
A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE

BARRY JAY AND THOMAS GIVEN-WILSON

Abstract. Traditional combinatory logic is able to represent all Turing computable

functions on natural numbers, but there are effectively calculable functions on the com-

binators themselves that cannot be so represented, because they have direct access to

the internal structure of their arguments. Some of this expressive power is captured by

adding a factorisation combinator. It supports structural equality, and more generally, a

large class of generic queries for updating of, and selecting from, arbitrary structures. The

resulting combinatory logic is structure complete in the sense of being able to represent

pattern-matching functions, as well as simple abstractions.

§1. Introduction. Traditional combinatory logic [21, 4, 10] is computation-
ally equivalent to pure λ-calculus [3] and able to represent all of the Turing
computable functions on natural numbers [23], but there are effectively calcula-
ble functions on the combinators themselves that cannot be so represented, as
they examine the internal structure of their arguments.

This is consistent with the traditional theorems about computable functions
of numbers, but imposes severe constraints upon the interpretation of Church’s
thesis, that all effectively calculable functions are general recursive [18]. The
theoretical implications will be considered in Section 3, but the practical con-
sequence is that the expressive power of traditional combinatory logic can be
increased by adding new combinators.

Consider the combinators built from two atoms (meta-variable A), namely the
traditional S and a new, factorisation operator F . The SF -matchable forms are
the combinators of the form S, SM,SMN,F, FM and FMN . Then the defining
equations for S and F are

SMNX = MX(NX)

FAMN = M

F (PQ)MN = NPQ if PQ is SF -matchable.

The traditional combinator K can be represented by FF since KXY = FFXY =
X but F cannot be represented by S and K. Just as the combinators S and K
are able to support λ-abstraction, the combinators S and F are able to support a
larger class of pattern-matching functions. That is, SF -combinators are structure

complete.
Pattern-matching adds significant expressive power to combinatory logic. SF -

logic is the first such to support a combinator for generic equality of normal

Our thanks to Roger Hindley and Samson Abramsky for their valuable comments on drafts
of this work.

1

2 BARRY JAY AND THOMAS GIVEN-WILSON

forms, obtained by comparing internal structures. Combinator equality has been
considered indirectly by appealing to: meta-level operations [4, p. 245]; or partial
combinatory algebras (not logics) such as the uniformly reflexive structures [24];
or discriminators [16, 17]. However, this is the first account we know of that is
strictly within combinatory logic.

Further, one may define generic queries for selecting or updating structures
that generalise the usual database queries from rows and tables to arbitrary
structures. These queries are slightly more general than those of pattern calculus

[15, 13, 14, 12] or Lisp [19] since they interact with arbitrary normal forms,
while the latter are limited to data structures or S-expressions. Indeed, the
present work has been motivated by the observation that the factorisation which
is central to this new approach to pattern matching can be considered in isolation.
It is worth emphasising that the novelty lies in the genericity of the queries, since
traditional combinators are able to exploit internal structure when this is fixed in
advance. For example, the internal structure of a number in unary arithmetic is
accessed by the predecessor function, though the latter is surprisingly complex.

Unlike S, the factorisation operator does not have a simple type since the
type of the components of an application are not determined by the type of
application itself. However, the missing information can be acknowledged by
using existential quantification in System F of variable types [7, 6].

Although SF -combinatory logic is structure complete, there remain symbolic
computations that it does not represent, which in turn suggest other novel com-
binators. Examples considered include a general equality E, and constructors
for data structures, such as Nil, Cons, Pair etc. Another example arises by
limiting factorisation to applications that are data structures.

The paper is organised as follows. Section 1 introduces the paper. Section 2
reviews some elementary facts about combinators, including the combinatorial
completeness of SK-combinators. Section 3 demonstrates that SK-combinators
cannot represent arbitrary symbolic computations. Section 4 introduces the fac-
torisation operator, with its basic properties, and the example of structural equal-
ity. Section 5 introduces pattern-matching functions of combinators, the corre-
sponding notion of structural completeness, and shows that SF -combinators are
structurally complete. Section 6 shows how to type F using quantifiers. Section 7
introduces novel combinators for general equality, constructors, and factorising
data structures. Section 8 draws conclusions and considers future work.

§2. Combinators. This section provides a skeletal introduction to tradi-
tional combinators. Since the focus of this paper is on computation rather than
logical paradoxes, it emphasises calculi over logics, with rules given by reductions
rather than equations.

A combinatory calculus is given by a finite collection A of atoms (meta-
variable A), or operators that are used to define the combinators (meta-variables
M,N,P,Q,R) built from these by application

M,N ::= A | MN

The A-combinatory calculus or A-calculus is given by the combinators plus their
reduction rules. This section will focus on the traditional SK-calculus, with

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 3

atoms

A ::= S | K

and reduction rules

SMNX −→ MX(NX)
KXY −→ X .

The combinator SMNX uses X twice, as an argument to both M and N . The
combinator KXY eliminates Y and returns X.

