
FPGAs!? Now What?

Learning FPGA Design
with the XuLA Board

Dave Vandenbout, Ph.D.
XESS Corporation

TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
mailto:devb@xess.com?subject=FPGAs!?%20Now%20What?

© 2011–2012 XESS, Inc. XESS, the XESS logo, and other designated brands included herein are trademarks of XESS Corporation. All
other trademarks are the property of their respective owners.

This document is licensed under the Attribution-ShareAlike 3.0 Unported license, available at
http://creativecommons.org/licenses/by-sa/3.0/.

TUT001 (V1.0) Feb 28, 2013 www.xess.com FPGAs!? Now What?

http://www.xess.com/

FPGAs!? Now What?
TUT001 (V1.0) February 28, 2013

The following table shows the revision history for this document.

Date Version Revision

06/24/2011 1.0 Initial release of Chapters 1-4.

07/10/2011 1.0 Added Chapter 5.

08/29/2011 1.0 Added Chapter 6.

03/01/2012 1.0 Added Chapter 7.

09/04/2012 1.0 Changed “chose” to “choose” on page 29.

12/30/2012 1.0 Changed link to XSTOOLs setup file.

12/30/2012 1.0 Added note to use 32-bit Python and avoid the 64-bit version.

01/24/2013 1.0 Revised Python scripts to use the new XsTools package.

02/22/2013 1.0 Added Chapter 8.

TUT001 (V1.0) Feb 28, 2013 www.xess.com FPGAs!? Now What?

http://www.xess.com/

Table of Contents

Table of Contents

 Preface ...3
Writing Tutorials Sucks Donkeys!...3
Here I Go Again..4
What This Is and Is Not..5
Really Important Stuff!...6

 C.1 “I know nothing about FPGAs. Now what?”...7
What Is Programmable Logic?...7

 C.2 “I have no compiler. Now what?”..12
The Compilation Process: From Schematic to Bitstream...12
Getting and Installing Xilinx ISE WebPACK...14

 C.3 “I have a synthesizer. Now what?”..23
The “Hello, World” of FPGAs: the LED Blinker...23
Starting a Design in WebPACK...24
The Actual Blinker Design (in VHDL!)..29
Synthesizing the Blinker (or Not)...35
Testing the Logic...38

 C.4 “I have a netlist. Now what?”...48
Physical Hardware – the XuLA Board..48
Assigning I/O Signals to FPGA Pins...51
Doing the Implementation..54
Preparing the Bitstream..56
Installing the XSTOOLs Utilities..58
Connecting the XuLA Board...59
Downloading the Blinker Bitstream...62

 C.5 “Only 12 MHz! Now what?”...64
Speed Envy..64
The Digital Clock Manager...64
Adding a DFS to the Blinker..65
Does It Work?...68
But Does It Really Work?..69

 C.6 “No LEDs! No buttons! Now what?”...71
Blinky Envy...71
Monitoring the LED Blinker from the Host PC...73

Modifying the LED Blinker Project..73
Changing the XuLA Firmware..80
PC Software for Talking with the LED Blinker...80
Putting It All Together..81

Testing a Subtractor...83
Two at Once!...86
So What?...90

 C.7 “RAMs! Now What!?”...91
Inferring RAM..91

Inferring Distributed RAM...91
Inferring Block RAM...99
Integrating RAM into the FSM..103
Inferring Multi-Port RAM...104

Generating RAM...108
Instantiating RAM..118

TUT001 (V1.0) Feb 28, 2013 www.xess.com FPGAs!? Now What?

http://www.xess.com/

Table of Contents

 C.8 “Verilog! Now What!?”...130
Simulating SDRAM...130

TUT001 (V1.0) Feb 28, 2013 www.xess.com FPGAs!? Now What?

http://www.xess.com/

 Preface

 Preface
There are numerous requests in Internet forums that go something like this:

"I am new to using FPGAs. What are they? How do I start? Is there a tutorial
and some cheap/free tools I can use to learn more?"

The short answer is “Yes”.

The long answer is this book. It will briefly describe FPGAs and then show you how to
apply them to your problems using a low-cost board and some free software. My
discussion will be oriented towards using Xilinx FPGAs, but most of what I'll say is
applicable to other brands of FPGAs.

But first, a little history...

Writing Tutorials Sucks Donkeys!

Yeah, I mean it and I have the experience to back it up.

I've written a lot of documentation over the past twenty years. It's in the nature of my
business. I need to write manuals and application notes for my FPGA board customers. I
need to generate content for my web pages. I need to write documentation for myself
just so I can remember what I've done and where I left off.

But the documentation I hate writing most of all is tutorials. With a tutorial, you can't
assume your reader knows much of anything. You have to build from the ground up. That
requires a lot of text, figures, pictures, design examples, etc. And you have to polish and
proofread it more thoroughly to make sure its meaning is clear because, if it isn't,
someone is going to read it the wrong way and give you a bunch of static about it.

Allow me to take you on a trip down Memory Lane and recount some of the tutorials I've
written:

FPGA Workout - 236 pages: I wrote this book back in 1994. It showed how to build
electronics using the Intel FLEXlogic FPGAs. (You didn't know Intel built FPGAs? Seems
that nobody else did either - they exited the FPGA business around 1995.) I self-
published this and had 2000 of them printed. I sold 1500, gave 300 away (one to
every EE department in the USA), and watched the last 200 get ground under a
bulldozer's tracks in the Wake County landfill (I just couldn't stand having them around
anymore).

The Practical Xilinx Designer Lab Book - 300 pages: I wrote this for Prentice Hall back
in 1997. They were publishing a student package in cooperation with Xilinx that
included this book along with the Foundation FPGA design software. It was a good
product at the time. My book covered how to build electronics using Xilinx FPGAs. It

FPGAs!? Now What? www.xess.com 3
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://www.amazon.com/Practical-Xilinx-Designer-Lab-Book/dp/0130955027/ref=sr_1_2?ie=UTF8&s=books&qid=1308339912&sr=8-2
http://www.amazon.com/Fpga-Workout-Beginning-Exercises-Flexlogic/dp/0964218704/ref=sr_1_1?ie=UTF8&s=books&qid=1308340083&sr=8-1

 Preface

was a real bear working with Prentice Hall after self-publishing my first book. I created
and proofread all the text and figures, then Prentice Hall re-entered all that material
using Framemaker and I had to proofread it all again to catch any transcription errors.
(To their credit, there weren't very many. Then again, I wasn't looking that hard.)

myCSoC - 213 pages: I wrote this e-book back in 2000. It discussed how to construct
electronic systems around the Triscend TE505 chip. (The TE505 combined an 8051
microcontroller with an FPGA on a single chip.) I distributed this book as PDFs from my
website and used it as a sales tool for the myCSoC Kit . That came to an end when
Triscend went out of business around 2003 and Xilinx gobbled up their dessicated
remains. (I still have five-hundred unused TE505 chips from that venture. Anybody
want them? Anybody?)

The Practical Xilinx Designer Lab Book Version 1.5 - 450 pages: It wasn't enough to do
this once; I went ahead and did a revision! And I added an extra 150 pages of material
on - can you guess? - designing electronics using FPGAs. I tried to make a deal with
Prentice Hall wherein I would write the print revision for free, and they would grant me
the electronic rights to distribute it on the web. This was 1999 and they just couldn't
get their heads around this, but they knew they wanted no part of it. Instead, they just
paid me $15,000 for the re-write and told me to drop all the crazy talk. After the book
was written, they packaged it with some CDROMs which - instead of containing the
Xilinx software - contained test data for an anesthesiology text book! Yeesh, the
customer support calls I got! Looking back on it, I realized that all the whipped cream
in the world would never make this turd taste any better.

Pragmatic Logic Design With Xilinx Foundation 2.1i - 394 pages: This was what I
originally wanted to do for Prentice Hall. An online book with a separate PDF for each
chapter. Plenty of room to add as much text and as many figures as were needed
because it didn't have to fit into a fixed amount of paper. Easily edited and changed to
correct any errors that were found. I got five chapters of this text finished. Then Xilinx
released a version of their free WebPACK tools that targeted FPGAs (instead of just
CPLDs) and the market for the not-free Foundation software vanished. So did any
incentive I had to finish this book.

Introduction to WebPACK X.Y - from 78 pages up to 130 pages: I wrote this tutorial to
show how to use the free Xilinx ISE WebPACK software, which had a markedly different
user interface than the Foundation software. I wrote a version of the tutorial for
WebPACK 1.5 and then 3.1 (these only supported Xilinx CPLDs), then two re-writes for
4.1 (one for CPLDs and another for FPGAs), another re-write for 5.2 (FPGAs only, this
time), two re-writes for 6.1 (one targeting the XSA-100 board, and another for the
XSB-300E board), one more minor re-write for 6.3 (because of the introduction of the
new XSA-3S1000 board), another re-write for 8.1, and a final re-write for ISE
WebPACK 10. Xilinx is up to ISE 13 now and, thankfully, it still operates pretty much
the same as version 10 because I haven't had the energy to re-write the tutorial. It
still serves as a pretty good introduction to the Xilinx software.

All told, that's over two-thousand pages of tutorials. That's a lot, regardless of whether
it's mostly roses or shit. What I hated most about doing the tutorials was the boring
sameness of it. Each looks like a rehash of the previous one. So I cringe when I think
about writing another (hence my three year hiatus from re-doing the WebPACK tutorial).

Here I Go Again

But it looks like I am writing another one. The XuLA board needs a tutorial; it's just too
different from any of my other boards and the people who might use it probably have no
experience with FPGAs. So they need something to help them get started. But, in order to
get me started, I'm going to write this tutorial a bit differently so it won't be so boring.
Here are the guidelines I set for myself:

FPGAs!? Now What? www.xess.com 4
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://www.xess.com/prods/prod048.php
http://www.xess.com/appnotes/ise-10.php
http://www.xess.com/prods/prod046.php
http://www.amazon.com/Practical-Xilinx-Designer-Lab-Book/dp/0130216178/ref=sr_1_1?s=books&ie=UTF8&qid=1308341504&sr=1-1
http://www.xess.com/prods/prod022.php
http://www.xess.com/prods/prod043.php

 Preface

I won't re-invent the wheel. There's no reason to re-write everything about digital logic
design just so I can introduce you to FPGAs – the web is full of good information. I'll add
links to good stuff I find to cut my workload and to produce a better text in less time.

I won't fence it in. What I really mean is: steal this book!. I'm placing the source directory
for it on Github. You can copy it, modify it, sell it - I don't care. I want you to do this!
Please take it, add your own stuff and make it better. All I ask is that you respect the
terms of the Creative Commons license I applied to this work. Basically, that means don't
remove the names/affiliations of anyone else who worked on this, and provide others with
the same rights to it that you got. (But check the actual license to get the fine points.)

I won't let others fence it in. I'm using FOSS like LibreOffice and Inkscape to write this
book. That removes some barriers for anyone who wants to work on it because they
won't have to pay for the tools. And it keeps the source files in non-proprietary formats.

I won't be a prisoner of perfection. I've often held onto things too long before releasing
them, trying to remove every error I can find. That's not the case with this book – you'll
find spelling and grammar errors, subject/verb disagreements, inconsistent formatting,
hand-drawn figures and lots of other stuff. But this won't matter to someone who really
needs the material. (For those who do care about the finer points, you can tell me what
errors you find and I'll get around to fixing them, or you can get the source and fix them
for me.)

I'll use the right medium for the right message. Text and figures are great for a tutorial so
you can read along while you actually do it. Screencasts and videos are almost always
more difficult to follow, especially all the diddling-about with typing text and clicking icons
that goes on with FPGA design tools. But there is a place for these, particularly when
demonstrating the actual operation of some circuitry.

What This Is and Is Not

This book discusses how to use the Xilinx ISE WebPACK software to build FPGA designs
for the XuLA FPGA board. Along the way, you'll see:

 How to start an FPGA project.

 How to target a design to a particular type of FPGA.

 How to describe a logic circuit using VHDL and/or schematics.

 How to detect and fix VHDL syntactical errors.

 How to synthesize a netlist from a circuit description.

 How to simulate a circuit.

 How to implement the netlist for an FPGA.

 How to check device utilization and timing for an FPGA.

 How to generate a bitstream for an FPGA.

 How to download a bitstream into an FPGA.

 How to test the programmed FPGA.

 How to detect and fix errors.

I'll also delve into things like:

 How to build hierarchical designs.

 How to build state machines.

 How to build mixed-mode designs using VHDL, Verilog and schematics.

FPGAs!? Now What? www.xess.com 5
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
https://github.com/xesscorp/FpgasNowWhat

 Preface

 How to use Digital Clock Managers.

 How to use block RAMs.

 How to use multipliers.

 How to use IP and soft cores.

 How to use external components like SDRAM, VGA, audio, ADC, DAC.

That said, here are some of the things this book will not teach you (I may be wrong here;
this book isn't even written yet, plus who knows what others may add):

 It will not teach you how to use VHDL. There are plenty of good VHDL textbooks
already.

 It will not teach you how to choose the best type of FPGA for your particular
design. I'm oriented toward using the FPGA on the XuLA board.

 It will not show you every feature of the ISE software and discuss how to set
every option and property. This software already has a good help system and
extensive manuals, so those should suffice.

In short, this book will get you started using the XILINX ISE software for doing FPGA
designs with the XuLA board. After you finish, you should be able to move on to more
advanced topics.

Really Important Stuff!

 Everything for this book is on Github! That includes all the FPGA design examples.
I won't be making any zipped archives since they would get out-of-date as
changes and corrections are committed to Github. So go to
https://github.com/xesscorp/FpgasNowWhat if you need anything related to this
book.

 All the FPGA design examples in this book are targeted to the XuLA-200 board.
You can still use them if you own a XuLA-50 board – just change the target FPGA
in the project from xc3s200a-4vq100 to xc3s50a-4vq100.

FPGAs!? Now What? www.xess.com 6
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
https://github.com/xesscorp/FpgasNowWhat

 C.1 “I know nothing about
FPGAs. Now what?”

What Is Programmable Logic?

In the beginning (OK, actually in the 60's) there were discrete logic chips. Systems were
built from lots of individual ANDs, ORs, flip-flops, etc. with a spaghetti-like maze of wiring
between them. It was difficult to modify such a system after you built it. Jeez, after a
week or two it was difficult to remember what each of the chips was for!

