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Instructional Objectives 
On completion of the lesson, the student shall be learn 

1. The description of steady state of ground water flow in the form of Laplace 
equation derived from continuity equation and Darcy’s law for ground 
water movement. 

2. The quantitative description of unsteady state ground water flow. 
3. The definition of the terms Specific Yield and Specific Storage and their 

relationship with Storativity of a confined aquifer. 
4. The expressions for ground water flow in unconfined and confined 

aquifers, written in terms of Transmissivity. 
5. Expression for two – dimensional flow in unconfined and confined 

aquifers; Boussinesq equation. 
6. Expression for two – dimensional seepage flow below dams. 
7. Analytical solution of steady one dimensional flow in simple cases of 

confined and unconfined aquifers. 
 

 

2.6.0 Introduction 
In the earlier lesson, qualitative assessment of subsurface water whether in the 
unsaturated or in the saturated ground was made. Movement of water stored in 
the saturated soil or fractured bed rock, also called aquifer, was seen to depend 
upon the hydraulic gradient. Other relationships between the water storage and 
the portion of that which can be withdrawn from an aquifer were also discussed. 
In this lesson, we derive the mathematical description of saturated ground water 
flow and its exact and approximate relations to the hydraulic gradient. 
 
 
2.6.1 Continuity equation and Darcy’s law under steady state 
conditions 
 
Consider the flow of ground water taking place within a small cube (of lengths ∆x, 
∆y and ∆z respectively the direction of the three areas which may also be called 
the elementary control volume) of a saturated aquifer as shown in Figure 1. 
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It is assumed that the density of water (ρ) does not change in space along the 
three directions which implies that water is considered incompressible. The 
velocity components in the x, y and z directions have been denoted as νx, νy, νz 
respectively. 
 
 Since water has been considered incompressible, the total incoming water in the 
cuboidal volume should be equal to that going out. Defining inflows and outflows 
as: 
Inflows: 

In x-direction: ρ νx (∆y.∆x) 
In y-direction: ρ νy (∆x.∆z) 
In z-direction: ρ νz (∆x.∆y) 

 
Outflows: 

In X-direction: ρ (νx + x
x
x

Δ
∂

∂ν
 ∆x) (∆y.∆z) 

Version 2 CE IIT, Kharagpur 
 



In Y-direction: ρ (νy+ y
y
y

Δ
∂

∂ν
) (∆x.∆z) 

In Z-direction: ρ (νz+ z
z

∂
∂ν

.∆z) (∆y.∆x)  

 
The net mass flow per unit time through the cube works out to: 
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This is continuity equation for flow.  But this water flow, as we learnt in the 
previous lesson, is due to a difference in potentiometric head per unit length in 
the direction of flow. A relation between the velocity and potentiometric gradient 
was first suggested by Henry Darcy, a French Engineer, in the mid nineteenth 
century. He found experimentally (see figure below) that the discharge ‘Q’ 
passing through a tube of cross sectional area ‘A’ filled with a porous material is 
proportional to the difference of the hydraulic head ‘h’ between the two end 
points and inversely proportional to the flow length’L’. 
 
It may be noted that the total energy (also called head, h) at any point in the 
ground water flow per unit weight is given as  
 

h = Z + 
γ
p + 

g
v
2

2

     (3) 

 
Where  
 

Z is the elevation of the point above a chosen datum;  

γ
p is the pressure head, and  

g
v
2

2

is the velocity head 

Since the ground water flow velocities are usually very small, 
g

v
2

2

is neglected 

and 
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h = Z+
γ
p is termed as the potentiometric head (or piezometric head in some 

texts) 
 

 
 

Thus  

Q α A • ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

L
hh QP      (4) 

 
Introducing proportionality constant K, the expression becomes 
 

Q = K.A. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

L
hh QP      (5) 

 
Since the hydraulic head decreases in the direction of flow, a corresponding 
differential equation would be written as 
 

Q = -K.A. ⎟
⎠
⎞

⎜
⎝
⎛

dl
dh      (6) 

 
Where (dh/dl) is known as hydraulic gradient. 
 
