Water \& Wastewater Engineering

Home
Lecture
Quiz
Design Example

Worked-out Examples:

Population Forecast by Different Methods
Sedimentation Tank Design
Rapid Sand Filter Design
Flow in Pipes of a Distribution Network by Hardy Cross Method
Trickling Filter Design

Population Forecast by Different Methods

Problem: Predict the population for the years 1981, 1991, 1994, and 2001 from the following census figures of a town by different methods.

Year	1901	1911	1921	1931	1941	1951	1961	1971
Population: (thousands)	60	65	63	72	79	89	97	120

Solution:

Year	Population: (thousands)	Increment per Decade	Incremental Increase	Percentage Increment per Decade
1901	60	-	-	-
1911	65	+5	-	$(5+60) \times 100=+8.33$
1921	63	-2	-3	$(2+65) \times 100=-3.07$
1931	72	+9	+7	$(9+63) \times 100=+14.28$
1941	79	+7	-2	$(7+72) \times 100=+9.72$
1951	89	+10	+3	$(10+79) \times 100=+12.66$
1961	97	+8	-2	$(8+89) \times 100=8.98$
1971	120	+23	+15	$(23+97) \times 100=+23.71$
Net values	1	+60	+18	+74.61
Averages	-	8.57	3.0	10.66

+=increase; - = decrease

Arithmetical Progression Method:

$$
P_{n}=P+n i
$$

Average increases per decade $=\mathrm{i}=8.57$
Population for the years,
$1981=$ population $1971+n i$, here $n=1$ decade

$$
=120+8.57=128.57
$$

1991= population $1971+$ ni, here $n=2$ decade

$$
=120+2 \times 8.57=137.14
$$

2001= population $1971+$ ni, here $n=3$ decade

$$
=120+3 \times 8.57=145.71
$$

1994= population $1991+($ population $2001-1991) \times 3 / 10$

$$
=137.14+(8.57) \times 3 / 10=139.71
$$

Incremental Increase Method:

Population for the years,
$1981=$ population $1971+$ average increase per decade + average incremental increase

$$
=120+8.57+3.0=131.57
$$

$$
\begin{aligned}
1991 & =\text { population } 1981+11.57 \\
& =131.57+11.57=143.14
\end{aligned}
$$

$$
\begin{aligned}
2001 & =\text { population } 1991+11.57 \\
& =143.14+11.57=154.71
\end{aligned}
$$

1994 $=$ population $1991+11.57 \times 3 / 10$

$$
=143.14+3.47=146.61
$$

Geometric Progression Method:

Average percentage increase per decade $=10.66$

$$
P_{n}=P(1+i / 100)^{n}
$$

Population for $1981=$ Population $1971 \times(1+\mathrm{i} / 100)^{\mathrm{n}}$
$=120 \times(1+10.66 / 100), i=10.66, n=1$
$=120 \times 110.66 / 100=132.8$
Population for $1991=$ Population $1971 \times(1+\mathrm{i} / 100)^{\mathrm{n}}$
$=120 \times(1+10.66 / 100)^{2}, i=10.66, n=2$
$=120 \times 1.2245=146.95$
Population for $2001=$ Population $1971 \times(1+\mathrm{i} / 100)^{\mathrm{n}}$
$=120 \times(1+10.66 / 100)^{3}, i=10.66, n=3$
$=120 \times 1.355=162.60$
Population for $1994=146.95+(15.84 \times 3 / 10)=151.70$

Sedimentation Tank Design

Problem: Design a rectangular sedimentation tank to treat 2.4 million litres of raw water per day. The detention period may be assumed to be 3 hours.

Solution: Raw water flow per day is $2.4 \times 10^{6} \mathrm{I}$. Detention period is 3 h .
Volume of tank $=$ Flow x Detention period $=2.4 \times 10^{3} \times 3 / 24=300 \mathrm{~m}^{3}$
Assume depth of tank $=3.0 \mathrm{~m}$.
Surface area $=300 / 3=100 \mathrm{~m}^{2}$
$L / B=3$ (assumed). $L=3 B$.
$3 B^{2}=100 \mathrm{~m}^{2}$ i.e. $B=5.8 \mathrm{~m}$
$\mathrm{L}=3 \mathrm{~B}=5.8 \mathrm{X} 3=17.4 \mathrm{~m}$
Hence surface loading (Overflow rate) $=\underline{2.4 \times 10^{6}}=24,000 \mathrm{l} / \mathrm{d} / \mathrm{m}^{2}<40,000 \mathrm{I} / \mathrm{d} / \mathrm{m}^{2}$ (OK)

Rapid Sand Filter Design

Problem: Design a rapid sand filter to treat 10 million litres of raw water per day allowing 0.5% of filtered water for backwashing. Half hour per day is used for bakwashing. Assume necessary data.