The rules are instantiated by replacing each meta-variable M,N,X or Y by a
particular combinator. The reduction relation (also, denoted −→) is the relation
obtained by applying an instantiation of a reduction rule to some sub-expression.
The transitive closure of the reduction relation is denoted −→∗ though the star
may be elided if it is obvious from the context.

Further, the relation −→∗ induces an equivalence relation = on the combina-
tors, their equality. The A-combinatory logic is the system of equivalence classes
of combinators from A-combinatory calculus. When the distinction between
the calculus and the logic is not important we may refer to the A-combinators.
Syntactic equality of combinators will be denoted by ≡.

If the reduction relation cannot be applied then a combinator is a normal form.
A combinator M is a head normal form if it satisfies two properties: it is not the
instantiation of the left-hand side of any reduction rule; and if it is an application
PQ then P is already a head normal form. For example, in SK-calculus, the
head normal forms are those combinators of the form S, SM,SMN,K and KM .

The SK-calculus can be translated to λ-calculus as follows [4, 5, 1, 10]

[[S]] = λg.λf.λx.g x (f x)

[[K]] = λx.λy.x

[[MN]] = [[M]] [[N]] .

For example

[[SKX]] = (λg.λf.λx.g x (f x)) (λx.λy.x) [[X]]

−→ (λf.λx.(λx.λy.x) x (f x)) [[X]]

−→ λx.(λx.λy.x) x ([[X]] x)

−→ λx.(λy.x) ([[X]] x)

−→ λx.x

for any combinator X.

Theorem 2.1. Translation from SK-calculus to λ-calculus preserves reduc-

tion.

Proof. It is enough to consider the reduction rules

[[SMNX]] = (λg.λf.λx.g x (f x)) [[M]] [[N]] [[X]]

−→ [[M]] [[X]] ([[N]] [[X]])

= [[MX(NX)]]

[[KXY]] = (λx.λy.x) [[X]] [[Y]]

−→ [[X]] .

4 BARRY JAY AND THOMAS GIVEN-WILSON

⊣

One of the goals of combinatory logic is to give an equational account of vari-
able binding and substitution, especially as it appears in λ-calculus. More gen-
erally, one may consider the ability to represent arbitrary computable functions
that act upon combinators. Although it is tempting to define symbolic compu-
tations upon logics (where equality is the main notion) it is more convenient to
work with calculi.

A symbolic function is here defined to be an n-ary partial function G of some A-
combinatory logic, i.e. a function of the combinators that preserves their equality,
as determined by the reduction rules. That is, if Xi = Yi for 1 ≤ i ≤ n and
G(X1,X2, . . . ,Xn) is defined then G(X1,X2, . . . ,Xn) = G(Y1, Y2, . . . , Yn). A
combinator G in the calculus represents G if there is a reduction

GX1 . . . Xn = G(X1, . . . ,Xn) .

whenever the right-hand side is defined. Where a symbolic function is deemed
to be effectively calculable it may be called a symbolic computation. Then G
is representable in A-combinatory calculus. When G is defined by the action
of some operator A then we may say that G represents A. For example, if
SK-calculus is augmented by an atom I with the rule

IY −→ Y

then I is represented (by I itself and) by any combinator of the form SKX since

SKXY = KY (XY) = Y .

In SK-calculus, I is defined to be SKK. Conversely, A is independent from a
collection of atoms A if A is not representable in A-combinatory calculus.

In order to represent λ-abstraction, it is necessary to have some variables to
work with. Given A as before, define the A-terms by

M,N ::= x | A | MN

where x is as in λ-calculus. Free variables and the substitution {N/x}M of the
term N for the variable x in the term M is defined in the obvious manner, since
the term calculus does not have any binding constructions built in. The A-term

calculus has reduction defined by the same rules as the A-calculus, noting that
instantiation may introduce variables. Symbolic computation and representation
can be defined for terms just as for combinators.

Given a variable x and term M define a symbolic function G on terms by

G(X) = {X/x}M

Note that if M has no free variables other than x then G is also a symbolic
computation of the combinatory logic. If every such function G on combinators
is representable then the A-combinatory logic is combinatorially complete in the
sense of Curry [4, p. 5].

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 5

Given representations of S,K and I then G above can be represented by a
term λ∗x.M given by

λ∗x.x = I
λ∗x.y = K y if y 6= x
λ∗x.A = KA

λ∗x.MN = S(λ∗x.M)(λ∗x.N) .

Lemma 2.2. For all terms M and N and variables x there is a multi-step

reduction

(λ∗x.M) N −→ {N/x}M .

Proof. Proof is straightforward by induction on the structure of the combi-
nator M .

• If M is x then (λ∗x.M)N ≡ IN −→ N ≡ {N/x}M .
• If M is any other variable or an atom then (λ∗x.M)N ≡ KMN −→ M ≡
{N/x}M .

• Finally, if M is of the form M1M2 then

(λ∗x.M)N ≡ S(λ∗x.M1)(λ
∗x.M2)N

−→ (λ∗x.M1)N((λ∗x.M2)N)

−→ {N/x}M1({N/x}M2)

≡ {N/x}M

by two applications of induction.

⊣

The following theorem is a central result of combinatory logic [4].

Theorem 2.3. Any combinatory calculus that is able to represent S and K is

combinatorially complete.