The coefficient ‘K’ has dimensions of L/T, or velocity, and as seen in the last 
lesson this is termed as the hydraulic conductivity. 
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Thus the velocity of fluid flow would be: 
 

ν = 
A
Q = -K (

dl
dh )     (7) 

 
It may be noted that this velocity is not quite the same as the velocity of water 
flowing through an open pipe. In an open pipe, the entire cross section of the 
pipe conveys water. On the other hand, if the pipe is filed with a porous material, 
say sand, then the water can only flow through the pores of the sand particles. 
Hence, the velocity obtained by the above expression is only an apparent 
velocity, with the actual velocity of the fluid particles through the voids of the 
porous material is many time more.  But for our analysis of substituting the 
expression for velocity in the three directions x, y and z in the continuity relation, 
equation (2) and considering each velocity term to be proportional to the 
hydraulic gradient in the corresponding direction, one obtains the following 
relation 
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Here, the hydraulic conductivities in the three directions (Kx, Ky and Kz) have 
been assumed to be different as for a general anisotropic medium. Considering 
isotropic medium with a constant hydraulic conductivity in all directions, the 
continuity equation simplifies to the following expression: 

02
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z
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h

x
h

    (9)  

 
In the above equation, it is assumed that the hydraulic head is not changing with 
time, that is, a steady state is prevailing. 
 
If now it is assumed that the potentiometric head changes with time at the 
location of the control volume, then there would be a corresponding change in 
the porosity of the aquifer even if the fluid density is assumed to be unchanged. 
 
What happens to the continuity relation is discussed in the next section. 
 
 
Important term: 
 
Porosity:  It is ratio of volume of voids to the total volume of the soil and is 
generally expressed as percentage.   
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2.6.2 Ground water flow equations under unsteady state 
 

For an unsteady case, the rate of mass flow in the elementary control volume is 
given by: 
 

t
Mzyx

zyx
zyx

∂
∂

=ΔΔΔ⎥
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This is caused by a change in the hydraulic head with time plus the porosity of 
the media increasing accommodating more water. Denoting porosity by the term 
‘n’, a change in mass ‘M’ of water contained with respect to time is given by 
 

( zyxn
tt

M
ΔΔΔ

∂
)∂

=
∂

∂ ρ     (11) 

        
Considering no lateral strain, that is, no change in the plan area ∆x.∆y of the 
control volume, the above expression may be written as: 
 

( ) ( ) yxzn
t

zyxn
tt

M
ΔΔΔ

∂
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+ΔΔΔ
∂
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=
∂

∂ ρρ ..   (12) 

 
Where the density of water (ρ)  is assumed to change with time. Its relation to a 
change in volume of the water Vw, contained within the void is given as: 
 

ρ
ρd

V
Vd

w

w −=
)(

     (13) 

 
The negative sign indicates that a reduction in volume would mean an increase 
in the density from the corresponding original values. 
 
The compressibility of water, β, is defined as: 
 

dp
Vw

Vwd ])([
−=β    (14) 

 
Where ‘dp’ is the change in the hydraulic head ‘p’ Thus,  
 

β = 
dp

d
ρ

ρ      (15)  

 
That is,  
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ρd  =ρ dp β     (16) 

 
The compressibility of the soil matrix, α, is defined as the inverse of ES, the 
elasticity of the soil matrix. Hence  
 

z
zd

dE Z
S

Δ
Δ

−== )(
)(1 σ

α    (17) 

 
Where σZ is the stress in the grains of the soil matrix.  
 
Now, the pressure of the fluid in the voids, p, and the stress on the solid particles, 
σZ, must combine to support the total mass lying vertically above the elementary 
volume. Thus, 
 

p+σz= constant    (18) 
 

Leading to  
 

dσz = -dp     (19) 
 

Thus,  
 

z
zd

dp

Δ
Δ

−= )(
1
α

    (20) 

 
Also since the potentiometric head ‘h’ given by 
 

h = 
γ
p +Z     (21)  

 
Where Z is the elevation of the cube considered above a datum. We may 
therefore rewrite the above as  
 

11
+=

dz
dp

dz
dh

γ
     (22) 

 
First term for the change in mass ‘M’ of the water contained in the elementary 
volume, Equation 12, is 
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zyxn
t
p

ΔΔΔ
∂
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..     (23) 

 
This may be written, based on the derivations shown earlier, as equal to 
 

zyx
t
p

n ΔΔΔ
∂
∂

.... βρ     (24) 

 
Also the volume of soil grains, VS, is given as 
 

VS = (1-n) zyx ΔΔΔ      (25) 
 