FPGAs!? Now What? www.xess.com 7
TUT001 (V1.0) Feb 28, 2013

Spaghetti wiring (courtesy of
www.franksworkshop.com.au).

http://www.xess.com/

 “I know nothing aboutFPGAs. Now what?”

Manufacturing a system like this took a lot of time because each design change required
that the wiring be redone which usually meant building a new printed circuit board. The
chip makers addressed this problem by placing an unconnected array of AND-OR gates in
a single chip called a programmable logic device (PLD). The PLD contained an array of
fuses that could be blown open or left closed to connect various inputs to each AND gate.
You could program a PLD with a set of Boolean sum-of-product equations to perform the
logic functions needed in your system. You could change the function of a design by
removing the PLDs, blowing a new fuse pattern into them, and then placing them back
into the circuit board. This reduced the need to change the actual wiring of the printed
circuit boards which held them.

Simple PLDs could only handle up to 10–20 logic equations, so you couldn't fit a very
large logic design into just one of them. You had to figure out how to break your larger
designs apart and fit them into a set of PLDs. This was time-consuming and meant you
had to interconnect the PLDs with wires. The wires were a big no-no because eventually
you would make some design change that couldn't be handled just by reprogramming the
PLDs and then you would have to build a new circuit board. The chip makers came to the
rescue again by building much larger programmable chips called complex programmable
logic devices (CPLDs) and field-programmable gate arrays (FPGAs). With these, you could
essentially get a complete system onto a single chip.

FPGAs!? Now What? www.xess.com 8
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I know nothing aboutFPGAs. Now what?”

A CPLD contains a bunch of PLD blocks like the one shown above, but their inputs and
outputs are connected together by a global interconnection matrix. So a CPLD has two
levels of programmability: each PLD block can be programmed, and then the
interconnections between the PLDs can be programmed.

An FPGA takes a different approach. It has a bunch of simple, configurable logic blocks
(CLBs) interspersed within a switching matrix that can rearrange the interconnections
between the them. Each logic block is individually programmed to perform a logic function
(such as AND, OR, XOR, etc.) and then the switches are programmed to connect the
blocks so that the complete logic functions are implemented.

CPLD and FPGA manufacturers use a variety of methods to make the connections
between logic blocks. Some make chips with fuses or anti-fuses that are programmed by

FPGAs!? Now What? www.xess.com 9
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I know nothing aboutFPGAs. Now what?”

passing a large current through them. These types of CPLDs and FPGAs are one-time
programmable (OTP) because you can't rewire them internally once the fuses are blown.

Other manufacturers make the connections using pass transistors that are opened or
closed by storing a charge on their gate electrodes using a high-voltage pulse. This type
of programmable device resembles an EPROM or EEPROM: you can erase it and then
place it in a special programmer socket and reprogram it. That's fine unless you have the
CPLD or FPGA soldered into a circuit board.

Finally, some manufacturers use static RAM or Flash bits to control the pass transistors for
each interconnection. By loading each bit with a 1 or a 0, you can control whether the
switch is closed or opened and, therefore, whether two logic elements are connected or
not. CPLDs and FPGAs built using RAM/Flash switches can be reprogrammed without
removing them from the circuit board. They are often said to be in-circuit
reconfigurable or in-circuit programmable. They are different, however: a Flash-based
FPGA always has its programming intact whether it is powered or not, but a RAM-based
FPGA will be erased and stop functioning if it ever loses power. Even with this drawback,
most FPGAs are RAM-based because the RAMs can be built on the chip using the same
manufacturing process as for the CLBs and switches (that makes the chips cheaper to
produce). The manufacturers also provide a separate, Flash-based chip that stores the
programming switch settings externally and loads it into the FPGA whenever power is
applied.

For the rest of this book, we'll concentrate on using RAM-based FPGAs from Xilinx. I'll
introduce a little terminology because it will be important later on.

Within the CLBs of an FPGA are look-up tables (LUTs) that perform the actual logic
operations. These are usually built as small RAMs that are loaded with a truth table. For
example, an eight-bit RAM can perform a three-input AND operation if it is loaded as
follows:

If the inputs for the AND gate are applied to the address pins of the RAM, then the output
of the RAM will only be 1 when location 7 = 111 is selected. This is exactly how a three-
input AND gate would operate. By setting the contents of the RAM in the right way, you
can perform any logic function of three binary inputs. (Modern FPGAs use LUTs with four
to six inputs.)

The output of a LUT can be used directly as an input to another LUT to make more
complicated logic functions. Or it can be stored in a flip-flop for later use (there's usually
at least one register for each LUT).

The switching matrix routes all the signals between the LUTs and registers and also to the
I/O blocks (IOBs) around the perimeter of the FPGA chip. The IOBs connect selected
internal signals of the FPGA to the outside world and contain special analog circuitry to

FPGAs!? Now What? www.xess.com 10
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I know nothing aboutFPGAs. Now what?”

adjust the input and output voltage levels, insert small delays, and handle single-ended
or differential signaling.

Over time, other types of more specialized circuit blocks have found their way into FPGAs:
blocks of RAM, multipliers and DSP blocks, delay-locked and phase-locked loops, gigabit
serial transceivers, and even complete microprocessors. But, at least when you're starting
off, your main concern will be the LUTs and registers. These are the equivalent of the
program and data memories in a processor: the values in the LUTs and flip-flops
determine how your logic circuit functions, and your design must fit into the available
number of LUTs and flip-flops within your target FPGA.

Also, like a microprocessor, you need a way to write programs for your FPGA. That's the
subject of the next chapter.

FPGAs!? Now What? www.xess.com 11
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 C.2 “I have no compiler.
Now what?”

The Compilation Process: From Schematic to Bitstream

As you can imagine, figuring out which bits to set in the LUTs and the switching matrix in
order to create a logic circuit is quite a chore. Not many people would want to delve into
the details of this (probably the same ones who like to program in assembly). That's why
the FPGA manufacturers provide development software that compiles a high-level
description of a logic design and outputs a bitstream which sets the FPGA configuration
bits appropriately.

The process the development software goes through to compile a design into a bitstream
is depicted in the figure on the next page. Here's what happens:

1. You enter a description of your logic circuit using a hardware description
language (HDL) such as VHDL or Verilog. Or you can also draw your design using
a schematic editor. Or you can use a combination of the two.

2. A logic synthesizer transforms the HDL into a netlist. The netlist is just a
description of the various logic gates in your design and how they are
interconnected. (A schematic is already pretty close to a netlist, so it doesn't need
as much work done on it as the HDL code.)

3. The implementation phase employs three different tools. A translator merges
together one or more netlists along with any design constraints (don't worry
about those now). This is fed to a mapper that combines gates in the netlist into
groups that will fit efficiently into the LUTs of the FPGA. The gate groupings are
sent to the place & route tool that assigns them to LUTs at various locations in the
FPGA and then determines how to connect them together using the routing
resources (wires) in the switching matrix. This part takes the most time as finding
a placement that can be routed efficiently requires a lot of computation.

4. A bitstream generator takes the output of the implementation phase, combines it
with a few other configuration settings, and outputs a binary bitstream. This
bitstream (which, depending upon the size of the FPGA, can be many megabits in
length) contains the truth-tables that will be loaded into the RAM of every LUT
and the connection settings for the wiring matrix that will connect them.

5. At this point, a bitstream is just a bunch of 1s and 0s in a file on the computer.
The downloader will transfer this file into a physical FPGA chip. In most cases, this
chip is already mounted on a circuit board where it waits for the bitstream that
will make it perform its intended function.

FPGAs!? Now What? www.xess.com 12
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

FPGAs!? Now What? www.xess.com 13
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

After downloading, you can apply patterns of input signals (or test vectors) to the I/O
pins of the FPGA to check the operation of your design. This is often an effective way to
do testing, but sometimes it's difficult to set up a particular combination of signals and
look deeply into the internals of your design to see why it may not be performing as you
intended.

If that's the case, you can use a simulator to try out test examples and see how your
circuit reacts before you actually load it into an FPGA. There are several places in the
design flow where you can perform a simulation. If you capture the netlist before it enters
the implementation tools, you can run a logic simulation that only tests the logical
operations of the gates in your circuit. Such simulations are good for debugging the basic
functions of your design.

As you tap the design flow at points further downstream, the netlist is augmented with
more and more information about how your design will be placed into the FPGA. This
allows you to perform a more realistic timing simulation that incorporates the effects of
gate and wiring delays on the operation of your circuit. This is useful for detecting errors
caused when signals arrive too quickly or slowly at their destinations. Because of this
extra level of detail, timing simulations take longer to run than a pure logic simulation.

At this point you know the steps in the compilation process, but what you really want to
know is how to get a compiler. That comes next.

Getting and Installing Xilinx ISE WebPACK

Xilinx develops and sells their ISE FPGA tools, and they also distribute a free version
called WebPACK. WebPACK won't generate bitstreams for the really large FPGAs and it
lacks some special-function design tools, but it will perform all the functions I discussed in
the previous section for FPGAs containing up to 75,000 LUTs with hundreds of I/O pins.
That will be more than sufficient for this tutorial.

To get WebPACK, just do a search for “xilinx webpack download” (use Google, Bing,
whatever). If you click on the first link you get, it will probably take you to the page
shown below. The latest version of the software should be highlighted along the left side
(it's currently 13.1). Click on the Full Installer link for whatever operating system you're
using (either Windows or Linux, currently).

FPGAs!? Now What? www.xess.com 14
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

Before the download begins, you'll be presented with a sign-in screen. If you don't
already have a Xilinx account, you'll have to create one. Then sign in using your ID and
password.

Then you'll have to go through a screen that verifies all your contact information. Click on
the Next button at the bottom and your download will begin. Now be prepared to wait an
hour or two as the file is about 4 GB.

After the archive is downloaded, you can unpack it (that'll take a ten minutes) and run
the installer. You'll go through a set of installation screens. Make sure you choose the
WebPACK edition unless you want to pay money for one of the others or are willing to
accept a time-limited license (usually 30 days).

FPGAs!? Now What? www.xess.com 15
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

Also make sure to select the option to get a license key. (Yes, you will need a key even
though WebPACK is free. The WebPACK license is not time-limited, so it will never expire.)

When the installation is almost done (that takes about 45 minutes), you'll see this screen
appear. Select the WebPACK license as the one you want to get and click Next.

FPGAs!? Now What? www.xess.com 16
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

Then you'll get a screen showing the information that will be associated with your license.

FPGAs!? Now What? www.xess.com 17
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

Click the Connect Now button to start the license generation process. Once you do, your
browser will open a window to Xilinx and you'll have to login using your account
information (again). Then you'll have to verify your contact information (again). Finally,
you'll get to this screen. Select the WebPACK checkbox and click on the Generate Node
Locked License button.

FPGAs!? Now What? www.xess.com 18
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

 Next you'll see a couple of confirmation screens like the following:

After clicking the Next button in the final confirmation screen, you'll get an
acknowledgment that your license has been emailed to you.

FPGAs!? Now What? www.xess.com 19
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

Once you've received the email, save the attached license file somewhere (but remember
where you put it!). Then go back to the Xilinx License Configuration Manager screen
and click on the Manage Xilinx Licenses tab. Enter the location of your license file into
the XILINXD_LICENSE_FILE field and click on the Set button.

FPGAs!? Now What? www.xess.com 20
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

Once you click on the Set button, a list of the enabled features in the WebPACK software
should appear. You're done setting up your license, so click on the Close button.

FPGAs!? Now What? www.xess.com 21
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have no compiler. Now what?”

You can also click on the Finish button in the final window of the WebPACK installer. (You
probably forgot all about that by now.)

The WebPACK installation is done! You've got your party dress on, now it's time to dance!

FPGAs!? Now What? www.xess.com 22
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 C.3 “I have a synthesizer.
Now what?”

The “Hello, World” of FPGAs: the LED Blinker

Now that your WebPACK tools are installed, it's time to do your first FPGA design: an LED
blinker. This blinker will take a 12 MHz square-wave clock signal (you'll see why in the
next chapter) and slow it down so an LED will turn on-and-off about once per second (i.e.,
1 Hz).

FPGAs!? Now What? www.xess.com 23
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

Starting a Design in WebPACK

You start WebPACK by double-clicking the icon on the desktop. This will bring up
an ISE Project Navigator window like the following one.

FPGAs!? Now What? www.xess.com 24
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

If this is your first time using Navigator, it's a good idea to click on the Help button and
bring up the Project Navigator Overview. Read this to get an idea of what all the
panes in the Navigator window are used for.

To start your LED blinker design, click on the New Project... button in the Navigator
window.

FPGAs!? Now What? www.xess.com 25
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

This will bring up the New Project Wizard. The first thing to do is select a location for
your project. (The screenshot below shows my choice; yours, of course, will be different.)

Then type in a name for the project. I've chosen “blinker”. (Notice how the project name
is added to the end of the location you set previously. A folder with this name will be
created there.) Then click on the Next button.

FPGAs!? Now What? www.xess.com 26
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

The next screen that appears is used to select the type of FPGA you want to use for your
design (i.e., the target). Set the Family, Device, Package and Speed fields as shown
below. (This sets up your design for the particular FPGA used on the XuLA board.) Also,
change any other fields that don't match the screenshot. Then click the Next button

FPGAs!? Now What? www.xess.com 27
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

Now you'll get a summary of the information you've entered about your blinker design.
Click on the Finish button and your new project will appear in the Navigator window.

FPGAs!? Now What? www.xess.com 28
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

The Actual Blinker Design (in VHDL!)

At this point, your project exists, but it doesn't do anything. It's time to enter the source
information that describes how the blinker operates. In the Navigator window, right-click
on the FPGA identifier (xc3s200a-4vq100 in this design) in the Hierarchy pane and select
New Source... from the drop-down menu.