Proof. Given G(X) = {X/x}M as above define G to be λ∗x.M and apply
Lemma 2.2. ⊣

§3. Symbolic Computation. This section introduces some symbolic com-
putations that are not defined by λ-abstraction, as they examine the internal
structure of their arguments. After presenting an example, the implications for
the general theory of computation will be discussed.

Consider some A-calculus. Define the ternary function R on combinators by

R(A,M,N) = M

R(PQ,M,N) = NPQ .

That is, R branches according to whether it can factorise its first argument.
Of course, R does not respect equality since, for example, in SK-calculus the
application SKKK reduces to the atom K.

One approach to handling R would be to modify the reduction relation, so
that rules cannot be applied to the right-hand side of an application. This ap-
proach is adopted for Kearns’ system of discriminators [16, 17] which includes
a discriminator R that is similar to R above. Discriminators are well suited to

6 BARRY JAY AND THOMAS GIVEN-WILSON

their purpose of directly modelling the symbolic computations of Turing ma-
chines, with their asymmetric treatment of state and tape. Here R preserves
this weakened notion of reduction, but the equivalence relation is not an equal-
ity relation in the sense of Leibnitz, which permits the substitution of equals for
equals.

The approach adopted here is to reduce the to head normal forms before
factoring. These can be computed using

H(X) = X if X is head normal
H(X) = H(Y) if X −→ Y instantiates a rule

H(PQ) = H(H(P)Q) otherwise.

Note that if X does not have a head normal form then H(X) is not defined.
From this, one may define a ternary symbolic computation F by

F(X,M,N) = R(H(X),M,N) .

A routine induction shows that H and F preserve reduction and so are symbolic
computations.

Each A-calculus has its own collection of head normal forms and hence, its
own version of F . The symbol F shall be used to denote a combinator that
represents F .

Theorem 3.1. There are symbolic computations on SK-calculus that are not

representable.

Proof. Clearly, F is able to distinguish SKK from SKS. Now suppose that
there is an SK-combinator F that represents F . Then, for any combinator X
we have

F (SKX)S(KI) −→ KI(SK)X −→ IX −→ X .

Translating this to λ-calculus yields both [[F (SKX)S(KI)]] −→ [[X]] and

[[F (SKX)S(KI)]] = [[F]] [[(SKX)]] [[S]] [[KI]] −→ [[F]] (λx.x) [[S]] [[KI]] .

Hence, by confluence of reduction in λ-calculus, all [[X]] share a reduct with
[[F]] (λx.x) [[S]] [[KI]] but this is obviously impossible, since [[S]] and [[K]] are
distinct normal forms. Hence F cannot be represented in SK-logic. ⊣

It follows that, although SK-logic is combinatorially complete, it is not com-
plete for combinators, in the sense of being able to represent all their symbolic
computations. Since SK-logic is Turing complete, this sheds new light on our
understanding of computation in general.

The 1930s witnessed an explosion of systems for supporting computation, in-
cluding general recursive functions, Turing machines, combinatory logic and λ-
calculus. These were all proven equivalent, in the sense of being able to support
the same class of numerical functions, the general recursive ones, which led to
Church’s thesis, as expressed by Kleene [18]:

THESIS 1: Every effectively calculable function (effectively decidable
predicate) is general recursive.

Of course, this statement cannot be proven, since there is no way to define the
effectively calculable functions, but it captured the intuition that there is noth-
ing beyond any of the systems mentioned above, and that, at least in principle,

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 7

it is enough to study any one. However, Theorem 3.1 shows that this intuition
is wrong, and the following section will introduce combinators that add expres-
sive power to combinatory calculus. So there is a gap between the theorems
about numerical computation and the application of Church’s thesis to symbolic
computation. The gap is exposed by considering several interpretations of the
thesis.

The most literal interpretation is that effective calculation is a property of
numerical calculations, or that numbers are the only fit subject for calculation.
This Pythagorean version of Church’s thesis, since Pythagoras asserted that “All
is number.” If the thesis is intended to embrace symbolic and numerical compu-
tation then this interpretation must be amended.

A mechanistic interpretation is to confine computation to meaningless symbol
pushing, e.g. by making marks upon a tape. This leads directly to Turing’s thesis:
anything that can be computed, can be computed on a Turing machine [23]. Of
course, the ability to factorise is completely consistent with this thesis. However,
though Turing’s approach is good for establishing the existence of uncomputable
functions, it does not say much about what can be computed.

A meaningful approach to Church’s thesis requires s translation to general
recursive functions that preserves the semantics. For numerical calculations the
semantics is quite familiar, but for symbolic computation the semantics may
be alien. [According to Richard Dedekind, however, such a reality check is not
available for symbolic systems since “God made the natural numbers. Everything
else is the work of man.”] Rather than appeal to some external or denotational
semantics, it is safer to preserve an operational semantics, e.g. equality or reduc-
tion of combinators. However, once the translation becomes explicit then two
difficulties arise.

First, it is not clear how to choose the translation, even for familiar systems.
For example, consider combinators for unary arithmetic, a zero and successor.
One translation to general recursion will map the zero to 0, but a translation
through pure λ-calculus will map the zero to the identity function.