Thus, 
 

dVS = [ d (∆ z) – d ( n ∆ z) ] ∆ x ∆ y   
 (26) 

 
Considering the compressibility of the soil grains to be nominal compared to that 
of the water or the change in the porosity, we may assume dVS to be equal to 
zero. Hence, 

      
[ d (∆ z) – d ( n ∆ z) ] ∆ x ∆ y = 0    (27) 
 

Or, 
 

 d (∆ z) = d ( n ∆ z)      (28) 
   
Which may substituted in second term of the expression for change in mass, M, 
of the elementary volume, changing it to 
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Thus, the equation for change of mass, M, of the elementary cubic volume 
becomes 
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Combining Equation (30) with the continuity expression for mass within the 
volume, equation (10), gives the following relation: 
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Assuming isotropic media, that is, KX=K=YKZ=K and applying Darcy’s law for the 
velocities in the three directions, the above equation simplifies to 
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Now, since the potentiometric (or hydraulic) head h is given as 
 

h = 
γ
p + z     (33) 

 
The flow equation can be expressed as 
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The above equation is the general expression for the flow in three dimensions for 
an isotropic homogeneous porous medium. The expression was derived on the 
basis of an elementary control volume which may be a part of an unconfined or a 
confined aquifer. The next section looks into the simplifications for each type of 
aquifer. 
     
 
 
2.6.3 Ground water flow expressions for ground water flow 
unconfined and confined aquifers 
  
 Unsteady flow takes place in an unconfined and confined aquifer would be either 
due to: 

• Change in hydraulic head (for unconfined aquifer) or potentiometric 
head (for confined aquifer) with time. 

• And, or compressibility of the mineral grains of the soil matrix forming 
the aquifer 

• And, or compressibility of the water stored in the voids within the soil 
matrix  
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We may visually express the above conditions as shown in Figure 3, assuming 
an increase in the hydraulic (or potentiometric head) and a compression of soil 
matrix and pore water to accommodate more water 
 

 
 
Since storability S of a confined aquifer was defined as  
 

)( βαγ nbS +=      (35) 
 

The flow equation for a confined aquifer would simplify to the following: 
 

t
h
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S
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h
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∂
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    (36) 

 
Defining the transmissivity T of a confined aquifer as a product of the hydraulic 
conductivity K and the saturated thickness of the aquifer, b, which is: 
 

T = K•b      (37) 
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The flow equation further reduces to the following for a confined aquifer  
 

t
h

T
S
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h

y
h

x
h
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    (38) 

 
For unconfined aquifers, the storability S is given by the following expression             
 

S = Sy + h Ss      (39) 
 

Where Sy is the specific yield and Ss is the specific storage equal to )( βαγ n+  
 
Usually, Ss is much smaller in magnitude than Sy and may be neglected. Hence 
S under water table conditions for all practical purposes may be taken equal to 
Sy. 
 
 
2.6.4 Two dimensional flow in aquifers 
Under many situations, the water table variation (for unconfined flow) in areal 
extent is not much, which means that there the ground water flow does not have 
much of a vertical velocity component.  Hence, a two – dimensional flow situation 
may be approximated for these cases.  On the other hand, where there is a large 
variation in the water table under certain situation, a three dimensional velocity 
field would be the correct representation as there would be significant component 
of flow in the vertical direction apart from that in the horizontal directions.  This 
difference is shown in the illustrations given in Figure 4.  
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In case of two dimensional flow, the equation flow for both unconfined and 
confined aquifers may be written as, 
 

t
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∂
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     (40) 

 
There is one point to be noted for unconfined aquifers for hydraulic head ( or 
water table) variations with time.  It is that the change in the saturated thickness 
of the aquifer with time also changes the transmissivity, T, which is a product of 
hydraulic conductivity K and the saturated thickness h. The general form of the 
flow equation for two dimensional unconfined flow is known as the Boussinesq 
equation and is given as 
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Where Sy is the specific yield. 
 
If the drawdown in the unconfined aquifer is very small compared to the 
saturated thickness, the variable thickness of the saturated zone, h, can be 
replaced by an average thickness, b, which is assumed to be constant over the 
aquifer. 
 