FPGAs!? Now What? www.xess.com 29
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

The New Source Wizard window appears. Here, you can select how you want to
describe your design. For example, you could create the blinker from logic gates using
schematics. Or maybe there is already a pre-built blinker circuit provided as an
intellectual property (IP) core (don't bet on it!). But for this design, I will choose to use
VHDL. VHDL (or Verilog, they're really quite similar) lets you describe the operations of
logic designs using a high-level language. So, select VHDL Module from the list of source
types. Then type a name for the VHDL source file. There will only be one for this simple
design, so you can just name it “blinker”. Then click on the Next button

FPGAs!? Now What? www.xess.com 30
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

The next window that appears lets you define the input and output ports for the blinker
design. Type “clk_i” into the first Port Name field. This will be the input for the 12 MHz
clock signal. (The “_i” suffix on the port name is not necessary. I just use this notation to
indicate which ports are inputs. That can help if I'm trying to figure out how an old design
works if I haven't seen it for a few years.)

Then you can add the output that drives the LED. Name this “blinker_o” and set it to be
an output using the Direction drop-down list as shown below.

FPGAs!? Now What? www.xess.com 31
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

That's all the inputs and outputs you need. Click on the Next button and you'll get a
summary of your VHDL module. No surprises there! Click on the Finish button to
complete the module.

FPGAs!? Now What? www.xess.com 32
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

Now you should see the contents of your blinker VHDL module in the Navigator
workspace pane to the right. (If you don't see it, click on the blinker.vhd tab along the
bottom of the workspace.)

Most of the blinker.vhd file is comments, but there are a few spots you should look at:

Lines 20-21: These two lines open the STD_LOGIC_1164 package of the IEEE library.
This library includes a bunch of useful functions and definitions and you'll see it
included in most VHDL designs.

Lines 32-35: This is the entity section of the blinker where all the inputs and outputs are
declared. This is like the skin of the module which defines how everyone on the
outside will see the blinker.

Lines 37-42: This is the architecture section of the blinker where all the functions are
defined. This portion is the guts of the design where the inputs are taken in,
worked on, and then the result is passed out through the outputs. Notice,
however, that the architecture section is conspicuously empty – the blinker will do
nothing at this point!

So it's pretty clear that you need to put something into the architecture section to make
the blinker work. A counter is a common component for reducing a 12 MHz clock down to
a 1 Hz waveform. Why? Because a binary counter increments whenever the clock pulses
and it goes through a binary sequence such as 000, 001, 010, 011, 100, 101, 110, 111,
… If you look, you'll see that each bit of the counter pulses at half the frequency of the
previous bit. (Look here for a better illustration of how binary counters work.) So if you
build a counter with a enough bits, you can divide the 12 MHz clock downto 1 Hz.

But how many counter bits do you need? Well, a one-bit counter would divide the clock by

FPGAs!? Now What? www.xess.com 33
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/bincount.html
http://en.wikipedia.org/wiki/Counter

 “I have a synthesizer. Now what?”

two down to 6MHz. A two-bit counter would divide it by four downto 3 MHz. An N-bit
counter would divide by 2N. So what value of N would divide by 12,000,000? It turns out
you can't get exactly 12,000,000, but you can get 8,388,608 if you use N=23, or you can
get 16,777,216 with N=24. For no particularly good reason, let's use N=23.

Here's a more detailed view of the blinker design given what we just covered:

The 23-bit counter is incremented on the rising edge of the 12 MHz input clock. Bit 0 of
the counter outputs a 6 MHz signal. (Why do we count the counter's bits starting from
zero? BECAUSE THAT'S HOW ENGINEERS DO THINGS!!) Bit 1 outputs a 3 MHz signal. By
the time we reach the final bit of the counter (bit 22), the signal is pulsing at a rate of
12,000,000 / 8,388,608 = 1.43 Hz. This bit is output from the FPGA and is connected to
the LED. So the LED flashes once every 0.7 seconds.

Now all you have to do is describe this 23-bit counter in VHDL. That's not too hard. Here
it is:

Here's what's going on in the architecture section:

Line 38: This is the declaration for the register (cnt_r) that holds the 23-bit count

FPGAs!? Now What? www.xess.com 34
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

value. The value is represented as a vector of 23 binary digits with indexes from
22 down to 0. (I used the “_r” suffix to remind myself that this is a register.)

Lines 41-46: This is a process that is triggered every time the clock input changes its
value, either on the rising edge (i.e., from 0 1) or the falling edge (1 0).
Within the process is an if statement that increments the value in the count
register only on the rising edges of the clock.

Line 48: The most-significant bit of the count register is attached to the blinker output.
That's all there is to it. Now let's see if it passes through the synthesizer.

Synthesizing the Blinker (or Not)

To run the synthesizer, left-click on the blinker icon in the Hierarchy pane. Once you do
that, you should see a list possible operations appear in the Process pane. Double-click
the Synthesize – XST process icon to start the VHDL synthesizer.

FPGAs!? Now What? www.xess.com 35
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

Within a few seconds you should see the results of the synthesis, and it isn't good. In the
bottom portion of Navigator, you'll see this:

That red “X” is never a good sign. In this particular instance, it means the synthesizer has
run into an error. As to what the error is, click on the Errors tab of the Transcript window
to get the details.

FPGAs!? Now What? www.xess.com 36
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

The synthesizer is telling you that the “+” operator cannot process its operands. In other
words, there is no operation defined for adding an integer to a std_logic_vector.
That's not a big problem; you just have to include the package that defines this particular
addition operator. It turns out it's defined in the STD_LOGIC_UNSIGNED package, so just
add what's shown on line 22 to the VHDL like so:

Save the file and double-click the Synthesize – XST process icon again. Now you should
see the synthesis completed successfully.

Now you have a netlist synthesized from your VHDL file. But does it work?

FPGAs!? Now What? www.xess.com 37
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

Testing the Logic

Before you charge off and run the implementation tools so you can blast your design into
an FPGA to see if it works, it might be wise to take a little time to do a logic simulation.
(Now I admit I always run the implementation tools and blast my designs into an FPGA to
see if it works before even considering running a simulation, but you shouldn't emulate
my bad habits.)

In order to simulate your design, you need something to exercise its inputs and watch its
outputs. For your blinker design, you need an external wrapper that will apply a signal to
the clock input and watch the output to see what it does. This wrapper is called a test
bench.

FPGAs!? Now What? www.xess.com 38
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

So you need to add a test bench to your project. To do this, right-click on the FPGA
identifier in the Hierarchy pane and select New Source... in the pop-up menu. In the
New Source Wizard window, select the VHDL Test Bench as the source type and name it
“blinkerTestBench”. Then click on the Next button.

The next window that appears asks you to select a source file to associate with your test
bench. Essentially, this is asking for the module to wrap the test bench around. There's
only one module in your design (blinker), so that's your only choice. Click Next and move
on.

FPGAs!? Now What? www.xess.com 39
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

You'll get a summary screen about the choices you've made. Again, no surprises! Click on
the Finish button to complete the addition of the test bench module.

When you return to the Navigator screen, take a look at your Hierarchy pane. Where's
the test bench you just added? It's not actually missing, it just doesn't show up in the
Implementation view of your project. In order to see the test bench, you have to select
Simulation in the View pane like so:

FPGAs!? Now What? www.xess.com 40
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

Once you select the Simulation view, the blinkerTestBench file shows up in the Hierarchy
pane. The important point to note here is that the test bench module is not something
that will ever be implemented and downloaded to the FPGA. In fact, it might be difficult or
impossible to do so because the test bench might contain language constructs that are
difficult or impossible to build in the FPGA (like accessing a file on the host computer to
store test results). The test bench serves only to help in exercising the actual modules
that will end up in the FPGA. Speaking of which, where is the blinker module?

By clicking on the “+” sign next to the blinkerTestBench icon, you can see the blinker
module is displayed as a submodule contained in the blinkerTestBench module. The
blinker module is labeled “uut” in the test bench. This stands for “unit under test” to
indicate the blinker module is what is being tested.

FPGAs!? Now What? www.xess.com 41
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

Now you'll want to double-click the blinkerTestBench file so you can add the VHDL code
for exercising the blinker module. (It turns out you won't have to do much.) In the initial
portion of the test bench file, you'll see the inclusion of the IEEE library (lines 28-29) and
the entity declaration for the blinkerTestBench module. Notice that the entity section lists
no inputs or outputs. That's because the test bench completely wraps the UUT and no
inputs or outputs pierce the wrapper – everything happens inside the test bench.

The architecture section (see the following figure) instantiates the blinker module as the
UUT, connects to its inputs and outputs, and then drives the inputs. Here are the details:

Lines 42-47: This is a component declaration so the rest of the code knows what the
interface to the blinker module looks like. Hence, it looks very similar to the
blinker module entity section.

Lines 50-54: Signals internal to the test bench are declared that will be connected to the
input and output ports of the blinker module.

Line 57: The period of the clock input is defined with the default value of 10 ns. Since
you want to simulate the blinker with an input clock of 12 MHz, this constant
should be changed to 83.3 ns.

Lines 62-65: The blinker module is instantiated here. Its input and output ports are
connected to the similarly-named signals declared previously.

Lines 68-74: The clock signal is generated in by this process. The clock signal is forced
to 0 and the process waits for half of the clock period. Then the clock is raised to
1 and the process waits for the remaining half of the clock period. Then the entire
sequence repeats forever.

Lines 78-88: Test vectors for other inputs to the UUT can be generated in this process.
Since the blinker module only has a clock input, there's nothing for this process to
do. So leave it unchanged.

FPGAs!? Now What? www.xess.com 42
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

FPGAs!? Now What? www.xess.com 43
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

The test bench looks like it's ready, so it's time to run a simulation. Click on the
blinkerTestBench entry in the Hierarchy pane, and then double-click the Simulate
Behavioral Model in the Processes pane. (There's no need to run the Behavioral Check
Syntax since only the clock period was changed.)

FPGAs!? Now What? www.xess.com 44
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

The ISim window will appear and display the results of a 1 μs simulation run. (Click on
the View  Zoom  To Full View menu item to make the entire waveform visible.)

Although the simulation only ran for a microsecond, there's already something wrong
about it. The blinker_o output remains in an unknown state (signified by an “X”) even
after the clock signal has pulsed twelve times. It should have gone to one or zero after
the first clock pulse.

This is a symptom of an initialization problem. In this case, the counter register is not
initialized to a known value at the start of the simulation. Since the counter value is
unknown, the simulator can't determine the next value it should contain when a rising
clock edge occurs. So all the counter bits stay in an unknown state, including the counter
bit attached to the blinker_o output.

How do you fix this? Well, the right way would be to build some reset circuitry in the
blinker module that sets the counter register to zero when a reset input is triggered. Then
the test bench could be modified to trigger the blinker module reset at the start of the
simulation. But that's a lot of work. A simpler solution, but not recommended in general,
is to initialize the counter register value when it is declared. To do this, double-click the
blinker module in the Hierarchy pane of the Navigator window. This will open the blinker
module. Then change the cnt_r declaration on line 39 to:

signal cnt_r : std_logic_vector(22 downto 0) := (others=>'0');

FPGAs!? Now What? www.xess.com 45
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

This will initialize all the counter register bits to zero. Save the blinker.vhd file. Then re-
run the simulation by clicking on the Simulation  Relaunch menu item. Now the
blinker_o output takes on a value of zero at the start of the simulation.

But you still don't know if the blinker output is going to do anything (except sit at zero)
because the simulation duration is too small. The blinker output should pulse every 0.7 s,
so a simulation time of 2.8 s will be enough to see four pulses. Enter “2.8s” into the
simulation run-time field on the ISim toolbar and then click on the Run button.

FPGAs!? Now What? www.xess.com 46
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a synthesizer. Now what?”

After a minute or two (because computing 2.8 s of simulation time takes a lot of work),
the results of the simulation will appear. Use the View  Zoom  To Full View menu
item to display the entire simulation. You can see that the blinker_o output pulses four
times during the 2.8 s simulation, giving a period of 0.7 s. So the blinker seems to be
working as expected.

This chapter has been all software. Even the blinker, when it runs, is executing in
software. That's not the reason you're interested in FPGAs, is it? No! - you want to build
circuits that run in the real world. And that's what you'll do in the next chapter.

FPGAs!? Now What? www.xess.com 47
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 C.4 “I have a netlist.
Now what?”

Physical Hardware – the XuLA Board

OK, you've designed the blinker in VHDL. You've synthesized it. You've simulated it and it
seems to work. But, up to now, it's all been virtual. Now it's time to get physical.

To get the blinker design into the real world, you'll need an FPGA chip. But the FPGA chip
isn't much good by itself because its usually in a surface-mount package that can't be
plugged directly into a breadboard. And it needs some type of interface to download the
bitstream from the host (where WebPACK is running). And it would be nice to have some
ancillary circuitry around the FPGA for providing clock signals, etc. For these reasons,
you'll probably need an FPGA development board. For this book, I've chosen the XuLA
board, but you can use other boards for the same purpose.

Here's a picture of the front and back of the XuLA board. The FPGA is the big chip on the
front below the “XuLA” logo. (No, it is not the quarter.)

FPGAs!? Now What? www.xess.com 48
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/prods/prod048.php
http://www.xess.com/prods/prod048.php
http://www.xess.com/

 “I have a netlist. Now what?”

Here's a block diagram of what's on the XuLA board. You can safely ignore the most of
the board's circuitry for now. I've highlighted the following parts that will be important for
the blinker design:

FPGA: Of course the FPGA is important! I shouldn't need to explain why that is at this
point. The FPGA is the Xilinx XC3S200A in a 100-pin QFP package (xc3s200a-
4vq100), just like the one you selected when you started the blinker project in
the last chapter.

Clock input: The XuLA board provides a 12 MHz square-wave clock to the FPGA. That
will be the clock you'll use as the input to the blinker design.

Prototyping header: Some pins on the FPGA chip are connected to header pins around
the outside of the XuLA board. These header pins are a convenient way to access signals
from the FPGA when the XuLA board is inserted into a standard breadboard. You'll output
the blinker_o signal on one of the FPGA pins that goes to this header and connect an
external LED to it.

FPGAs!? Now What? www.xess.com 49
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Finally, here's how the pins of the FPGA are assigned to the XuLA prototyping header. The
FPGA pin numbers begin with a “p” so, for example, pin p50 of the FPGA is connected to
the CHAN3 pin of the prototyping header.