Second, there may fail to be any translation that preserves the semantics.
The existing translation from SK-logic to λ-calculus serves well enough for nu-
merical computations, but does not provide a representation of F . As F is a
meta-function, in the sense of Tarksi [22], it is tempting to translate combinators
to binary trees and then use tree operations to factorise. However, it is not clear
what semantics is being preserved. Further, one may consider effective calcu-
lations that act upon meta-function F , leading to meta-meta-functions, whose
translations will be even more opaque. Of course, these hierarchical difficulties
are well known in the context of logical paradoxes, such as that of Russell.

Finally, a narrow interpretation can escape the need for translation by restrict-
ing to a single system. However, it is still necessary to account for symbolic com-
putations. SK-logic appeared to achieve this by being combinatorially complete
but, as shown above, it has symbolic computations that cannot be represented.

To summarise, Church’s thesis, as stated by Kleene, is plausible if one restricts
attention to numerical computation (the Pythagorean approach), or abandons
semantics (the Turing approach), but is implausible when semantics-preserving

8 BARRY JAY AND THOMAS GIVEN-WILSON

translations are made explicit, and false when considering completeness of SK-
combinators for symbolic computation. In particular, there are plenty of oppor-
tunities to add expressive power by introducing new combinators, as will now be
shown.

§4. Factorisation. This section introduces SF -calculus, where F will be
used to represent F , as defined in Section 3. Basic properties are established,
and examples culminating in a combinator for structural equality.

The definition of F depends upon the notion of head normal form, which is
parametrised by the reduction rules of the calculus. However, this approach can-
not be applied to define F as its reduction rules must be given before determining
the head normal forms. Fortunately, in each calculus considered, it is easy to
give a syntactic characterisation of the head normal forms, as the matchable
forms.

The SF -calculus has matchable forms given by

S | SM | SMN | F | FM | FMN .

A compound is a matchable form that is also an application. Its reduction rules

are

SMNX −→ MX(NX)
FAMN −→ M for any atom A

F (PQ)MN −→ NPQ if PQ is a compound .

The combinator S is as before. The factorisation operator branches according to
whether its first argument is an atom, in which case the second argument results,
or is a matchable application, in which case the third argument is applied to the
components. The combinator K is defined to be K ≡ FF and then I ≡ SKK
as before.

Theorem 4.1. Reduction is confluent.

Proof. It is enough to observe that the reduction rules are orthogonal [20,
11], since matchable forms are stable under reduction. ⊣

Theorem 4.2. Every normal form is a matchable form.

Proof. Trivial. ⊣

Despite this result, note that there are (equivalence classes of) combinators in
the corresponding combinatory logic which do not have a matchable form, such
as FXMN where X does not normalise.

Here are some examples. The presentation will exploit the λ∗-abstraction
defined in Section —refsec:combination. Just as in SK-calculus, it is convenient
to introduce some familiar computing constructs. Define the conditionals, of
the form if P then M else N by PMN . Then truth is given by K since
KMN −→ M while falsehood is given by KI since KIMN −→ IN −→ N .
The usual boolean operations are defined in the obvious way; write M and N for
the conjunction of M and N ; M or N for their disjunction; and M implies N
for implication. Similarly, there is a fixpoint combinator fix with the property
that fix M and M(fix M) have a common reduct.

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 9

The test for being a compound is

isComp ≡ λ∗x.Fx(KI)(K(KK))

since

isComp A −→ FA(KI)(K(KK))

−→ KI

isComp(PQ) −→ F (PQ)(KI)(K(KK))

−→ K(KK)PQ

−→ KKQ

−→ K if PQ is a compound.

Similarly, the first and second components of a compound are obtained by

fstComp ≡ λ∗x.FxIK

sndComp ≡ λ∗x.FxI(KI) .

Note that they map atoms to I, so it is usual to check for being a compound
first.

It is also useful to be able to distinguish F from S. Define

isF ≡ λ∗x.x(KI)(K(KI))K .

Then

isF F −→ F (KI)(K(KI))K −→ KKI −→ K
isF S −→ S(KI)(K(KI))K −→ KIK(K(KI)K) −→ KI

as desired. This yields a test for equality of atoms, namely

eqatom ≡ λ∗x.λ∗y.isF x implies isF y .

Putting the tests for compounds and atoms together yields a combinator for
equality of normal forms, namely

equal ≡ fix (λe.λx.λy.
if isComp x
then isComp y and

e (fstComp x) (fstComp y) and e (sndComp x) (sndComp y)
else not (isComp y) and eqatom x y) .

It tests equality of combinators x and y as follows. If x is a compound then check
that y is too, and that their corresponding components are equal. Otherwise,
ensure that y is an atom and apply eqatom. The combinator equal is an example
of a path polymorphic function or query [12] in that it may traverse all paths
through the internal structure of its arguments.

§5. Structure Completeness. This section shows that SF -calculus is able
to represent pattern-matching functions. The resulting syntax provides an at-
tractive account of equality, and other generic queries.