For confined aquifer under an unsteady condition though the potentiometric 
surface declines, the saturated thickness of the aquifer remains constant with 
time and is equal to an average value ‘b’.  Solving the ground water flow 
equations for flow in aquifers require the help of numerical techniques, except for 
very simple cases. 
 
 

2.6.5 Two dimensional seepage flow 
 In the last section, examples of two dimensional flow were given for aquifers, 
considering the flow to be occurring, in general, in a horizontal plane. Another 
example of two dimensional flow would that be when the flow can be 
approximated. to be taking place in the vertical plane.  Such situations might 
occur as for the seepage taking place below a dam as shown in Figure 5. 
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Under steady state conditions, the general equation of flow, considering an 
isotropic porous medium would be   
 

02

2

2

2

=
∂
∂

+
∂
∂

z
h

y
h

     (42) 

However, solving the above Equation (42) for would require advanced analytical 
methods or numerical techniques. More about seepage flow would be discussed 
in the later session. 
 
 

2.6.6 Steady one dimensional flow in aquifers 
Some simplified cases of ground water flow, usually in the vertical plane, can be 
approximated by one dimensional equation which can then be solved 
analytically. We consider the confined and unconfined aquifers separately, in the 
following sections. 
 
2.6.6.1 Confined aquifers 
 
 If there is a steady movement of ground water in a confined aquifer, there will be 
a gradient or slope to the potentiometric surface of the aquifer. The gradient, 
again, would be decreasing in the direction of flow. For flow of this type, Darcy’s 
law may be used directly. 
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Aquifer with constant thickness 
 
This situation may be shown as in Figure 6. 
 

 
 
Assuming unit thickness in the direction perpendicular to the plane of the paper, 
the flow rate ‘q’ (per unit width) would be expressed for an aquifer of thickness’b’ 
 

q = b *1 * v      (43) 
 

According to Darcy’s law, the velocity ‘v’ is given by 
 

v = -K 
x
h

∂
∂

      (44) 

 
Where h, the potentiometric head, is measured above a convenient datum. Note 

that the actual value of ’h’ is not required, but only its gradient 
x
h

∂
∂ in the direction 

of flow, x, is what matters.  Here is K is the hydraulic conductivity 
 
Hence,     
 

q = b K 
x
h

∂
∂       (45) 
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The partial derivative of ‘h’ with respect to ‘x’ may be written as normal derivative 
since we are assuming no variation of ‘h’ in the direction normal to the paper. 
Thus 
 

      q = - b K 
xd
hd       (46) 

 
For steady flow, q should not vary with time, t, or spatial coordinate, x. hence, 
 

0
2

2

=−=
xd
hdKb

xd
qd

     (47) 

 
Since the width, b, and hydraulic conductivity, K, of the aquifer are assumed to 
be constants, the above equation simplifies to: 

02

2

=
xd
hd       (48) 

 
Which may be analytically solved as 
 

h = C1 x + C2
      (49) 
 

Selecting the origin of coordinate x at the location of well A (as shown in Figure 
6), and having a hydraulic head,hA and also assuming a hydraulic head of well B, 
located at a distance L from well A in the x-direction and having a hydraulic head 
hB, we have: 
 

hA = C1.0+C2 and 
hB = C1.L+C2 

 
Giving 

  
C1 = h - hA /L and C2= hA     (50) 

 
Thus the analytical solution for the hydraulic head ‘h’ becomes: 
 

H = A
AB hx

L
hh

+
−

     (51) 

 
Aquifer with variable thickness 
 
Consider a situation of one- dimensional flow in a confined aquifer whose 
thickness, b, varies in the direction of flow, x, in a linear fashion as shown in 
Figure 7. 
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The unit discharge, q, is now given as  

q = - b (x) K 
dx
dh      (52) 

Where K is the hydraulic conductivity and dh/dx is the gradient of the 
potentiometric surface in the direction of flow,x. 
 