FPGAs!? Now What? www.xess.com 50
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Assigning I/O Signals to FPGA Pins

Now that you know a little bit about the hardware that will be running your blinker
design, you can proceed to the implementation phase. Open the ISE Project Navigator
and return to the blinker project. Then move your project from simulation mode to
implementation mode by clicking on the Implementation button in the Views pane.

Before you can pass the synthesized netlist through the implementation tools, you'll need
to tell them what pins of the FPGA will be used for the input and output ports of your
blinker. Otherwise, the tools will just assign them to any pins it deems fit for the purpose.
An Implementation Constraints File (sometimes called a User Constraints File or UCF) is
used to assign I/O signals to the FPGA pins.

FPGAs!? Now What? www.xess.com 51
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

To add a constraints file to your project, right-click in the Hierarchy pane and select
New Source... from the pop-up menu. In the New Source Wizard window, select
Implementation Constraints File as the source type and give it the name “blinker”.
(You don't have to give it the same name as the project, but I usually do.) Then click on
the Next button.

FPGAs!? Now What? www.xess.com 52
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Another summary window will appear. Ho hum. Click on the Finish button and your
constraints file will appear in the Hierarchy pane. Double-click on the constraints file and
it will open in the workspace area to the right.

Type the following two lines into the blinker.ucf file and then save the file.

The first line assigns the clk_i net to pin location p43 of the FPGA. This is the pin that
is driven by the 12 MHz clock on the XuLA board. (I know because I read the XuLA
manual.) The implementation tools will look through the blinker netlist and see that
clk_i is an input net, and then they will configure the IOB for p43 as an input buffer.

Similarly, the second line assigns output net blinker_o to pin location p44 whose IOB is
then configured as an output driver. Why p44? Because that is one of the FPGA pins
connected to the XuLA prototyping header. Pin p44 exits the XuLA board on the lower-
right corner pin labeled “CHAN-CLK”.

That's all you need to do before running the implementation tools.

FPGAs!? Now What? www.xess.com 53
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Doing the Implementation

After all this work, the actual implementation is going to be rather anticlimactic. To begin,
highlight the blinker module in the Hierarchy pane. Then, double-click Implement
Design in the Processes pane.

FPGAs!? Now What? www.xess.com 54
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

You'll see messages scrolling through the Console tab in the Transcript window. In less
than a minute (depending upon the speed of your PC), the translation, mapping and place
& route phases will be done and a green check-mark will appear. You have successfully
implemented your blinker! Now you have to get it into a form that you can download into
the FPGA.

FPGAs!? Now What? www.xess.com 55
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Preparing the Bitstream

To generate the bitstream, all you have to do is double-click Generate Programming
File in the Processes pane. But don't do that yet!

First, you have to change some configuration settings to make the bitstream compatible
with the XuLA board. To do this, right-click on Generate Programming File and select
Process Properties... from the pop-up menu.

In the Process Properties window that appears, click on the Configuration Options
category.

FPGAs!? Now What? www.xess.com 56
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Then, click on the Unused IOB Pins drop-down menu and select Float from the list of
options. This will cause all FPGA I/O pins that are not specifically used in your design to
float in a high-impedance state.

Now click on the Startup Options category and change the FPGA Start-Up Clock to
JTAG clock. The FPGA on the XuLA board is programmed through the JTAG port and the
clock that kickstarts your design right after downloading also comes through there. If you
select any other option, your design will just sit in the FPGA and not do anything because
it hasn't gotten a startup clock. This is always a good thing to check if you have a design
that acts like that.

FPGAs!? Now What? www.xess.com 57
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

After setting these two options, click on the OK button and return to Navigator. Now you
can double-click Generate Programming File to build the bitstream for the blinker
project.

If the bitstream is generated successfully, you should be rewarded with the sight of three
green check-marks!

Now that you have the blinker project bitstream, we will leave Navigator and use a XuLA-
specific tool to download the bitstream.

Installing the XSTOOLs Utilities

To download bitstreams to the XuLA board, you'll need to install the XSTOOLs utilities.
You can download them here. After you download the installer, just double-click it and
accept the default installation settings. You'll download the blinker bitstream to the XuLA
board using the GXSLOAD utility that gets installed.

FPGAs!? Now What? www.xess.com 58
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://www.xess.com/downloads/setup-XSTOOLs.exe

 “I have a netlist. Now what?”

Connecting the XuLA Board

Before you download the bitstream, you'll need to hook a resistor and LED to the XuLA
Board. This is relatively easy. First, insert a XuLA board into a breadboard.

Then connect the ground connection of the XuLA board to the ground bus of the
breadboard.

FPGAs!? Now What? www.xess.com 59
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Add a resistor from the prototyping header pin that carries the blinker_o signal. (The
resistor value can be anywhere in the range of 100Ω to 500Ω.)

Insert an LED with the anode (the rounded side of the case) connected to the resistor and
the cathode (the flat side of the case) plugged into an empty breadboard row. (I
apologize – the leads on my diode were too short and you can't actually see where they
plug into the breadboard.)

FPGAs!? Now What? www.xess.com 60
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Then use a jumper wire to connect the LED's cathode to the ground bus.

Finally, connect a mini-USB cable from the XuLA board to the PC that you installed the
XSTOOLs utilities on.

That's it! Time to dance.

FPGAs!? Now What? www.xess.com 61
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Downloading the Blinker Bitstream

To begin the downloading process, double-click the icon. This will bring up the
following window:

Select the Board Type using the drop-down list. Since the blinker project was targeted at
the XC3S200A, then you must be using a XuLA-200 board. (If you were using a XuLA-50
board, then your target FPGA would have been the XC3S50A.)

As for the Port, it should be set to USB0 (if you only have one XuLA board connected to
the PC).

FPGAs!? Now What? www.xess.com 62
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “I have a netlist. Now what?”

Next, open the folder where you stored your blinker project. Locate the blinker.bit
bitstream file and drag-and-drop it into the FPGA/CPLD pane of the gxsload window.

Once the bitstream file is dropped into the FPGA/CPLD pane, the Load button becomes
active (i.e., it's no longer grayed-out). Just click on the Load button and the blinker
bitstream will download from the PC into the FPGA on the XuLA board.

When the download begins, the green LED on the XuLA board will flash as the bitstream
enters the FPGA. This LED will stop flashing once the complete bitstream has entered the
FPGA. Then the blinker circuit will take control of the FPGA and it will start to blink the
other LED you inserted into the breadboard. This video shows the downloading and
operation of the blinker. If you time the flashing of the LED, you'll see it is pulsing once
every 0.7 s as we hoped.

This completes your first design. You coded it, synthesized it, simulated it, implemented
it, generated it, built it, downloaded it and ran it. You are officially an FPGA designer. A
beginner, true, but an FPGA designer none the less.

FPGAs!? Now What? www.xess.com 63
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://www.youtube.com/watch?v=P1bPNV8l0V8

 C.5 “Only 12 MHz! Now
what?”

Speed Envy

In the last chapter, some of you were probably saying: “A 12 MHz clock? That's all!? My
Arduino runs faster than that. My grandmother runs faster than that!” (Maybe your
grandmother, but not mine, both of whom died long ago. If you see them up and running
around, then something's really gone wrong.)

One of the unfortunate consequences of the popularization of computers has been
people's fixation on clock speed, with more being better. But fear not that your Arduino-
toting compatriots will laugh at you, because the FPGA on the XuLA board has a feature
that will let it run at over 300 MHz.

The Digital Clock Manager

Modern Xilinx FPGAs contain Digital Clock Managers (or DCMs) that serve many functions,
one of which is multiplying the frequency of a clock. A Digital Frequency Synthesizer
(DFS) within the DCM can multiply an incoming clock signal by any integer in the range
2..32 and then divide it by any factor in the range 1..32. Here's an example of generating
an 18 MHz clock:

FPGAs!? Now What? www.xess.com 64
TUT001 (V1.0) Feb 28, 2013

http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf
http://www.xess.com/

 “Only 12 MHz! Now what?”

With a 12 MHz input clock and a multiplier of 32, you can theoretically generate a clock
up to 384 MHz, but the practical electrical limit for a Spartan-3A device is between 320 to
350 MHz (depending upon the speed grade of the FPGA).

Adding a DFS to the Blinker

Now, how am I going to demonstrate the operation of a DFS to you if you don't have an
oscilloscope to view the incoming and outgoing clock signals? Simple! We can take the
blinker design from the previous chapter, add a DFS to multiply the input clock, and then
see if the blinker pulses faster.

So the first thing to do is to add the DFS to the blinker VHDL file. But how do you
describe a DFS in VHDL? After all, it's not something simple like a NAND gate or a
counter.

Well, Xilinx has made it easy for you by creating a device primitive for the DFS. (It's
called a primitive because it can't be decomposed into a collection of simpler components.
Perhaps atom would have been a better name.) You can instantiate the DFS device
primitive into your VHDL source and not have to worry about how it is actually built.

But you need to know what the inputs and outputs of the DFS primitive are in order to
use it. To get this information, click on the Edit  Language Templates... menu item.
This will make the Language Templates tab appear in the workspace pane like so:

FPGAs!? Now What? www.xess.com 65
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf

 “Only 12 MHz! Now what?”

To find the DFS primitive, click on the VHDL folder and expand it until you see the DCM
item appear. Then select the DCM item and a VHDL template for instantiating this
primitive will appear in the rightmost pane.

The VHDL template is intimidating! There are eighteen inputs and outputs and twelve
generic parameters for tuning the operation of the DCM primitive. But we can ignore most
of them and accept their default settings. The only things we care about for this
application are the reset (RST), input clock (CLK_IN), the DFS output clock (CLK_FX),
and the DFS multiplier (CLKFX_MULTIPLY) and divider (CLKFX_DIVIDE).

After instantiating the DCM and doing some trimming and editing, the blinker VHDL looks
like what's shown on the following page. Here's what changed:

Lines 26-27: Since the DCM primitive is being used, these lines need to be
uncommented to bring in the Xilinx primitive libraries.

Line 35: A new signal, clk_fast, was added to carry the clock generated by the DFS.

Lines 39-48: The DCM is instantiated here. The DFS divider and multiplier are set to one
and four, respectively, on lines 41 and 42. The DFS output is connected to the
clk_fast signal on line 45, and the input clock is connected to the DFS clock
input on line 46. The reset input is tied to an inactive level on line 47.

Lines 50-55: The clock for the counter was changed from clk_in to clk_fast.

FPGAs!? Now What? www.xess.com 66
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Only 12 MHz! Now what?”

After the VHDL file is finished, you can run the synthesizer to see if there are any
problems. (There aren't, at least when I did it).

FPGAs!? Now What? www.xess.com 67
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Only 12 MHz! Now what?”

Does It Work?

That's always the question, especially when you are applying a chip feature that you
haven't used before. So let's run a simulation to find out. First, add a new test bench to
your project:

Then go into the test bench VHDL file and change the clock period to match the 12 MHz
clock period:

FPGAs!? Now What? www.xess.com 68
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Only 12 MHz! Now what?”

Then switch to the Simulation view of your project and click on the Simulate
Behavioral Model item in the Processes pane. When the ISim window appears, enter
2.8s in the simulation duration field and then click on the run button.

Then be prepared to wait … for … a … very … long … time. On my PC the simulation took
about 30 minutes, probably because simulating the DFS is computationally demanding.
After the simulation finishes, compress the view so the entire 2.8 s time interval is visible
and count the number of blinker pulses. You should see sixteen pulses. Remember in the
previous blinker design, there were only four pulses in the 2.8 s window. So it appears –
at least in the simulation – that the DFS has multiplied the 12 MHz clock by a factor of
four.

But Does It Really Work?

That's always the real question: Will it work in the FPGA? Well, it's easy enough to find
out. Here are the high points for how to do that:

1. Connect an LED and resistor to the XuLA board just as you did for the previous
blinker project. Then connect the XuLA board to a USB port on your PC.

2. Add a constraints file to your project that's identical to the one you used for the

FPGAs!? Now What? www.xess.com 69
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Only 12 MHz! Now what?”

previous blinker project since the LED and clock pin assignments haven't
changed.

3. Right-click the Generate Programming File process item and select Process
Properties... from the pop-up menu. Then select the options to float any unused
I/O pins after configuration and to use the JTAG clock as the start-up clock.

4. Double-click the Generate Programming File process. This will run the
synthesis and implementation tools in sequence and then create a downloadable
bitstream.

5. Start the GXSLOAD tool and drag-and-drop the fast_blinker.bit file into the FPGA
pane. Then click the Load button to download the bitstream into the FPGA on the
XuLA board.

After doing these steps, you should be rewarded by seeing the LED attached to the XuLA
board blinking away at about six times per second.

FPGAs!? Now What? www.xess.com 70
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 C.6 “No LEDs! No buttons!
Now what?”

Blinky Envy

By now you're probably saying to yourself: “Trying to tell what my design is doing by
looking at a flashing LED really sucks! All the other FPGA boards have loads of flashing
LEDs. And they have bunches of buttons and switches! My XuLA board has nothing!”

Now when you learned how to ride a bike, you might have started out using training
wheels. These were helpful – they let you get experience with the bike without getting
hurt (unless your parents push you out in a busy street – but that's another story). But
after a while, you couldn't wait to get rid of those training wheels. Wherever you went,
they just screamed out: “I'm a bike-riding noob! Come give me a wedgie!” But the worst
part is they got in the way; you couldn't get any speed up because those training wheels
were dragging on the ground. Luckily, they weren't welded to the bike and you could take
them off. Then you could use the bike for what it was for: getting you from here to there
faster and easier than being on foot.

LEDs and buttons are similar to training wheels: good when getting started, but a
hindrance after that. LEDs and buttons are meant to operate at human interaction
speeds, like 10 Hz or less. But FPGAs are meant for applications that run at hundreds of
MHz; it's a waste to have them waiting around while you look at an LED and then push a
button to tell them what to do! Plus, they're hard to use for anything but the simplest
designs: do you really want to flip switches to input a three-digit hexadecimal number
and then translate the pattern on a bunch of LEDs back into hex? (If you do, then I've got
a PDP-8 in the basement with your name on it!)