10 BARRY JAY AND THOMAS GIVEN-WILSON

Fix a collection of atoms A and their reduction rules. The patterns (meta-
variable P) are terms of the A-term calculus that are in normal form. For
example, in SF -term calculus they can be described by

Pv ::= x | PvP

P ::= Pv | S | SP | SPP | F | FP | FPP .

From now on we shall restrict attention to linear patterns in which no variable
occurs twice. While this may seem a little artificial, non-linear patterns describe
structures that come with side-conditions about the equality of substructures;
it is simpler, and more natural, to replace these side conditions with an ex-
plicit equality test using whatever flavour of equality suits best, as discussed in
Section 7.

Patterns can be used to define cases which are symbolic functions satisfying
equations of the form

G(P) = M

where P is a pattern and M is an arbitrary term. When all free variables of
M are also free in P then G is a function of combinators, as well as of terms.
If, further, P is a variable x then G is definable in a combinatorially complete
calculus, but in general this is not so. For example G (x y) = N x y captures
some of the functionality of F .

When G is applied to some term U the pattern P will be matched against U
to try and determine the values of the free variables in P so that these can be
substituted into M . That is, matching seeks a substitution σ such that σP = U .
However, the presence or absence of such a substitution is not an infallible guide
to evaluation.

If the equation σP = U is that of the logic then there can be more than
one such substitution. For example, consider that P is x y and U is S. A
naive interpretation would consider that matching must fail, but recall that
SKSS = S = SKKS and so it would be acceptable to match x against either
SKS or SKK. Rather than take this course, it is more natural to consider
matching on syntax. Now there is at most one substitution σ such that σP ≡ U ,
but other concerns arise when U reduces to some U ′. For G to yield a function
of the logic, it is then necessary that there be a substitution σ′ (equivalent to σ)
such that σ′P ≡ U ′. To define matching in this manner, it is sometimes necessary
to restrict the argument U to be a matchable form. Hence, it is simplest to give
a procedure for matching, rather than a characterisation like the one above.

Define a match to be either a successful match, some σ where σ is a substitu-
tion, or a match failure, none. The application of a match to a term is defined
by

some σ M = σM

none M = I .

For definiteness, match failure must produce a combinator; the identity proves to
be a useful choice when defining extensions, below. Disjoint unions ⊎ of matches
are defined as follows. If both matches are successful then form the disjoint union

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 11

of their substitutions (regarded as relations). If either match is undefined then
so is their disjoint union. Otherwise the result is none.

The match {U/P} of a pattern P against a combinator U is defined by

{U/x} = some {U/x}
{A/A} = some {}

{UV/PQ} = {U/P} ⊎ {V/Q} if UV is matchable
{U/P} = none otherwise if U is matchable
{U/P} = undefined otherwise .

The restrictions to matchable forms are necessary to ensure confluence. For
example, if the pattern is x y and the argument is SMNX then x should not

be bound to SMN . Conversely, if the pattern is S y and U is SMNX then
matching should not (yet) fail. In each case the match is undefined until SMNX
is reduced to matchable form.

Now the evaluation of G above is given by

G(U) = {U/P}M

whenever the right-hand side is defined.
A combinatory calculus is structure complete if every case G(P) = M is rep-

resentable.
The combinators S and F almost suffice for structure completeness, but in

general there remains the problem of identifying atoms. For each atom A one
can define a symbolic computation I(A) by

I(A)(X) =

{

K if H(X) ≡ A
KI otherwise, if H(X) is defined.

The notation is(A) is used to denote a representative for I(A). It satisfies the
rules

is(A) A −→ K

is(A) X −→ KI if X is matchable.

Consider a combinatory calculus that supports S, F and is(A) for each atom
A, in the sense that F and all the I(A) are representable. For each pattern
P and term M , there is a term P → M such that (P → M)U −→ {U/P}M
whenever the right-hand side exists. It is defined by induction on the structure
of P , employing a fresh variable x, as follows:

• If P is a variable y then P → M is λ∗y.M .
• If P is an atom A then P → M is λ∗x.is(A) x MI.
• If P is an application P1P2 then P → M is

λ∗x.F x I (S(P1 → K(P2 → M))(K(KI)))

Theorem 5.1. Any A-calculus that supports S, F and is(A) for each atom A
is structure complete.

Proof. Every case G defined by G(P) = M is represented by P → M . The
proof is by induction on the structure of P . Let U be a combinator such that
G(U) is defined and consider (P → M)U .

12 BARRY JAY AND THOMAS GIVEN-WILSON

• If P is a variable x then (P → M)U is (λ∗x.M)U which reduces to {U/x}M
by Lemma 2.2.

• If P is an atom A then (P → M)U reduces to FU (is(A) UMI)(K(KI)).
When U is A this reduces to M . If U is any other matchable form then
(P → M)U reduces to I.

• If P is an application P1P2 then (P → M)U reduces to

FUI(S(P1 → K(P2 → M))(K(KI))) .