Solution: Total filtered water $=\underline{10.05 \times 24 \times 10^{6}}=0.42766 \mathrm{MI} / \mathrm{h}$

$$
24 \times 23.5
$$

Let the rate of filtration be $5000 \mathrm{I} / \mathrm{h} / \mathrm{m}^{2}$ of bed.
Area of filter $=\frac{10.05 \times 10^{6}}{23.5} \times \frac{1}{5000}=85.5 \mathrm{~m}^{2}$

Provide two units. Each bed area $85.5 / 2=42.77$. L/B $=1.3 ; 1.3 B^{2}=42.77$
$B=5.75 \mathrm{~m} ; \mathrm{L}=5.75 \times 1.3=7.5 \mathrm{~m}$
Assume depth of sand $=50$ to 75 cm .
Underdrainage system:
Total area of holes $=0.2$ to 0.5% of bed area.
Assume 0.2% of bed area $=\underline{0.2} \times 42.77=0.086 \mathrm{~m}^{2}$ 100

Area of lateral $=2$ (Area of holes of lateral)
Area of manifold $=2$ (Area of laterals)
So, area of manifold $=4 \times$ area of holes $=4 \times 0.086=0.344=0.35 \mathrm{~m}^{2}$.
\therefore Diameter of manifold $=(4 \times 0.35 / \pi)^{1 / 2}=66 \mathrm{~cm}$
Assume c/c of lateral $=30 \mathrm{~cm}$. Total numbers $=7.5 / 0.3=25$ on either side .
Length of lateral $=5.75 / 2-0.66 / 2=2.545 \mathrm{~m}$.
C.S. area of lateral $=2 \times$ area of perforations per lateral. Take dia of holes $=13 \mathrm{~mm}$

Number of holes: $\underset{4}{\mathrm{n}} \boldsymbol{\pi}(1.3)^{2}=0.086 \times 10^{4}=860 \mathrm{~cm}^{2}$

$$
\therefore \mathrm{n}=\frac{4 \times 860}{\pi(1.3)^{2}}=648 \text {, say } 650
$$

Number of holes per lateral $=650 / 50=13$
Area of perforations per lateral $=13 \times \pi(1.3)^{2} / 4=17.24 \mathrm{~cm}^{2}$
Spacing of holes $=2.545 / 13=19.5 \mathrm{~cm}$.
C.S. area of lateral $=2 \times$ area of perforations per lateral $=2 \times 17.24=34.5 \mathrm{~cm}^{2}$.
\therefore Diameter of lateral $=(4 \times 34.5 / \pi)^{1 / 2}=6.63 \mathrm{~cm}$
Check: Length of lateral $<60 \mathrm{~d}=60 \times 6.63=3.98 \mathrm{~m} . \mathrm{I}=2.545 \mathrm{~m}$ (Hence acceptable).

Rising washwater velocity in bed $=50 \mathrm{~cm} / \mathrm{min}$.
Washwater discharge per bed $=(0.5 / 60) \times 5.75 \times 7.5=0.36 \mathrm{~m}^{3} / \mathrm{s}$.
Velocity of flow through lateral $=\frac{0.36}{\text { Total lateral area }}=\frac{0.36 \times 10^{4}}{50 \times 34.5}=2.08 \mathrm{~m} / \mathrm{s}(\mathrm{ok})$
Manifold velocity $=\frac{0.36}{0.345}=1.04 \mathrm{~m} / \mathrm{s}<2.25 \mathrm{~m} / \mathrm{s}$ (ok)

Washwater gutter

Discharge of washwater per bed $=0.36 \mathrm{~m}^{3} / \mathrm{s}$. Size of bed $=7.5 \times 5.75 \mathrm{~m}$.
Assume 3 troughs running lengthwise at $5.75 / 3=1.9 \mathrm{~m} \mathrm{c} / \mathrm{c}$.
Discharge of each trough $=Q / 3=0.36 / 3=0.12 \mathrm{~m}^{3} / \mathrm{s}$.

$$
\mathrm{Q}=1.71 \times \mathrm{bx} \mathrm{~h}{ }^{3 / 2}
$$

Assume b $=0.3 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{h}^{3 / 2}=\frac{0.12}{1.71 \times 0.3}=0.234 \\
& \therefore \mathrm{~h}=0.378 \mathrm{~m}=37.8 \mathrm{~cm}=40 \mathrm{~cm} \\
& =40+(\text { free board }) 5 \mathrm{~cm}=45 \mathrm{~cm} \text {; slope } 1 \text { in } 40
\end{aligned}
$$