But LEDs and buttons are different from training wheels in one important aspect: they
aren't easy to take off when you're done with them. They're usually soldered to the board
where they take up space (and make the board larger than it needs to be). They interfere
electrically when you use the FPGA pins for other purposes (unless there are jumpers to
disconnect them, taking up even more space). And they're never connected to the pin
you want them on (although this is less of a problem with FPGAs since you can move your
I/O signals from pin to pin as you please).

Still, there is no denying that you need some way to observe what your design is doing.
Logic probes are one solution (sort of a portable LED), but limited in the amount of
information they can present (just like an LED). Oscilloscopes are good for capturing
signal behavior, especially at high frequencies, but most scopes have four inputs or less

FPGAs!? Now What? www.xess.com 71
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

and they cost a fair bit of money (around $300 for a minimal scope). Logic analyzers
provide a lot of inputs that can be sampled at hundreds of MHz, but they are truly a pain
to hook up to your circuit (but they are much cheaper now: as little as $50). A companion
to the logic analyzer is the digital pattern generator which can drive signals into your
design and which suffers from the same connection difficulties as the analyzer.

The ideal solution for observing what your application circuit is doing would have these
characteristics:

 Free.

 Flexible.

 Easy to use.

 Takes up no space.

 Uses no FPGA pins.

 Lets you drive inputs into your circuit and also observe its response.

 Drives inputs into your circuit and observes its response automatically.

 Goes away when you no longer need it.

This sounds like a fantasy product, but you actually already have it! The FPGA itself can
provide the circuitry you need to monitor and control your own application circuit. Here's
the basic idea: shift a test vector into the FPGA, apply it in parallel to the inputs of your
circuit, load the output response of your circuit into the shift register and shift it out of
the FPGA (see the figure below).

You need three things to make this work:

1. Hardware modules are needed for the interface through the FPGA's JTAG port, the
shift register, and other housekeeping details.

2. Firmware is needed for the microcontroller on the XuLA board so it can transfer
the test vectors and responses between the FPGA's JTAG port and the USB port of
a host PC.

3. Software is needed on the host PC to make it easy to generate, transmit, receive
and display the test vectors and responses.

Now that's a lot of stuff to build and test, but luckily I've already done that for you. All
you have to do is apply it to your own circuits. And I'll show you an example of how to do
that using our old friend – you guessed it – the LED blinker!

FPGAs!? Now What? www.xess.com 72
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

Monitoring the LED Blinker from the Host PC

Modifying the LED Blinker Project
Before diving into the VHDL code, it might be helpful to get a picture of what we're trying
to do. The original LED blinker circuit from Chapter 3 is shown at the bottom of the figure
below: it takes a 12 MHz clock, divides the frequency down using a counter, and attaches
one bit of the counter to an LED so it flashes about once per second. The counter bit is
also loaded into a shift-register (although it's not just a shift-register) where its value can
be shifted out of the FPGA through the JTAG port and on to a PC. The PC could also shift
in bits to drive inputs to the counter, but the counter has no inputs so these signals are
left dangling. There are a few other signals running around in the background that aren't
shown so I don't complicate the very simple technique that is being used here. Don't
worry, you'll be seeing them soon.

FPGAs!? Now What? www.xess.com 73
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

FPGAs!? Now What? www.xess.com 74
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

Now on to the VHDL. The list of files needed to add the JTAG interface and shift-register
modules to the LED blinker project are shown below. Here's what each one does:

HostIo.vhd: This file contains the VHDL for the JTAG entry point and shift-register
modules that will let the host PC talk to the blinker circuit in the FPGA.

Common.vhd: Some helpful VHDL functions that are used in the HostIo.vhd code are
defined in this file.

SyncToClk.vhd: This file describes some synchronization circuitry that is used in the
HostIo.vhd file, but which has no role to play in this example. You need it to keep
the VHDL synthesizer from complaining about undefined modules.

pc_blinker.vhd: This is where the original LED blinker VHDL code is augmented with the
modules found in HostIo.vhd.

pc_blinker.ucf: The same pin assignments for the original LED blinker are repeated in
this file.

The pc_blinker module is where we want to concentrate our attention. Let's take a look
inside:

The first three lines are the same as for the original LED blinker. They just import some
standard packages from the IEEE library. But the fourth line is new: it imports the JTAG
entry point and shift-register modules from the HostIo.vhd file. The work library just
refers to the directory where the whole project is stored; HostIoPckg refers to the
package of modules defined in the HostIo.vhd file; all just says to import every module
found in the HostIoPckg (although I could have been more discriminating and just
imported the modules that were needed by this design).

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.all;
3 use IEEE.STD_LOGIC_UNSIGNED.all;
4 use work.HostIoPckg.all; -- Package for PC <=> FPGA communications.
5

The next few lines declare the interface for the LED blinker. It is identical to the entity

FPGAs!? Now What? www.xess.com 75
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

declaration used in the original LED blinker. Even though we are going to monitor the LED
blinker with the PC, the signals that pass in and out of the JTAG port do not need to be
declared here.

6 entity pc_blinker is
7 port (clk_i : in std_logic;
8 blinker_o : out std_logic);
9 end entity;

10
The architecture section comes next. The 23-bit counter for the LED blinker is declared on
line 12. Lines 14 and 15 declare two, 1-bit vectors: one for carrying bits from the PC to
the blinker's inputs, and one to carry the outputs of the blinker back to the PC. (There are
no inputs to the blinker, but a dummy signal is needed just to have something to connect
to the shift-register module.) Even though these are both single-bit signals, they need to
be declared as std_logic_vectors in order to match the declared I/O types of the modules
in the HostIoPckg.

Lines 17-20 declare the signals that connect from the JTAG entry point to the shift-
register. A selection signal and a clock are declared which are used to shift bits in and out
of the register on the tdi_s and tdo_s signals.

11 architecture Behavioral of pc_blinker is
12 signal cnt_r : std_logic_vector(22 downto 0) := (others => '0');
13 -- Connections between the shift-register module and the blinker.
14 signal toBlinker_s : std_logic_vector(0 downto 0); -- From PC to blnkr.
15 signal fromBlinker_s : std_logic_vector(0 downto 0); -- From blnkr to PC.
16 -- Connections between JTAG entry point and the shift-register module.
17 signal inShiftDr_s : std_logic; -- True when bits shift btwn PC & FPGA.
18 signal drck_s : std_logic; -- Bit shift clock.
19 signal tdi_s : std_logic; -- Bits from host PC to the blinker.
20 signal tdo_s : std_logic; -- Bits from blinker to the host PC.
21 Begin
22

Next up is circuitry for the LED blinker. It's identical to what you've already seen in
Chapter 3.

23 ---
24 -- Application circuitry: the LED blinker.
25 ---
26
27 -- This counter divides the input clock.
28 process(clk_i) is
29 begin
30 if rising_edge(clk_i) then
31 cnt_r <= cnt_r + 1;
32 end if;
33 end process;
34
35 blinker_o <= cnt_r(22); -- This counter bit blinks the LED.
36

The JTAG entry point module follows. The I/O for this module connects to the internal
signals declared on lines 17-20.

37 ---
38 -- JTAG entry point.
39 ---
40
41 -- Main entry point for the JTAG signals between the PC and the FPGA.
42 UBscanToHostIo : BscanToHostIo
43 port map (
44 inShiftDr_o => inShiftDr_s,
45 drck_o => drck_s,

FPGAs!? Now What? www.xess.com 76
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

46 tdi_o => tdi_s,
47 tdo_i => tdo_s
48);
49

Finally, there's the shift-register module that grabs the output from the blinker counter
and sends it back to the PC. Line 55 assigns an identifier of '1' to this module so the PC
can select it for access (I know this seems unnecessary, but it will make sense later).
Lines 58-61 tie this module to the JTAG entry point module. And line 67 - arguably the
most important of all - connects the bit of the counter that drives the LED to the shift-
register so it can be loaded and shifted back to the PC.

50 ---
51 -- Shift-register.
52 ---
53
54 -- This is the shift-register module between blinker and JTAG entry point.
55 UHostIoToBlinker : HostIoToDut
56 generic map (ID_G => "00000001") -- The identifier used by the PC.
57 port map (
58 -- Connections to the BscanToHostIo JTAG entry-point module.
59 inShiftDr_i => inShiftDr_s,
60 drck_i => drck_s,
61 tdi_i => tdi_s,
62 tdo_o => tdo_s,
63 -- Connections to the blinker.
64 vectorToDut_o => toBlinker_s, -- From PC to blinker (dummy sig).
65 vectorFromDut_i => fromBlinker_s -- From blinker to PC.
66);
67
68 fromBlinker_s <= cnt_r(22 downto 22); -- Blinker output to shift reg.
69
70 end architecture;

Once the pc_blinker.vhd and the other files are included in the pc_blinker project, the
Hierarchy pane looks like this:

FPGAs!? Now What? www.xess.com 77
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

The HostIoToRam and SyncBusToClock modules aren't used in this project; they're just
showing up because their code is included in the VHDL files. In order to make sure the
pc_blinker design is compiled and not one of these, right-click on the pc_blinker identifier
and select Set as top module from the pop-up menu.

FPGAs!? Now What? www.xess.com 78
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

Before generating the bitstream, remember to change the configuration settings to make
the it compatible with the XuLA board. Right-click on Generate Programming File and
select Process Properties... from the pop-up menu.

In the Configuration Options tab of the Process Properties window that appears,
click on the Unused IOB Pins drop-down menu and select Float from the list of options.
This will cause all FPGA I/O pins that are not specifically used in this design to float in a
high-impedance state.

FPGAs!? Now What? www.xess.com 79
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

Now click on the Startup Options category and change the FPGA Start-Up Clock to
JTAG clock.

After setting these two options, click on the OK button and return to Navigator. Now you
can double-click Generate Programming File to build the bitstream for the pc_blinker
project.

Changing the XuLA Firmware
The XuLA board's factory-installed firmware does not support the commands needed to
use the HostIoPckg modules. Therefore, you must upgrade the firmware using the XuLA
Firmware Update command placed in the Windows Start menu when you installed the
XSTOOLs software. If your XSTOOLs software does not have this command, you can
install the latest software from the XESS website or use the firmware upgrade command
in the FMW subdirectory for this project.

Once you've upgraded the XuLA firmware, you won't need to change it again. The
upgrade provides all the features of the previous firmware while adding support for the
HostIoPckg modules.

PC Software for Talking with the LED Blinker
The host-side software that communicates with the LED blinker is contained in a single
file: pc_blinker_test.py. This is a Python script file, so you'll need a Python interpreter on
your PC to run it. You can get a complete Python environment for free from Enthought or
ActiveState. (Please use the 32-bit version of Python to avoid run-time problems
encountered with the 64-bit version.)

After installing Python, you'll also need to install the XsTools package that supports
communications between the XuLA board and the PC. That's easy to do using the
command:

C:\> easy_install xstools
or:

C:\> pip install xstools

Here's what's in the pc_blinker_test.py file. It starts by importing all the functions and

FPGAs!? Now What? www.xess.com 80
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://pypi.python.org/pypi/XsTools
http://www.activestate.com/activepython/downloads
http://www.enthought.com/products/epd_free.php

 “No LEDs! No buttons! Now what?”

classes needed to drive the inputs and read the outputs of a device-under-test (DUT) in
the FPGA.

1 from xstools.xsdutio import * # Import funcs/classes for PC <=> FPGA link.
2

Then the program prints out a description of what it's trying to do.

3 print '''\n
4 ##
5 # This program tests the interface between the host PC and the FPGA
6 # on the XuLA board that has been programmed to act as a blinker.
7 # You should see the state of the LED displayed on the screen
8 # flip back-and-forth between one and zero about once per second.
9 ##

10 '''
Next, the program defines two identifiers: one for the USB port index of the XuLA board
(which is usually 0 because your XuLA port is usually USB0), and another for the interface
identifier of the blinker in the FPGA (as defined on line 56 of the pc_blinker.vhd file).

11 USB_ID = 0 # USB port index for the XuLA board connected to the host PC.
12 BLINKER_ID = 1 # This is the identifier for the blinker in the FPGA.
13

Now create an object that lets the host talk to the blinker in the FPGA. The USB and
blinker identifiers are needed to initialize the object. You also pass in two arrays: one
which defines the sizes of the input fields to the blinker, and another that defines the sizes
of the output fields. (As I said before, while there are no inputs to the blinker, we still
needed to define a single dummy input so we also need to recognize that dummy input
when we create the blinker object here.)

14 # Create a blinker intfc obj with one 1-bit input and one 1-bit output.
15 blinker = XsDut(USB_ID, BLINKER_ID, [1], [1])
16

Finally, go into an infinite loop where the state of the counter output that drives the LED
is monitored using the Read() method of the blinker object. Then print the value of the
counter bit along with a RETURN character to go back to the start of the line. When this
program is run, this will give the effect of the LED value flipping back-and-forth between
one and zero.

17 while True: # Do this forever...
18 led = blinker.Read() # Read the current state of the LED.
19 print 'LED: %1d\r' % led.unsigned, # Print the LED state and return.

Putting It All Together
At this point, I assume you have the pc_blinker ISE project compiled and the bitstream is
ready to go, the firmware in your XuLA board has been upgraded to support the
HostIoPckg modules, and you have Python installed and the pc_blinker_test.py file
available. Now all you have to do is this:

1. Download the pc_blinker.bit file to the FPGA on the XuLA board using GXSLOAD.

2. Run the Python program in a command window as follows:
C:\SFW> python pc_blinker_test.py

Then you should see the following text appear in the command window:

FPGAs!? Now What? www.xess.com 81
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

What I can't show here is the digit flipping back-and-forth between one and zero. But you
can see it in this exciting video. Notice how the LED and the digit are synchronized with
each other, showing that the PC is able to accurately display what the FPGA is doing.

FPGAs!? Now What? www.xess.com 82
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/
http://www.youtube.com/watch?v=MydOkKk32ik

 “No LEDs! No buttons! Now what?”

Testing a Subtractor

I know you've really grown to love the LED blinker over the past few chapters, but it's
time to move on to something new: a subtractor. The subtractor circuit in this section
takes two eight-bit inputs (a minuend and a subtrahend) and calculates their difference.

Here's a picture of how the subtractor is hooked up to the JTAG entry point and the shift-
register. It's not too different from what we did with the LED blinker except here there are
two, byte-wide inputs and a byte-wide output instead of just a single output bit. That
means we have more data to shift in and out of the circuit for each test, but that's not a
big complication. The HostIoPckg modules will handle all that transparently.