If U is an atom then this reduces to I. Alternatively, if U is a matchable
form U1U2 then this reduces to

S(P1 → K(P2 → M))(K(KI))U1U2

which reduces to (P1 → K(P2 → M))U1(KI)U2. Now if {U1/P1} is some σ1

for some substitution σ1 then it becomes σ1(K(P2 → M))(KI)U2 which is
(P2 → σ1M)U2 since P2 and P1 do not share any free variables. In turn, if
{U2/P2} = some σ2 for some substitution σ2 then the combinator reduces
to σ2(σ1M) = (σ1 ⊎ σ2)M = {U/P}M . Alternatively, if {U2/P2} = none

then the result is I as required. Finally, if {U1/P1} = none then the result
is K(KI)U1U2 which reduces to I as required.

⊣

Corollary 5.2. SF -calculus is structure complete.

Proof. SF -calculus supports is(S) and is(F) by using isComp to exclude
compounds and then applying isF, as defined in Section 4. Now apply the
theorem.

⊣

Pattern-matching functions are defined using a sequence of cases, as in

G =
| P1 → M1

| P2 → M2

. . .
| Pn → Mn .

When applied to some argument, the function part reduces to the first case
Pi → Mi where matching succeeds. Fortunately, it is not necessary to generalise
the definition of structure completeness to handle such functions, since they can
be represented as cases of cases using extensions [15, 12]. In the combinatory
setting, the extension of a combinator M (the default) by a special case consisting
of a pattern P and a body M is given by

P → M | N = S(P → KM)N .

When applied to some term U such that {U/P} results in some σ then

(P → M | N)U = S(P → KM)NU

−→ (P → KM)U(NU)

−→ σ(KM)(NU)

= K(σM)(NU) = σM .

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 13

Alternatively, if {U/P} is none then

(P → M | N)U −→ (P → KM)U(NU)

−→ I(NU)

−→ NU .

The following examples of generic queries exploit the new pattern-matching
syntax (and implicit recursion). Structural equality can now be given by

equal =
x1 x2 → (y1 y2 → (equal x1 y1) and (equal x2 y2)

| y → KI)
| x → (y1 y2 → KI

| y → eqatom x y) .

Perhaps the most primitive query is apply2all defined by

apply2all f x =
(y1 y2 → (apply2all f y1) (apply2all f y2)
| y → y)

(f x) .

The query apply2all f x recursively applies itself to the components of the
result of applying f to x as a whole. Building on this, we can define the update

combinator by

update t f = apply2all (λx. if t x then f x else x) .

The basic path polymorphism of apply2all is used, but the function f is only
applied when a test t is passed. Once lists have been defined, then it is equally
easy to define a query select that produces a list of components of a structure
satisfying some property.

§6. Typing. The operators S and K can be given simple types, built from
some type constants and function types T → U that represent functions from T
to U . Given types T,U and V then

S : (T → U → V) → (T → U) → T → V

K : T → U → T .

Unfortunately, the operator F does not have a simple type since the type of a
compound does not determine the types of its components. Rather, some sort of
existential type is required to describe the type of the second component, since
this is not determined by the type of the compound as a whole. Existential type
quantification can be represented by universally quantified types in System F [6].
Here X,Y and Z will denote type variables, so that ∀X.T universally quantifies
the variable X in the type T . Also, {U/X}T substitutes U for free occurrences
of X in T , in the usual manner. Now the factorisation operator has type

F : T → U → (∀Z.(Z → T) → Z → U) → U

14 BARRY JAY AND THOMAS GIVEN-WILSON

A : TA

M : U → T N : U

MN : T

M : ∀X.T

M : {U/X}T

M : T

M : ∀X.T

Figure 1. Typing Factor Calculus

in which any function acting on the components must be polymorphic with
respect to the unknown type Z of the second component. Given that quantifiers
are in play, the operators S,K and F can be given the following closed types

S : ∀X.∀Y.∀Z.(X → Y → Z) → (X → Y) → X → Z

K : ∀X.∀Y.X → Y → X

F : ∀X.∀Y.X → Y → (∀Z.(Z → X) → Z → Y) → Y .

We may write TA for the type of the operator A. The complete set of type
derivation rules is given in Figure 1. The first rule is a schema for the typing
of the operators. The second rule types applications in the usual manner. The
third and fourth rules implicitly eliminate and introduce type quantification.
Note that there is no need for a context to record the types of term variables,
since there are none to consider. Hence there is no need to impose side conditions
on the introduction of type quantification, as in System F.

Computationally, this works very well, but may look a little odd from the
viewpoint of logic. The function types can be interpreted as logical implications,
but the use of quantified types for a premise is rather unusual, especially as
Schönfinkel’s original goal was to eliminate (bound) variables; perhaps the types
need the combinatorial treatment, too. Additionally, the type of F does not look
very appealing as a logical axiom, say,

T U ∀Z.(Z → T) → Z → U

U

since the conclusion U is already a premise. However, this defect already appears
in the rule corresponding to K, namely

U V

U

so this is not a new phenomenon.

§7. Variations. This section introduces three related calculi that support a
general equality, constructors, and the restriction of factorisation to data struc-
tures. All three are confluent, with matchable forms proving to be the head
normal forms. The first two are structure complete by Theorem 5.1.