For 4 h filter capacity, Capacity of tank $=4 \times 5000 \times 7.5 \times 5.75 \times 2=1725 \mathrm{~m}^{3}$ 1000

Assume depth $\mathrm{d}=5 \mathrm{~m}$. Surface area $=1725 / 5=345 \mathrm{~m}^{2}$
$L / B=2 ; 2 B^{2}=345 ; B=13 \mathrm{~m} \& L=26 \mathrm{~m}$.
Dia of inlet pipe coming from two filter $=50 \mathrm{~cm}$.
Velocity $<0.6 \mathrm{~m} / \mathrm{s}$. Diameter of washwater pipe to overhead tank $=67.5 \mathrm{~cm}$.
Air compressor unit $=1000 \mathrm{I}$ of air $/ \mathrm{min} / \mathrm{m}^{2}$ bed area.
For 5 min , air required $=1000 \times 5 \times 7.5 \times 5.77 \times 2=4.32 \mathrm{~m}^{3}$ of air.

Flow in Pipes of a Distribution Network by Hardy Cross Method

Problem: Calculate the head losses and the corrected flows in the various pipes of a distribution network as shown in figure. The diameters and the lengths of the pipes used are given against each pipe. Compute corrected flows after one corrections.

Solution: First of all, the magnitudes as well as the directions of the possible flows in each pipe are assumed keeping in consideration the law of continuity at each junction. The two closed loops, ABCD and CDEF are then analyzed by Hardy Cross method as per tables $1 \& 2$ respectively, and the corrected flows are computed.

Table 1

Consider loop ABCD

Pipe	Assumed flow		Dia of pipe		Length of pipe (m)	$=\begin{gathered} \mathrm{K} \\ =\frac{\mathrm{L}}{470} \\ \mathrm{~d}^{4.87} \end{gathered}$	$\mathrm{Qa}^{1.85}$	$\begin{gathered} \mathrm{H}_{\mathrm{L}}= \\ \mathrm{K} . \mathrm{Q}_{\mathrm{a}}^{1.85} \end{gathered}$	$\mathrm{H}_{\mathrm{L}} / \mathrm{Q}_{\mathrm{a}} \mid$
	$\begin{array}{\|c\|} \hline \text { in } \\ \hline 1 / \mathrm{sec} \\ \hline \end{array}$	in cumecs	$\mathrm{d} \text { in }$	$\mathrm{d}^{4.87}$					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
AB	$(+)$ 43	+0.043	0.30	2.85×10^{-3}	500	373	3×10^{-3}	+1.12	26
BC	$(+)$	+0.023	0.20	3.95×10^{-4}	300	1615	9.4×10^{-4}	+1.52	66
CD	23	-0.020		3.95×10^{-4}	500	2690	7.2×10^{-4}	-1.94	97
DA	$\left\lvert\, \begin{array}{ll} (-) & 20 \\ (-) & 35 \end{array}\right.$	-0.035	0.20	3.95×10^{-4}	300	1615	2×10^{-3}	-3.23	92
Σ								-2.53	281

${ }^{*} H_{L}=\left(Q_{a}{ }^{1.85} \mathrm{~L}\right) /\left(0.094 \times 100{ }^{1.85} \times \mathrm{d}^{4.87}\right)$
or $\mathrm{K} . \mathrm{Q}_{\mathrm{a}}{ }^{1.85}=\left(\mathrm{Q}_{\mathrm{a}}{ }^{1.85} \mathrm{~L}\right) /\left(470 \mathrm{Xd} \mathrm{d}^{4.87}\right)$
or $\mathrm{K}=(\mathrm{L}) /\left(470 \times \mathrm{d}^{4.87}\right)$
For loop $A B C D$, we have $\delta=-\Sigma H_{L} / x \cdot \Sigma I H_{L} / Q_{a} \mid$

$$
\begin{aligned}
& =(-)-2.53 /(1.85 \times 281) \text { cumecs } \\
& =(-)(-2.53 \times 1000) /(1.85 \times 281) \mathrm{I} / \mathrm{s} \\
& =4.86 \mathrm{l} / \mathrm{s}=5 \mathrm{l} / \mathrm{s} \text { (say) }
\end{aligned}
$$

Hence, corrected flows after first correction are:

Pipe	AB	BC	CD	DA
Corrected flows after first correction in l/s	+48	+28	-15	-30

Table 2
Consider loop DCFE

Pipe	Assumed flow		Dia of pipe		Length of pipe (m)	$\mathrm{K}=\frac{\mathrm{L}}{470 \mathrm{~d}^{4.87}}$	$\mathrm{Q}^{1.85}$	$\begin{array}{\|c} \mathrm{H}_{\mathrm{L}} \\ \mathrm{~K} . \mathrm{Q}_{\mathrm{a}}{ }^{1.85} \end{array}$	$\mathrm{H}_{\mathrm{L}} / \mathrm{Q}_{\mathrm{a}}$
	$\sqrt{- \text { in }}$	$\begin{array}{c\|\|} \hline \text { in } \\ \text { cumecs } \end{array}$	$\begin{gathered} \mathrm{d} \text { in } \\ \mathrm{m} \end{gathered}$	$\mathrm{d}^{4.87}$					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
DC	(+) 20	+0.020	0.20	$\begin{aligned} & \hline 3.95 \\ & \times 10^{-4} \end{aligned}$	500	2690	$\underset{4}{7.2 \times 10}$	+1.94	97
CF	(+) 28	+0.028	0.15		300	6580		+8.80	314
FE	(-) 8	-0.008	0.15	$\begin{gathered} 9.7 \\ \times 10^{-5} \end{gathered}$	500	10940	$\begin{gathered} 1.34 \\ \times 10^{-3} \end{gathered}$	-1.47	184
ED	(-) 5	-0.005	0.15	$\begin{gathered} 9.7 \\ \times 10^{-5} \end{gathered}$	300	6580	$\begin{array}{\|\|c} 1.34 \\ \times 10^{-4} \end{array}$	-0.37	74
				$\begin{gathered} 9.7 \\ \times 10^{-5} \end{gathered}$			$\left\lvert\, \begin{gathered} 5.6 \times 10^{-} \\ 5 \end{gathered}\right.$		
Σ								+8.9	669

For loop ABCD , we have $\delta=-\Sigma \mathrm{H}_{\mathrm{L}} / \mathrm{x} \cdot \Sigma \mathrm{I} \mathrm{H}_{\mathrm{L}} / \mathrm{Q}_{\mathrm{a}} \mathrm{I}$

$$
\begin{aligned}
& =(-)+8.9 /(1.85 \times 669) \text { cumecs } \\
& =(-)(+8.9 \times 1000) /(1.85 \times 669)) \mathrm{I} / \mathrm{s} \\
& =-7.2 \mathrm{l} / \mathrm{s}
\end{aligned}
$$

Hence, corrected flows after first correction are:

Pipe	DC	CF	FE	ED
Corrected flows after first correction in l / s	+12.8	+20.8	-15.2	-12.2

Trickling Filter Design

Problem: Design a low rate filter to treat 6.0 Mld of sewage of BOD of $210 \mathrm{mg} / \mathrm{l}$. The final effluent should be $30 \mathrm{mg} / \mathrm{l}$ and organic loading rate is $320 \mathrm{~g} / \mathrm{m}^{3} / \mathrm{d}$.

Solution: Assume 30\% of BOD load removed in primary sedimentation i.e., = 210 x $0.30=63 \mathrm{mg} / \mathrm{l}$. Remaining BOD $=210-63=147 \mathrm{mg} / \mathrm{l}$.
Percent of BOD removal required $=(147-30) \times 100 / 147=80 \%$
BOD load applied to the filter $=$ flow x conc. of sewage $(\mathrm{kg} / \mathrm{d})=6 \times 10^{6} \times 147 / 10^{6}=$ $882 \mathrm{~kg} / \mathrm{d}$

To find out filter volume, using NRC equation
$E_{2}=\quad 100$
$1+0.44\left(F_{1 . B O D} N_{1} \cdot \mathrm{Rf}_{1}\right)^{1 / 2}$
$80=100 \quad \mathrm{Rf}_{1}=1$, because no circulation.
$1+0.44\left(882 N_{1}\right)^{1 / 2}$
$V_{1}=2704 \mathrm{~m}^{3}$
Depth of filter $=1.5 \mathrm{~m}$, Fiter area $=2704 / 1.5=1802.66 \mathrm{~m}^{2}$, and Diameter $=48 \mathrm{~m}<$ 60 m

Hydraulic loading rate $=6 \times 10^{6} / 10^{3} \times 1 / 1802.66=3.33 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}<4$ hence o. .
Organic loading rate $=882 \times 1000 / 2704=326.18 \mathrm{~g} / \mathrm{d} / \mathrm{m}^{3}$ which is approx. equal to 320.