We use the same VHDL files as in the previous section, except we replace the
pc_blinker.vhd file with the pc_subtractor.vhd file that contains the following code:

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.all;
3 use IEEE.STD_LOGIC_UNSIGNED.all;
4 use work.HostIoPckg.all; -- Package for PC <=> FPGA communications.
5

We're not connecting the subtractor to the outside world, so there are no inputs or
outputs declared in the entity section.

6 entity pc_subtractor is
7 end entity;
8

On line 11, the signal from the shift-register module to the subtractor is declared to be

FPGAs!? Now What? www.xess.com 83
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

sixteen bits wide in order to hold both byte-wide operands. On line 12, another byte-wide
signal is declared to carry the result from the subtractor to the shift register. Aliases to
these signals are declared on lines 13 – 15 so we can use more understandable names in
the rest of the code.

9 architecture Behavioral of pc_subtractor is
10 -- Connections between the shift-register module and the subtractor.
11 signal toSub_s : std_logic_vector(15 downto 0); -- From PC to subtrctr.
12 signal fromSub_s : std_logic_vector(7 downto 0); -- From subtrctr to PC.
13 alias minuend_s is toSub_s(7 downto 0); -- Subtrctr's 1st operand.
14 alias subtrahend_s is toSub_s(15 downto 8); -- Subtrctr's 2nd oprnd.
15 alias difference_s is fromSub_s; -- Subtractor's output.
16 -- Connections between JTAG entry point and the shift-register module.
17 signal inShiftDr_s : std_logic; -- True when bits shift btwn PC & FPGA.
18 signal drck_s : std_logic; -- Bit shift clock.
19 signal tdi_s : std_logic; -- Bits from host PC to the subtractor.
20 signal tdo_s : std_logic; -- Bits from subtractor to the host PC.
21 begin
22

The actual subtraction operation is defined on line 27.

23 ---
24 -- Application circuitry: the subtractor.
25 ---
26
27 difference_s <= minuend_s - subtrahend_s;
28

The JTAG entry point is the same as in the previous example.

29 ---
30 -- JTAG entry point.
31 ---
32
33 -- Main entry point for the JTAG signals between the PC and the FPGA.
34 UBscanToHostIo : BscanToHostIo
35 port map (
36 inShiftDr_o => inShiftDr_s,
37 drck_o => drck_s,
38 tdi_o => tdi_s,
39 tdo_i => tdo_s
40);
41

On line 48, the shift-register module is assigned an identifier of '4' so the PC can select it
for access. The signals from the shift-register to the minuend and subtrahend operands of
the subtractor are connected on line 56. The difference output by the subtractor is
connected to the shift-register on line 57.

42 ---
43 -- Shift-register.
44 ---
45
46 -- Shift-register module between subtractor and JTAG entry point.
47 UHostIoToSubtractor : HostIoToDut
48 generic map (ID_G => "00000100") -- The identifier used by the PC.
49 port map (
50 -- Connections to the BscanToHostIo JTAG entry-point module.
51 inShiftDr_i => inShiftDr_s,
52 drck_i => drck_s,
53 tdi_i => tdi_s,
54 tdo_o => tdo_s,
55 -- Connections to the subtractor.
56 vectorToDut_o => toSub_s, -- From PC to sbtrctr subtrahend & minuend.
57 vectorFromDut_i => fromSub_s -- From subtractor difference to PC.

FPGAs!? Now What? www.xess.com 84
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

58);
59
60 end architecture;

Here's the design hierarchy for the pc_subtractor project:

At this point, you can compile the design to create the bitstream. (As in the previous
example, remember to set the pc_subtractor as the top module and to assign the JTAG
clock as the start-up clock and place the unused FPGA pins in a high-impedance state.)

With the VHDL completed and compiled, it's time to move on to the microcontroller
firmware. You should have already updated that to handle the HostIoPckg modules in the
previous example, so there's no need to do it again.

Finally, a new host-side program is needed to drive the subtractor's inputs and monitor its
output. Here's the Python source code from the pc_subtractor_test.py file. As in the
previous example, it starts by importing all the functions and classes in the XsTools
Python package. It also imports a random number library that is used to generate random
inputs to the subtractor.

1 from xstools.xsdutio import * # Import funcs/classes for PC <=> FPGA link.
2 from random import * # Import some random number generator routines.
3
4 print '''
5 ##
6 # This program tests the interface between the host PC and the FPGA
7 # on the XuLA board that has been programmed to act as a subtractor.
8 ##
9 '''

10
On line 12, the program defines an identifier to match that of the subtractor in the FPGA
(as defined on line 48 of the pc_subtractor.vhd file).

11 USB_ID = 0 # USB port index for the XuLA board connected to the host PC.
12 SUBTRACTOR_ID = 4 # This is the identifier for the subtractor in the FPGA.
13

Now create an object that lets the host talk to the subtractor in the FPGA (line 15). The
USB and subtractor identifiers are needed to initialize the object. You also pass in two
arrays: one which declares the inputs to the subtractor to be two byte-wide fields, and
another that declares the output as a single byte-wide field.

FPGAs!? Now What? www.xess.com 85
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

14 # Create a subtractor intfc obj with two 8-bit inputs and one 8-bit output.
15 subtractor = XsDut(USB_ID, SUBTRACTOR_ID, [8, 8], [8])
16

Finally, iterate through 100 test cases (line 18) where a random minuend and subtrahend
are generated (lines 19 and 20) and sent to the subtractor using its Exec() method (line
21) which also returns their difference. Print the operands and the resulting difference
(line 22). Then, do the same subtraction operation in Python and compare it to the
previous result returned by the subtractor in the FPGA (line 23). Report whether the
results agree or not (lines 24 – 26).

17 # Test the subtractor by iterating through some random inputs.
18 for i in range(0, 100):
19 minuend = randint(0, 127) # Get a random, positive byte...
20 subtrahend = randint(0, 127) # And subtract this random byte from it.
21 diff = subtractor.Exec(minuend, subtrahend) # Use the subtractor in FPGA.
22 print '%3d - %3d = %4d' % (minuend, subtrahend, diff.int),
23 if diff.int == minuend - subtrahend: # Compare Python result to FPGA's.
24 print '==> CORRECT!' # Print this if the differences match.
25 else:
26 print '==> ERROR!!!' # Oops! Something's wrong with the subtractor.

Now that everything is ready, you can test the subtractor like this:

1. Download the pc_subtractor.bit file to the FPGA on the XuLA board using
GXSLOAD.

2. Run the Python program in a command window as follows:
C:\SFW> python pc_subtractor_test.py

Then you should see something similar to the following text appear in the command
window:

##
This program tests the interface between the host PC and the FPGA
on the XuLA board that has been programmed to act as a subtractor.
##

 68 - 60 = 8 ==> CORRECT!
107 - 114 = -7 ==> CORRECT!
 90 - 47 = 43 ==> CORRECT!
105 - 91 = 14 ==> CORRECT!
 71 - 114 = -43 ==> CORRECT!
 60 - 115 = -55 ==> CORRECT!
 19 - 80 = -61 ==> CORRECT!
...

Two at Once!

You've seen how to use the HostIoPckg modules to test individual designs, but how would
you control and monitor a design built from several submodules? You could just build a
larger shift-register and hook everything to that of course, but then you would have to
worry about screwing-up the inputs to one submodule while you were twiddling the bits of
another.

FPGAs!? Now What? www.xess.com 86
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

A better way is to give each submodule its own shift-register and connect them all
through the JTAG port. But how do you select which shift-register is connected to the
JTAG port? Well, that's where the shift-register identifiers come in. Before the host-side
PC accesses any shift-register, it sends an eight-bit identifier. The shift-register that has
that identifier will enable itself and accept bits shifted in from the JTAG port, and it will
unlock its TDO output so its contents can be shifted out of the JTAG port. All the other
shift-registers will ignore the bits coming from the JTAG port and will force their TDO
outputs to zero. (I told you these weren't just shift-registers.) Then, the TDO outputs of
all the shift-registers are logically OR'ed together and sent to the JTAG port. Since all the
inactive shift-registers hold their TDO outputs at zero, only the TDO output of the
selected shift-register actually gets to the JTAG port and out to the host PC. An example
of how the JTAG port and shift-registers are connected is shown below, using the LED
blinker and the subtractor as the submodules.

The VHDL code for the circuit shown above is stored in the pc_blink_sub.vhd file. It
basically looks like the VHDL files for the two previous examples were just smashed into
the same file.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.all;
3 use IEEE.STD_LOGIC_UNSIGNED.all;
4 use work.HostIoPckg.all; -- Package for PC <=> FPGA communications.
5
6 entity pc_blink_sub is
7 port (clk_i : in std_logic;
8 blinker_o : out std_logic);

FPGAs!? Now What? www.xess.com 87
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

9 end entity;
10

The only change in the signal declarations for the merged design is that two individual
TDO signals are created, one for the LED blinker (line 27) and another for the subtractor
(line 28).

11 architecture Behavioral of pc_blink_sub is
12 signal cnt_r : std_logic_vector(22 downto 0) := (others => '0');
13 -- Connections between first shift-register module and the blinker.
14 signal toBlinker_s : std_logic_vector(0 downto 0); -- From PC to blnkr.
15 signal fromBlinker_s : std_logic_vector(0 downto 0); -- From blnkr to PC.
16 -- Connections between second shift-register module and the subtractor.
17 signal toSub_s : std_logic_vector(15 downto 0); -- From PC to subtrctr.
18 signal fromSub_s : std_logic_vector(7 downto 0); -- From subtrctr to PC.
19 alias minuend_s is toSub_s(7 downto 0); -- Subtrctr's 1st operand.
20 alias subtrahend_s is toSub_s(15 downto 8); -- Subtrctr's 2nd oprnd.
21 alias difference_s is fromSub_s; -- Subtractor's output.
22 -- Connections between JTAG entry point and the shift-register modules.
23 signal inShiftDr_s : std_logic; -- True when bits shift btwn PC & FPGA.
24 signal drck_s : std_logic; -- Bit shift clock.
25 signal tdi_s : std_logic; -- Bits from host PC to blnkr/subtrctr.
26 signal tdo_s : std_logic; -- Bits from blnkr/subtrctr to host PC.
27 signal tdoBlinker_s : std_logic; -- Bits from the blinker to the host PC.
28 signal tdoSub_s : std_logic; -- Bits from the sbtrctr to the host PC.
29 begin
30

The VHDL for the LED blinker and subtractor stay the same; they're just merged into the
same section.

31 ---
32 -- Application circuitry
33 ---
34
35 -- This counter divides the input clock.
36 process(clk_i) is
37 begin
38 if rising_edge(clk_i) then
39 cnt_r <= cnt_r + 1;
40 end if;
41 end process;
42
43 blinker_o <= cnt_r(22); -- This counter bit blinks the LED.
44
45 -- This is the subtractor.
46 difference_s <= minuend_s - subtrahend_s;
47

The JTAG entry-point doesn't change at all. Only one entry-point is needed no matter how
many shift-register modules you use.

48 ---
49 -- JTAG entry point.
50 ---
51
52 -- Main entry point for the JTAG signals between the PC and the FPGA.
53 UBscanToHostIo : BscanToHostIo
54 port map (
55 inShiftDr_o => inShiftDr_s,
56 drck_o => drck_s,
57 tdi_o => tdi_s,
58 tdo_i => tdo_s
59);
60

FPGAs!? Now What? www.xess.com 88
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

This is where the TDO outputs of the LED blinker and subtractor are OR'ed together. The
result is passed into the JTAG entry-point above.

61 -- OR the bits from both shift-registers and send them back to the PC.
62 -- (Non-selected modules pull their TDO outputs low, so only bits from
63 -- the active module are transferred.)
64 tdo_s <= tdoBlinker_s or tdoSub_s;
65

Next, two shift-registers are created. The only change from the previous examples is that
the TDO outputs of the shift-registers are connected to the individual TDO signals (lines
78 and 94) that are OR'ed together on line 64.

66 ---
67 -- Shift-registers.
68 ---
69
70 -- Shift-register module between blinker and JTAG entry point.
71 UHostIoToBlinker : HostIoToDut
72 generic map (ID_G => "00000001") -- The identifier used by the PC.
73 port map (
74 -- Connections to the BscanToHostIo JTAG entry-point module.
75 inShiftDr_i => inShiftDr_s,
76 drck_i => drck_s,
77 tdi_i => tdi_s,
78 tdo_o => tdoBlinker_s, -- Serial bits from blinker output.
79 -- Connections to the blinker.
80 vectorToDut_o => toBlinker_s, -- From PC to blinker (dummy sig).
81 vectorFromDut_i => fromBlinker_s -- From blinker to PC.
82);
83
84 fromBlinker_s <= cnt_r(22 downto 22); -- Blinker output to shift reg.
85
86 -- Shift-register module between subtractor and JTAG entry point.
87 UHostIoToSubtractor : HostIoToDut
88 generic map (ID_G => "00000100") -- The identifier used by the PC.
89 port map (
90 -- Connections to the BscanToHostIo JTAG entry-point module.
91 inShiftDr_i => inShiftDr_s,
92 drck_i => drck_s,
93 tdi_i => tdi_s,
94 tdo_o => tdoSub_s,-- Serial bits from subtractor result.
95 -- Connections to the subtractor.
96 vectorToDut_o => toSub_s, -- From PC to sbtrctr subtrahend & minuend.
97 vectorFromDut_i => fromSub_s -- From subtractor difference to PC.
98);
99

100 end architecture;

That's all there is to it! You can compile it and download the bitstream into the XuLA
board.

You don't need a new Python test program – the ones from the previous examples will
work just fine. The shift-register module identifier coded into each program will select the
appropriate portion of the circuit for testing. You can run them in any order and they will
produce the correct result. (Just don't try to run them simultaneously since they will
collide when trying to use the same USB link.)

FPGAs!? Now What? www.xess.com 89
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “No LEDs! No buttons! Now what?”

So What?

At this point you might be saying: “I'm adding tons of VHDL code and writing Python
programs that access DLLs that access firmware that talks to the FPGA just so I can see a
blinking LED. My head hurts! All I wanted was some LEDs and some buttons! Is that too
much to ask?”