General Equality. The structural equality of Section 4 is sufficient for nor-
mal forms, but if equality of arbitrary combinators is desired then a general
equality combinator E can be introduced. Define the SFE-calculus with with
matchable forms

S | SM | SMN | F | FM | FMN | E | EM

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 15

where S and F are as usual, and E that satisfies the rules

EXX −→ K

EA(PQ) −→ KI if PQ is matchable

E(PQ)A −→ KI if PQ is matchable

E(P1Q1)(P2Q2) −→ EP1P2 and EQ1Q2 if P1Q1 and P2Q2 are matchable.

Thus, E allows any term to match itself even if it does not have a normal form.
Note, however, that if M and N are unequal and M does not head normalise
then their equality EMN will be undecidable.

Constructors. A constructor is an atom that does not appear at the head of
any reduction rule. Typical examples are Pair for building pairs, or Nil for the
empty list. Let C be a collection of atoms, each of which is either a constructor
(meta-variable C) or an operator is(C) that represents I(C) as described in
Section 5. The constructors can be used to build data structures (meta-variable
d) given by

d ::= C | d M .

That is, data structures are combinators headed by a constructor. Note that all
data structures are head normal forms.

Define the SFC-calculus with matchable forms

d | S | SM | SMN | F | FM | FMN | is(C)

which now include all the data structures. The reduction rules for S, F and is(C)
are as usual.

Note that any countable collection of constructors can be encoded as data
structures built from a single constructor C, as CC,C(CC), C(CCC) etc. Fur-
ther, in SFC-calculus, is(C) can be defined by first checking for compounds and
then applying

isC ≡ λ∗x.F (x KKK)(KI)(K(KK))

to any remaining atoms. Structure completeness follows once the accounts of
is(S) and is(F) in Section 4 have been modified to handle C.

Factorising Data Structures. The main motive for developing factorisation
combinators was to rework pattern calculi [15, 13, 14, 12] in a combinatory
setting. However, there is a subtle difference between existing calculi for patterns
and combinators: patterns which are cases never match, but their corresponding
combinators may. For example, the identity function in (static) pattern calculus
is given by the case x → x which, being a case, does not match itself. However,
it translates to the combinator I which does match itself. There are two ways of
eliminating the tension. One is to add case matching to pattern calculus. While
feasible, keeping track of the nature of the different variables will be a burden.
The other, adopted here, is to replace F by a weaker operator D that factorises
data structures only. Now, the matchable forms of the SDC-calculus are

d | S | SM | SMN | D | DM | DMN | is(C)

16 BARRY JAY AND THOMAS GIVEN-WILSON

where the data structures are defined as above. The complete reduction rules
are

SMNX −→ MX(NX)
D(PQ)MN −→ NPQ if PQ is a data structure

DXMN −→ M otherwise, if X is matchable
is(C) C −→ K
is(C) X −→ KI otherwise, if X is matchable.

Although, it is routine to show that SDC-calculus is to static pattern calculus

[8, 12] as SK-calculus is to the λ-calculus, this would require a detailed account
of static pattern calculus. We intend to cover all of this within a full treatment
of the relationship between pattern calculi and combinatory logic.

§8. Conclusion. To factorise combinators within combinatory logic, to ex-
amine their internal structure, is simple and powerful, yet quite unexpected.
Usually, such examination arises in more operational settings, in which compil-
ers act upon source code, or evaluators adopt a fixed strategy, as in a Turing
machine. Then ad hoc techniques are necessary to ensure that the semantics is
respected. When this approach is adopted in theory the equality of combinators
is unacceptably weakened, as with discriminators. However, by identifying the
matchable forms, factorisation can be made to respect the usual reduction and
equality relations, yielding a meaningful symbolic computation. Adding factori-
sation is enough to ensure that pattern-matching functions can be represented,
as well as the usual λ-abstractions. This is enough to support structural equality
and generic queries, as pioneered in pattern calculus.

The existence of symbolic computations that cannot be represented using tra-
ditional SK-combinators challenges our understanding of Church’s thesis, as
stated by Kleene. In particular, the thesis can no longer be used to discour-
age the search for new and interesting combinators or new ways of computing.
Rather, it should be seen as a statement about numerical computation, or re-
placed by Turing’s thesis about the mechanics of computation, as Church’s thesis
does not impose meaningful limits upon symbolic computation.

Since SF -calculus is a rewriting system, it is natural to ask about its denota-
tional semantics. Dana Scott showed how to model pure λ-calculus (and hence
SK-calculus) using continuous lattices and then ω-complete partial orders [9].
However, it is not clear how to handle the examination of internal structure,
i.e. what it means to factor elements of a partial order. In mathematical logic,
structural induction [2] is the analogue of factorisation, but the relationship has
not been formalised.

Pattern calculus also supports factorisation, albeit only for data structures.
Future work will show how to translate the existing dynamic pattern calculus
[14, 12] to compound calculus [8, 12] (a calculus related to Lisp), and thence to
a combinatory calculus. Conversely, factorisation indicates that it is possible to
match abstractions in a more general pattern calculus, so that the focus shifts
from data structures to normal forms. These translations should imply that
pattern calculus cannot be represented in λ-calculus.

