gets deformed and we shall have to make outthe conclusion
that,

1. Plane sections originally perpendicularto longitudinal axis ofthe beam remain plane and perpendicularto the longitudinal axis even after bending , i.e.
the cross-section A&#39;E&#39;, B&#39;F�( refer Fig 1(a) ) do not get warped or curved.

2. in the deformed section, the planes of this cross-section have a common intersection i.e. any time originally parallel to the longitudinal axis of the
beam becomes an arc of circle.
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We know that when a beam is under bending the �bres at the top will be lengthened while at the bottom will be shortened provided the bending moment M acts at the
ends. in between these there are some �bres which remain unchanged in length that is they are notstrained, that is they do not carry any stress. The plane containing
such fibres is called neutral surface.

The line ofintersection between the neutral surface and the transverse exploratorysection is called the neutral axisNeutral axis (N A) .

Bendin Stresses in Beams or Derivation of Elastic Flexural formula :

in order to compute the value of bending stresses developed in a loaded beam, let us consider the two cross-sections of a beam HE and GF, originally parallel as
shown in �g 1(a).when the beam is to bend it is assumed that these sections remain parallel i.e. H&#39;E&#39; and GP , the �nal position of the sections, are still straight lines,
theythen subtend some angle 6.

Consider now fiber AB in the material, at adistance yfrom the NA when the beam bends this will stretch to A&#39;B&#39;



Therefore,
change in lengthstrain infihre AEl= _

orginallength
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refertofig1(a) anc|figl(lJ)
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Since CD and CD� are on the neutral axis and it is assumed thatthe Stress on the neutral axis zero. Therefore, there won&#39;t be any strain on the neutral axis
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Therefore equating the twostrains as

obtaineclfromthetworelationsie, 
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Consider anyarbitrarya cross�section of beam, as shown above now the strain on a �bre at a distance �y from the NA, is given bythe expression
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Mom ent ahouttheneutral axis would he = F_y =% 5:262�-K
The toatl moment for the whole

cross�section istherefore equal to

M: E 25A=E 25AERr R25�
Now the term 2 yzaix is the property of the material and is called as a second moment of area ofthe cross�section and is denoted bya symbol 1.

Therefore

E
w1=�i
combining equation 1 and 2 we get

This equation is known as the Bending Theory Equation.The above proof has involved the assumption of pure bending without any shear force being present.
Therefore this termed as the pure bending equation. This equation gives distribution ofstresses which are normal to cross�section i.e. in x-direction.

Section Modulus:

From simple bending theoryequation, the maximum stress obtained in anycross�section is given as

MU rn = T 5" m
man: man:

For any given allowable stress the maximum momentwhich can be accepted bya particular shape of cross�section is therefore



Second Moment of Area :

Taking an analogy from the mass moment of inertia, the second moment of area is defined as the summation of areas times the distance squared from a fixed axis.
(This property arised while we were driving bending theory equation). This is also known as the moment ofinertia.An alternative name given to this is second moment
of area, because the first moment being the sum ofareas times their distance from a given axis and the second moment being the square ofthe distance ml" 3,3 dA .

Consider anycross�section having small elementofarea d Athen bythe de�nition

lX(Mass Momentoflnertia aboutx-axis)= I 3,2 ,3;-N and ly(Mass |\/loment of lnertia abouty-axis)=J&#39; X2 CIA

Now the moment ofinertia about an axis through D� and perpendicular to the plane of �gure is called the polar moment ofinertia. (The polar moment ofinertia is also
the area momentofinertia).

i.e, 
     
     J = polar momentofinertia

= Ir3.:lA

= It >8 + MA
= Ix1dA+Iy1dA
� Ix + IY

orJ=|X+|l,r ......... ..(1)

The relation (1) is known as the gergendicular axis theorem and may be stated as follows:

The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of inertia about an axis perpendicular to the plane, the three axes being
concurrent, i.e, the three axes exist together.

CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the following manner

Consider any circular strip of thickness Eirlocated at a radius &#39;2�.

Than the area ofthe circular strip would be dA= Znr. Sr



Th�sJ = ,[r2I:lA
Taking the limits ofinterg ration from D to u:lf2

cl
5

J = _[r22:Itr5r
o

d
r� 5 9&#39;rcl4J �2:&#39;I[TL � i
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Eiut forthe circular oross-section ,the In and lyare both

equal being moment ofinertia about a diameter
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Parallel Axis Theorem:

The moment ofinertia aboutany axis is equal to the moment ofinertia abouta parallel axis through the centroid plus the area times the square ofthe distance between
the axes.

2 H T i. 2:

if �Z2 is any axis in the plane of cross-section and �XX� is a parallel axis through the centroid G, of the cross�section, then

I: = Hy +h)2 dz�-�a by de�nition (moment ofinertia about an axis ZZ)

=l[+2yh+h?]ciA
= ly3dA+h3ldA +2hlydA

Since lydA= o
= ly*ciA+h*ldA
= ly%iA+h9A

2 = II +.�""\h2 II = is (since cross�section axes also passthrough G)
Where A =Total area ofthe section

Rectangular Section:

For a rectangular x�section of the beam, the second moment of area may be computed as below:



Considerthe rectangular beam cross-section as shown above and an element of area dA,thickness dy, breadth B located at a distance yfrom the neutral axis, which
bysymmetry passes through the centre ofsection. The second moment ofarea las de�ned earlier would be

INA = [y3dA

Thus, forthe rectangular section the second momentofarea aboutthe neutral axis i.e., an axis through the centre is given by
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