I can understand those feelings, but I'll restate the advantages you get from the
techniques shown in this chapter:

It's free. LEDs and buttons cost money and board space, and those things would add
cost to the XuLA board. While cheaper isn't always better, it is always cheaper.

It's flexible. You can use it with multiple sub-circuits each having hundreds of inputs
and outputs and perform tests that are limited only by your ability to write programs
for them.

It' easy to use. OK, stop laughing! Admittedly, it's not as easy as using a single LED
with the blinker project, but most of your circuits aren't going to be that simple. Even
the byte-wide subtractor would require sixteen switches for the inputs and eight LEDs
for the output. Would you want to build that for just a single test, or try flipping the
switches to test all 65,536 different input combinations?

It takes no space. You need space to attach a bunch of switches and LEDs and even
more headroom to manipulate and observe them. With these techniques, you can fit
the XuLA board into some pretty tight spaces and still have controllability and
observability. (It does take up space inside the FPGA, using about 3% of the LUTs and
flip-flops in an XC3S200A.)

It uses no FPGA pins. All it needs is the JTAG port and those pins can't even by used by
the application circuitry in the FPGA. Without these techniques, testing a simple 16-bit
wide subtractor would require 48 I/O pins, and that's impractical with the XuLA board.

It's automated. Once you write your test program, all you have to do is run it
whenever you want to perform that test. So it's faster to run the test, making it more
likely you'll do so because it takes so little effort. (This is the same advantage you get
from writing simulation testbenches for your designs.)

It's removable. Once you're done testing your circuit, you can remove the HostIoPckg
modules and reclaim any space they consumed in the FPGA.

You'll be seeing a lot more of this technique in the coming chapters, so if I haven't
convinced you, then you might as well stop reading now. For example, in a future chapter
I'll use a variation on this technique to read and write RAMs and registers in the FPGA. Try
that with LEDs and buttons!

FPGAs!? Now What? www.xess.com 90
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 C.7 “RAMs! Now What!?”
There are two metrics that almost everybody uses to evaluate an FPGA: how much logic
can it hold, and how much memory does it contain. Up to now, I've concentrated pretty
much on logic design and ignored memory. That will change in this chapter: I am going to
talk about memory. A lot.

There are three types of memory you can use with your FPGA:

Distributed RAM: This is internal memory built from the FPGA's LUTs as I discussed
briefly back in Chapter 1.

Block RAM: This is also internal memory, but built using one or more larger, special-
purpose block RAM (BRAM) components interspersed throughout the FPGA fabric.

External RAM: Just like the name says, this is memory housed in a RAM chip outside the
FPGA that's connected to the FPGA's pins.

Along with the three types of memory, there are three ways to include RAM in your VHDL
design:

Inference: You can write your VHDL code in such a way that the logic synthesizer can
infer your desire to use memory and will instantiate and connect the correct FPGA
components for you.

Core Generator: You can use the ISE CORE Generator tool to build the memory you
want from the FPGA components and then instantiate this higher-level module in
your VHDL.

Instantiation: You can plunk down RAM modules and/or external memory interfaces in
your VHDL and then wire them together to build the memory you want.

In the sections that follow, I'll use each of these techniques to implement various types of
memory.

Inferring RAM

Inferring Distributed RAM
To show how to build RAM by inference, I'm going to build a simple application (located in
the DRamSPInf project directory) that will store some numbers into a single-port
distributed RAM and then read each RAM address, multiply the address with whatever
number is stored there, and then sum all these products together. (I know this is a stupid
example, but it shows the basics: how to write to RAM and how to read the data back.
Plus, you get to use a hardware multiplier! Does it get any better than that!?)

The beginning section of the DRamSPInf.vhd file will look pretty familiar by now. In this
example, I'm using the NUMERIC_STD library to support the arithmetic operations I'll
need.

101 --***

FPGAs!? Now What? www.xess.com 91
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

102 -- Distributed RAM, single-port, inferred.
103 --***
104
105 library IEEE;
106 use IEEE.STD_LOGIC_1164.all;
107 use IEEE.NUMERIC_STD.all;
108

The entity declaration for my application follows. The I/O is pretty simple: just an input
clock to drive the logic and a 32-bit output for the final sum-of-products.

109 entity DRamSPInf is
110 port (
111 clk_i : in std_logic;
112 sum_o : out std_logic_vector(31 downto 0) := (others => '0')
113);
114 end entity;
115

The architecture section starts with some constants to specify the number of RAM
locations (line 19) and the number of bits in each word (line 20). Lines 21 and 22 specify
the beginning and ending addresses for the summation process.

116 architecture Behavioral of DRamSPInf is
117 constant NO : std_logic := '0';
118 constant YES : std_logic := '1';
119 constant RAM_SIZE_C : natural := 16; -- Number of words in RAM.
120 constant RAM_WIDTH_C : natural := 8; -- Width of RAM words.
121 constant MIN_ADDR_C : natural := 1; -- Process RAM from this address
122 constant MAX_ADDR_C : natural := 5; -- ... to this address.

Line 23 defines a subtype of the NUMERIC_STD unsigned bit vector which has the same
length as the RAM word. This subtype is used to define a type of array with the same
number of elements as the RAM (line 23). Then the actual RAM is declared on line 25.

123 subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0); -- RAM word type.
124 type Ram_t is array (0 to RAM_SIZE_C-1) of RamWord_t; -- RAM word array.
125 signal ram_r : Ram_t; -- RAM declaration.

Lines 26-29 declare the RAM's write-enable control line, the address bus, and the input
and output data buses. The address bus is sized such that it can hold any possible RAM
address, and the input and output data bus types are the same as that of the RAM words
for a similar reason. Finally, the register that holds the summation is sized to hold the
product of the largest possible address and data word (line 30). That completes the
declaration section of the architecture.

126 signal wr_s : std_logic; -- Write-enable control.
127 signal addr_r : natural range 0 to RAM_SIZE_C-1; -- RAM address.
128 signal dataToRam_r : RamWord_t; -- Data to write to RAM.
129 signal dataFromRam_s : RamWord_t; -- Data read from RAM.
130 signal sum_r : natural range 0 to RAM_SIZE_C*(2**RAM_WIDTH_C)-1;
131 begin
132

FPGAs!? Now What? www.xess.com 92
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

The first thing I do in the body of the architecture is create the VHDL code that will infer
the distributed RAM. But, can I write the VHDL any way I want and still have the
synthesizer figure out that I'm trying to build a RAM? Probably not! That's why the ISE
software provides a set of templates to guide me. Simply click the Edit  Language
Templates... menu item and a Language Templates tab will appear. Then expand the
tree structure until you reach the Single Port, Async Read template for the distributed
RAM:

I cut-and-pasted the template code into lines 36-46 and replaced the template names
with the actual signal names for my example. If a rising clock edge occurs (line 39) when
the write-enable line is high (line 40), then whatever is on the input data bus is written
into the RAM at the current address (line 41). So this is a synchronous-write RAM.

Meanwhile, the RAM output bus shows whatever data is stored at the current address
(line 46). This is an asynchronous-read RAM since the output value will change whenever
the address changes, regardless of the clock.

133 --***
134 -- RAM is inferred from this process.
135 --***
136 Ram_p : process (clk_i)
137 begin
138 -- Write to the RAM at the given address if the write-enable is high.
139 if rising_edge(clk_i) then
140 if wr_s = YES then
141 ram_r(addr_r) <= dataToRam_r;
142 end if;
143 end if;
144 end process;
145 -- Continually read data from whatever RAM address is present.
146 dataFromRam_s <= ram_r(addr_r);
147

FPGAs!? Now What? www.xess.com 93
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

The finite-state machine (FSM) that performs the summation of the RAM contents is
shown on lines 48-88. The FSM starts off in the INIT state (line 54) and performs an
operation and changes state on each rising edge of the input clock (line 56). In the INIT
state (lines 58-62), the FSM sets the address and input data buses to the RAM at their
initial values (0 and 1, respectively) and sets the write-control signal high to enable
writing. Then it moves to the next state.

148 --***
149 -- State machine that initializes RAM and then reads RAM to compute
150 -- the sum of products of the RAM address and data.
151 --***
152 Fsm_p : process (clk_i)
153 type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE);
154 variable state_v : state_t := INIT; -- Start off in init state.
155 begin
156 if rising_edge(clk_i) then
157 case state_v is
158 when INIT =>
159 wr_s <= YES; -- Enable writing of RAM.
160 addr_r <= MIN_ADDR_C; -- Start writing data at this address.
161 dataToRam_r <= TO_UNSIGNED(1, RAM_WIDTH_C); -- Initial write value.
162 state_v := WRITE_DATA; -- Go to next state.

In the WRITE_DATA state, the FSM increments the address (line 65) and adds three to
the data value to write to RAM (line 66) as long as the address has not reached its
maximum (line 64). When the maximum address is reached, the write-enable is lowered
(line 68), the address is reset to its beginning value (line 69), and the summation register
is initialized to zero (line 70). Then the FSM moves to the next state (line 71). At this
point, the RAM locations 1 through 5 should be loaded with the values 1, 4, 7, 10 and 13.

163 when WRITE_DATA =>
164 if addr_r < MAX_ADDR_C then -- If haven't reach final address ...
165 addr_r <= addr_r + 1; -- go to next address ...
166 dataToRam_r <= dataToRam_r + 3; -- and write this value.
167 else -- Else, the final address has been written...
168 wr_s <= NO; -- so turn off writing, ...
169 addr_r <= MIN_ADDR_C; -- go back to the start, ...
170 sum_r <= 0; -- clear the sum-of-products, ...
171 state_v := READ_AND_SUM_DATA; -- and go to next state.
172 end if;

In the READ_AND_SUM_DATA state, the FSM gets the number read from the RAM
location, multiplies it by the location's address and then adds it to the summation register
(line 77). It also increments the address to point to the next location (line 78). This is
repeated until the maximum address is reached (line 79). At that point, the summation
register has the complete sum-of-products, so the FSM moves into the DONE state (line
80) where it remains forever.

173 when READ_AND_SUM_DATA =>
174 if addr_r <= MAX_ADDR_C then -- If haven't reached final address
175 -- add product of RAM address and data read
176 -- from RAM to the summation ...
177 sum_r <= sum_r + TO_INTEGER(dataFromRam_s * addr_r);
178 addr_r <= addr_r + 1; -- and go to the next address.
179 else -- Else, the final address has been read ...
180 state_v := DONE; -- so go to the next state.
181 end if;
182 when DONE => -- Summation complete ...
183 null; -- so wait here and do nothing.
184 when others => -- Erroneous state ...

FPGAs!? Now What? www.xess.com 94
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

185 state_v := INIT; -- so re-run the entire process.
186 end case;
187 end if;
188 end process;
189

The next few lines just dump the value in the summation register onto the output bus of
this module.

190 -- Output the sum of the RAM address-data products.
191 sum_o <= std_logic_vector(TO_UNSIGNED(sum_r, sum_o'length));
192
193 end architecture;

At this point, I can run the synthesizer on this design and see how the RAM is
implemented by checking the synthesis report.

FPGAs!? Now What? www.xess.com 95
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Scrolling through the report, I see the following:

1 INFO:Xst:3231 - The small RAM <Mram_ram_r> will be implemented on LUTs in
order to maximize performance and save block RAM resources. If you want to
force its implementation on block, use option/constraint ram_style.

2 ---
3 | ram_type | Distributed | |
4 ---
5 | Port A |
6 | aspect ratio | 16-word x 8-bit | |
7 | clkA | connected to signal <clk_i> | rise |
8 | weA | connected to signal <wr_s> | high |
9 | addrA | connected to signal <addr_r> | |

10 | diA | connected to signal <dataToRam_r> | |
11 | doA | connected to signal <dataFromRam_s> | |
12 ---

Line 1 indicates the RAM was implemented using LUTs, and this is further confirmed on
line 3 where it shows a distributed RAM was used. The size of the RAM (line 6) matches
the number of locations and word-size that I specified in the VHDL. The connections to
the clock, write-enable, address bus, and input/output data buses also match with the
VHDL.

Now it's time to see if the RAM works. I added a simple VHDL test-bench file
(DramSPInf_tb.vhd) to the project that just applies a clock to the FSM and RAM. Then I
ran the simulator.

FPGAs!? Now What? www.xess.com 96
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

I want to see more than just the clock and the output summation, so I expand the design
instances a bit and select the FSM portion.

Within the list of simulation objects for the FSM, I select the RAM's write-enable, address
and input/output data buses and drag them into the pane of observable signals.

FPGAs!? Now What? www.xess.com 97
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Now I can re-run the simulation and see what happens. On the first rising clock edge, the
address (addr_r) and data (datatoram_r) are initialized to 1, and the write-enable is
raised. Over the next five rising clock edges, the values 1, 4, 7, 10, and 13 are written to
addresses 1 through 5. The write-enable goes low after the last write and then the values
are read back from RAM (datafromram_s). Multiplying each value by its address gives 1x1
+ 2x4 + 3x7 +4x10 + 5x13 = 135 which matches the final value on the sum output.

I can also view the contents of the RAM by selecting the Memory tab and double-clicking
the ram_r memory. This shows the right data is stored at the right addresses.

FPGAs!? Now What? www.xess.com 98
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

At this point, I've managed to infer a small 16x8 distributed RAM and managed to make it
operate correctly (at least, in simulation). But what if I need more memory? That's when
block RAMs come into play.

Inferring Block RAM
The FPGA's internal BRAMs provide a total of 18 Kb of memory in a variety of word widths
(anywhere from 1 to 36 bits). I can infer BRAM the same way that I did distributed RAM:
look-up the associated language template and then customize it for my application. In
this case, I use the 1 Clock, 1 Write Port, 1 Read Port BRAM.

The customized BRAM code is shown on lines 36-46 of BRamSPInf.vhd and it looks very
similar to the previous code for the distributed RAM with one important exception: block
RAM reads are synchronous. The read operation has been pulled into the process block
and only gets updated on the rising clock edge. So if an address is applied to a BRAM, the
value stored at that address only appears after the next rising clock edge. This has
implications on the FSM portion of the application.