A COMBINATORY ACCOUNT OF INTERNAL STRUCTURE 17

In addition to querying data structures, factorisation may have some relevance
to program compilation and optimisation. A source program is, after all, an
encoding of a function which is manipulated by a compiler before producing
a “black box” executable. Factorisation may help reveal some of the program
structure after compilation is finished, either during program execution, or as a
form of reverse engineering.

As well as the factorisation operator F , one can add a general equality E,
constructors and factorisation for data structures. There is no reason to think
that this exhausts the possibilities for novel combinators.

REFERENCES

[1] Henk P. Barendregt, The lambda calculus. its syntax and semantics, Studies in

Logic and the Foundations of Mathematics, Elsevier Science Publishers B.V., 1985, BAR h
85:1 1.Ex.

[2] R. M. Burstall, Proving Properties of Programs by Structural Induction, The Com-

puter Journal, vol. 12 (1969), no. 1, pp. 41–48.

[3] Alonzo Church, An unsolvable problem of elementary number theory, American Jour-

nal of Mathematics, vol. 58 (1936), no. 2, pp. 345–363.
[4] H. B. Curry and R. Feys, Combinatory logic, vol. I, North-Holland, Amsterdam,

1958.
[5] H. B. Curry, J. R. Hindley, and J. P. Seldin, Combinatory logic, vol. II, North-

Holland, Amsterdam, 1972.
[6] J-Y. Girard, Y. Lafont, and P. Taylor, Proofs and types, Tracts in Theoretical

Computer Science, Cambridge University Press, 1989.
[7] J.Y. Girard, Une extension de l’interpretation de Gödel a l’analyse, et son application

a l’elimination des coupures dans l’analyse et la theorie des types, 2nd scandinavian logic

symp. (J.E. Fenstad, editor), Springer Verlag, 1971.

[8] Thomas Given-Wilson, Interpreting the untyped pattern calculus in bondi, Honours
Thesis, University of Technology, Sydney, Australia, August 2007.

[9] C. A. Gunter and D. S. Scott, Semantic domains, Handbook of theoretical com-

puter science (J. van Leeuwen, editor), vol. B: Formal Models and Semantics, MIT Press,
1990.

[10] J. Roger Hindley and Jonathan P. Seldin, Introduction to Combinators and

λ-Calculus, Cambridge University Press, New York, NY, USA, 1986.

[11] Gérard Huet, Confluent reductions: Abstract properties and applications to term

rewriting systems, J. ACM, vol. 27 (1980), no. 4, pp. 797–821.
[12] Barry Jay, Pattern calculus: Computing with functions and data structures,

Springer, 2009.

[13] Barry Jay and Delia Kesner, Pure pattern calculus., Programming languages and

systems, 15th european symposium on programming, esop 2006, held as part of the

joint european conferences on theory and practice of software, etaps 2006, vienna,

austria, march 27–28, 2006, proceedings (ed: P. sestoft), 2006, Revised version at www-
staff.it.uts.edu.au/ cbj/Publications/purepatterns.pdf, pp. 100–114.

[14] Barry Jay and Delia Kesner, First-class patterns, Journal of Functional Program-

ming, vol. 19 (2009), no. 2, p. 34 pages.

[15] C.B. Jay, The pattern calculus, ACM Transactions on Programming Languages

and Systems (TOPLAS), vol. 26 (2004), no. 6, pp. 911–937.
[16] John T. Kearns, Combinatory logic with discriminators, The Journal of Symbolic

Logic, vol. 34 (1969), no. 4, pp. 561–575.
[17] , The completeness of combinatory logic with discriminators, Notre Dame

Journal of Formal Logic, vol. 14 (1973), no. 3, pp. 323–330.
[18] S.C. Kleene, Introduction to metamathematics, North-Holland (originally pub-

lished by D. Van Nostrand), 1952.

18 BARRY JAY AND THOMAS GIVEN-WILSON

[19] John McCarthy, Recursive functions of symbolic expressions and their computation

by machine, part I, Commun. ACM, vol. 3 (1960), no. 4, pp. 184–195.
[20] Barry K. Rosen, Tree-manipulating systems and Church-Rosser theorems, J. ACM,

vol. 20 (1973), no. 1, pp. 160–187.

[21] M. Schönfinkel, Über die bausteine der mathematischen logik, Mathematische An-

nalen, vol. 92 (1924), no. 3 - 4, pp. 305–316.
[22] A. Tarski, Logic, semantics, metamathematics, Intentions in communication, Ox-

ford University Press, 1956, pp. 325–363.

[23] Alan M. Turing, Computability and lambda-definability, The Journal of Symbolic

Logic, vol. 2 (1937), no. 4, pp. 153–163.
[24] Eric G. Wagner, Uniformly reflexive structures: On the nature of Gödelizations

and relative computability, Transactions of the American Mathematical Society, vol. 144

(1969), pp. 1–41.

UNIVERSITY OF TECHNOLOGY, SYDNEY

SYDNEY, AUSTRALIA

E-mail : {cbj,tgwilson}@it.uts.edu.au