For steady flow, we have, 
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  Which may be simplified, denoting 
dx
db as b′  

 

02

2

=′+
dx
dhb

xd
hdb      (54) 

 
A solution of the above differential equation may be found out which may be 
substituted for known values of the potentiometric heads hA and hB in the two 
observation wells A and B respectively in order to find out the constants of 
integration. 
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2.6.6.2 Unconfined aquifers 
 
 In an unconfined aquifer, the saturated flow thickness, h is the same as the 
hydraulic head at any location, as seen from Figure 8: 
 

 
Considering no recharge of water from top, the flow takes place in the direction of 
fall of the hydraulic head, h, which is a function of the coordinate, x taken in the 
flow direction. The flow velocity, v, would be lesser at location A and higher at B 
since the saturated flow thickness decreases. Hence v is also a function of x and 
increases in the direction of flow. Since, v, according to Darcy’s law is shown to 
be 

dx
dhK=ν      (55) 

 
the gradient of potentiometric surface, dh/dx, would (in proportion to the 
velocities) be smaller at location A and steeper at location B. Hence the gradient 
of water table in unconfined flow is not constant, it increases in the direction of 
flow. 
 
 This problem was solved by J.Dupuit, a French hydraulician, and published in 
1863 and his assumptions for a flow in an unconfined aquifer is used to 
approximate the flow situation called Dupuit flow. The assumptions made by 
Dupuit are: 
 
 

• The hydraulic gradient is equal to the slope of the water table, and 
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• For small water table gradients, the flow-lines are horizontal and the 
equipotential lines are vertical. 

 
The second assumption is illustrated in Figure 9. 
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Solutions based on the Dupuit’s assumptions have proved to be very useful in 
many practical purposes. However, the Dupuit assumption do not allow for a 
seepage face above an outflow side. 
 
An analytical solution to the flow would be obtained by using the Darcy equation 
to express the velocity, v, at any point, x, with a corresponding hydraulic 

gradient
dx
dh , as  

 

dx
dhK−=ν      (56) 

 
Thus, the unit discharge, q, is calculated to be  
 

dx
dhhKq −=      (57) 

Considering the origin of the coordinate x at location A where the hydraulic head 
us hA and knowing the hydraulic head hB at a location B, situated at a distance L 
from A, we may integrate the above differential equation as: 
 

∫ ∫−=
L h

h

B

A

dhhKdxq
0

    (58) 

 
Which, on integration, leads to 
 

hB

hA

L hKxq
2

.
2

0
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Or, 
 

q . L = K 
⎥
⎥
⎦

⎤

⎢
⎢
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⎡
−

22

22
AB hh     (60) 

 
Rearrangement of above terms leads to, what is known as the Dupuit equation: 
 

     
⎥
⎥
⎦

⎤

⎢
⎢
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L
hh

Kq AB
22

2
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An example of the application of the above equation may be for the ground water 
flow in a strip of land located between two water bodies with different water 
surface elevations, as in Figure 10. 
 
 

 
 
The equation for the water table, also called the phreatic surface may be derived 
from Equation (61) as follows: 
 

( )
L
xhhhh 2

2
2

1
2

1 −−=     (62) 

 
In case of recharge due to a constant infiltration of water from above the water 
table rises to a many as shown in Figure 11: 
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There is a difference with the earlier cases, as the flow per unit width, q, would 
be increasing in the direction of flow due to addition of water from above. The 
flow may be analysed by considering a small portion of flow domain as shown in 
Figure 12. 
 

 
 

Considering the infiltration of water from above at a rate i per unit length in the 
direction of ground water flow, the change in unit discharge dq  is seen to be 
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dq = i .dx     (63) 

 
Or, 
 

i
dx
dq

=       (64) 

 
From Darcy’s law, 
 

dx
hdk

dx
dhhKq )(

2
1..

2

−=−=
    (65) 

 
 

( )
2

22

2
1

dx
hdK

dx
dq

−=
     (66) 

 

Substituting the expression for
dx
dq , we have, 

 

i
dx

hdK =− 2

22 )(
2
1

     (67)
 

Or, 
 
 

k
i

dx
hd .2)(
2

22

=
      (68)

 

 
The solution for this equation is of the form 
  

21
22 2 CxCxKh +=+     (69) 

   
If, now, the boundary condition is applied as, 
 
 At x = 0, h = h1, and 
 At x = L, h = h2
 
The equation for the water table would be: 
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K
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L
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2

1
2
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And, 
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xqqx 20 +=       (71) 

 
Where  is the unit discharge at the left boundary, x = 0, and may be found out 
to be 

0q
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Which gives an expression for unit discharge  at any point x from the origin as xq
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⎟
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For no recharge due to infiltration, i = 0 and the expression for  is then seen to 
become independent of x, hence constant, which is expected. 

xq
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