36 Ram_p : process (clk_i)
37 begin
38 -- Write to the RAM at the given address if the write-enable is high.
39 if rising_edge(clk_i) then
40 if wr_s = YES then
41 ram_r(addr_r) <= dataToRam_r;
42 end if;
43 -- Synchronously read from whatever RAM address is present.
44 dataFromRam_s <= ram_r(addr_r);
45 end if;
46 end process;

The one-cycle delay caused by the synchronous read nature of BRAMs has implications on
the FSM process. On line 78 below, the calculation has been changed to the product of
the current data from the BRAM and the address sent to the BRAM in the previous cycle

FPGAs!? Now What? www.xess.com 99
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

(stored in the newly-added signal prevAddr_r). Also, the exit from the
READ_AND_SUM_DATA state occurs when the RAM address goes one location past the
maximum address in order for read of the last address to be completed (line 75).

Another issue that needs to be handled is the initial entry into the READ_AND_SUM_DATA
state. At that time, there is no valid data coming from the BRAM because the read
operation from the first address has not completed yet. To keep from corrupting the
summation, the prevAddr_r register is cleared upon exiting from the WRITE_DATA state
(line 72) so that the first multiplication (line 78) returns a zero. This is a hack that works
for this particular application. A more general solution would be to place a one-cycle wait
state between the WRITE_DATA and READ_AND_SUM_DATA states to allow the first
BRAM read operation time to complete.

52 Fsm_p : process (clk_i)
53 type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE);
54 variable state_v : state_t := INIT; -- Start off in init state.
55 begin
56 if rising_edge(clk_i) then
57 case state_v is
58 when INIT =>
59 wr_s <= YES; -- Enable writing of RAM.
60 addr_r <= MIN_ADDR_C; -- Start writing data at this address
61 dataToRam_r <= TO_UNSIGNED(1, RAM_WIDTH_C); -- Initial value.
62 state_v := WRITE_DATA; -- Go to next state.
63 when WRITE_DATA =>
64 if addr_r < MAX_ADDR_C then -- If haven't reach final address ...
65 addr_r <= addr_r + 1; -- go to next address ...
66 dataToRam_r <= dataToRam_r + 3; -- and write this value.
67 else -- Else, the final address has been written...
68 wr_s <= NO; -- so turn off writing, ...
69 addr_r <= MIN_ADDR_C; -- go back to the start, ...
70 sum_r <= 0; -- clear the sum-of-products, ...
71 state_v := READ_AND_SUM_DATA; -- and go to next state.
72 prevAddr_r <= 0; -- THIS IS A HACK!
73 end if;
74 when READ_AND_SUM_DATA =>
75 if addr_r <= MAX_ADDR_C + 1 then -- If not the final address+1 ...
76 -- add product of previous RAM address and data read
77 -- from that address to the summation ...
78 sum_r <= sum_r + TO_INTEGER(dataFromRam_s * prevAddr_r);
79 addr_r <= addr_r + 1; -- and go to next address.
80 else -- Else, the final address has been read ...
81 state_v := DONE; -- so go to the next state.
82 end if;
83 prevAddr_r <= addr_r; -- Store current address ...
84 when DONE => -- Summation complete ...
85 null; -- so wait here and do nothing.
86 when others => -- Erroneous state ...
87 state_v := INIT; -- so re-run the entire process.
88 end case;
89 end if;
90 end process;

FPGAs!? Now What? www.xess.com 100
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Now if I increase RAM_SIZE_C to 256 and synthesize the design, the synthesis report
shows that a block RAM is used to build the memory:

1 INFO:Xst:3225 - The RAM <Mram_ram_r> will be implemented as BLOCK RAM
2 ---
3 | ram_type | Block | |
4 ---
5 | Port A |
6 | aspect ratio | 256-word x 8-bit | |
7 | mode | write-first | |
8 | clkA | connected to signal <clk_i> | rise |
9 | weA | connected to signal <wr_s> | high |

10 | addrA | connected to signal <addr_r> | |
11 | diA | connected to signal <dataToRam_r> | |
12 ---
13 | optimization | speed | |
14 ---
15 | Port B |
16 | aspect ratio | 256-word x 8-bit | |
17 | mode | write-first | |
18 | clkB | connected to signal <clk_i> | rise |
19 | addrB | connected to internal node | |
20 | doB | connected to signal <dataFromRam_s> | |
21 ---
22 | optimization | speed | |
23 ---

But if I return RAM_SIZE_C to 16 and re-synthesize, the memory is built with distributed
RAM again even though the VHDL specifies a synchronous read operation. This happens
because the synthesizer judges that a distributed RAM is more efficient for smaller
memories, so it places a register on the outputs of the distributed RAM to implement the
synchronous read behavior and uses the combination in place of a BRAM.

So the synthesizer is able to switch the method for building RAMs in the FPGA based on
how much storage is needed. However, you can force the synthesizer to use a particular
type of RAM by right-clicking on the Synthesize-XST process and selecting Process
Properties...

FPGAs!? Now What? www.xess.com 101
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Then set the style of RAM to Distributed or Block, depending upon what you want. Note
that this setting will be applied to all the RAMs in your design, so it's probably best to
leave it set at Auto and let the synthesizer select the best RAM implementation on a
case-by-case basis.

Simulating the 256 x 8 BRAM version of the application gives the following results.

Note that the final sum is the same as for the previous design, but the result appears at
115 ns instead of 105 ns – one full clock-cycle later than for the distributed RAM version.

FPGAs!? Now What? www.xess.com 102
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

That's a direct result of the synchronous read nature of the BRAM.

Integrating RAM into the FSM
While I can successfully infer distributed or block RAMs using the VHDL I've already
shown, requiring a separate process to describe the RAM is a bit clunky. It would be nice
if this could be integrated right into the FSM process so the intent of the code would be
clearer. Below is a re-write of the architecture section from the distributed RAM example
that does just that (DramSPInfClear.vhd). The separate process for the RAM has been
removed and lines 46 and 59 of the FSM process have been changed so that the write
and read operations are now expressed as accesses directly to the RAM array.

35 Fsm_p : process (clk_i)
36 type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE);
37 variable state_v : state_t := INIT;
38 begin
39 if rising_edge(clk_i) then
40 case state_v is
41 when INIT =>
42 addr_r <= MIN_ADDR_C;
43 dataToRam_r <= TO_UNSIGNED(1, RAM_WIDTH_C);
44 state_v := WRITE_DATA;
45 when WRITE_DATA =>
46 ram_r(addr_r) <= dataToRam_r; –- Write to RAM
47 if addr_r < MAX_ADDR_C then
48 addr_r <= addr_r + 1;
49 dataToRam_r <= dataToRam_r + 3;
50 else
51 addr_r <= MIN_ADDR_C;
52 sum_r <= 0;
53 state_v := READ_AND_SUM_DATA;
54 end if;
55 when READ_AND_SUM_DATA =>
56 if addr_r <= MAX_ADDR_C then
57 -- add product of RAM address and data read
58 -- from RAM to the summation …
59 sum_r <= sum_r + TO_INTEGER(ram_r(addr_r) * addr_r); –- Read RAM
60 addr_r <= addr_r + 1;
61 else
62 state_v := DONE;
63 end if;
64 when DONE =>
65 null;
66 when others =>
67 state_v := INIT;
68 end case;
69 end if;
70 end process;
71
72 -- Output the sum of the RAM address-data products.
73 sum_o <= std_logic_vector(TO_UNSIGNED(sum_r, sum_o'length));

FPGAs!? Now What? www.xess.com 103
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

The synthesis report indicates that the synthesizer is still able to infer the correct type of
RAM from this VHDL, and the simulator shows that the calculated result is the same as
that of the original dual-process VHDL.

In addition, I can even increase RAM_SIZE_C to 256 and the synthesizer will shift to
using a BRAM while still maintaining the same timing behavior. This is not always
guaranteed. You may write obfuscated code that hides its intent, or request read/write
behavior that the synthesizer just can't translate. In those cases, you may have to revert
to a more explicit style of VHDL like in the first two examples I discussed.

Inferring Multi-Port RAM
So far I've used a simple, single-port RAM with a single address bus and both input and
output data buses. The FPGA also supports dual-port RAMs which have an additional
address and output data bus, thus making it possible to read data from two locations at
once. Dual-port RAMs can also be inferred from VHDL as in the inner-product application
shown below.

1 --***
2 -- Distributed RAM, dual-port, inferred more clearly.
3 --***
4
5 library IEEE;
6 use IEEE.STD_LOGIC_1164.all;
7 use IEEE.NUMERIC_STD.all;
8
9 entity DRamDPInfClear is

10 port (
11 clk_i : in std_logic;
12 innerProd_o : out std_logic_vector(31 downto 0) := (others => '0')
13);
14 end entity;
15
16 architecture Behavioral of DRamDPInfClear is
17 constant NO : std_logic := '0';
18 constant YES : std_logic := '1';
19 constant RAM_SIZE_C : natural := 16;
20 constant RAM_WIDTH_C : natural := 8;
21 constant VEC_LEN_C : natural := 5; -- Length of vectors.
22 subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0);
23 type Ram_t is array (0 to RAM_SIZE_C-1) of RamWord_t;
24 signal ram_r : Ram_t; -- RAM declaration.
25 signal dataToRam_r : RamWord_t; -- Data to write to RAM.
26 signal vec1Ptr_r : natural range 0 to RAM_SIZE_C-1; -- Ptr to 1st vec.
27 signal vec2Ptr_r : natural range 0 to RAM_SIZE_C-1; -- Ptr to 2nd vec.
28 signal innerProd_r : natural range 0 to (2**RAM_WIDTH_C - 1)**2;
29 begin
30
31 --***
32 -- State machine that initializes RAM with two vectors and then reads
33 -- the vectors simultaneously from RAM to compute the inner-product.
34 --***
35 Fsm_p : process (clk_i)
36 type state_t is (INIT, WRITE_VECS, INNER_PRODUCT, DONE);
37 variable state_v : state_t := INIT;
38 begin
39 if rising_edge(clk_i) then
40 case state_v is
41 when INIT =>
42 vec1Ptr_r <= 0; -- Init ptr for writing data to RAM.
43 dataToRam_r <= TO_UNSIGNED(1, dataToRam_r'length); -- Init data val
44 state_v := WRITE_VECS;

FPGAs!? Now What? www.xess.com 104
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

45 when WRITE_VECS => -- Init the 1st and 2nd vectors.
46 ram_r(vec1Ptr_r) <= dataToRam_r; -- Write data to RAM at curr ptr.
47 if vec1Ptr_r < 2 * VEC_LEN_C - 1 then -- Still init'ing both vecs.
48 vec1Ptr_r <= vec1Ptr_r + 1; -- point at next RAM location ...
49 dataToRam_r <= dataToRam_r + 1; -- and load with the next value.
50 else -- Else, finished initializing the vectors.
51 vec1Ptr_r <= 0; -- Init ptr to 1st vector at start of RAM.
52 vec2Ptr_r <= VEC_LEN_C; -- Init ptr to 2nd vec follow 1st vec.
53 innerProd_r <= 0; -- Init inner-product summation register.
54 state_v := INNER_PRODUCT; -- Go to next state.
55 end if;
56 when INNER_PRODUCT => -- Compute inner-prod of 1st and 2nd vectors.
57 if vec1Ptr_r <= VEC_LEN_C - 1 then -- Still proc'ing vec elems...
58 -- Add the product of the current elements from the 1st
59 -- and 2nd vectors using two simultaneous reads of the RAM.
60 innerProd_r <= innerProd_r +
61 TO_INTEGER(ram_r(vec1Ptr_r) * ram_r(vec2Ptr_r));
62 vec1Ptr_r <= vec1Ptr_r + 1; -- Inc to next element of 1st vec.
63 vec2Ptr_r <= vec2Ptr_r + 1; -- Inc to next element of 2nd vec.
64 else -- Else, all the vector elements have been processed ...
65 state_v := DONE; -- so go to the next state.
66 end if;
67 when DONE => -- Inner-product complete ...
68 null; -- so wait here and do nothing.
69 when others => -- Erroneous state ...
70 state_v := INIT; -- so re-run the entire process.
71 end case;
72 end if;
73 end process;
74
75 -- Output the inner-product.
76 innerProd_o <= std_logic_vector(
77 TO_UNSIGNED(innerProd_r, innerProd_o'length));
78
79 end architecture;

The basic idea of the inner-product FSM is to write a sequence of values to the RAM in the
WRITE_VECS state. Then, two pointers are initialized: one pointing at the first vector at
the beginning of the RAM (line 51), and another pointing at the second vector
immediately following the first vector (line 52). In the INNER_PRODUCT state, the
contents of the RAM addressed by each pointer are read out simultaneously, multiplied
and added to the inner-product register (lines 60-61), after which the pointers are
incremented (lines 62-63). The basic operations are depicted below.

FPGAs!? Now What? www.xess.com 105
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

After the VHDL shown above is synthesized, the synthesis report shows a single dual-port
distributed RAM has been used (line 6).

1 Advanced HDL Synthesis Report
2
3 Macro Statistics
4 # FSMs : 1
5 # RAMs : 1
6 16x8-bit dual-port distributed RAM : 1
7 # Multipliers : 1
8 8x8-bit multiplier : 1
9 # Adders/Subtractors : 4

10 16-bit adder : 1
11 4-bit adder : 2
12 8-bit adder : 1
13 # Registers : 32
14 Flip-Flops : 32
15 # Comparators : 2
16 4-bit comparator less : 1
17 4-bit comparator lessequal : 1

Given the data the RAM is initialized with, the inner product should be 1x6 + 2x7 + 3x8 +
4x9 + 5x10 = 130. Running a simulation on the VHDL shows that it produces the correct
result.

FPGAs!? Now What? www.xess.com 106
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

If a dual-port RAM can be synthesized, are triple- and quad-port RAMs possible? The
answer is yes! Although the FPGA hardware itself is limited to building single and dual-
port RAMs, the synthesizer can replicate data into multiple RAMs to provide the number of
simultaneous read operations that are required. For example, here is how a triple-port
RAM is realized:

Notice that the number of RAM blocks has doubled, but half of it goes unused. That's
usually what happens with digital systems: you can make them go faster by using more
circuitry, or slower using less, but you seldom achieve speed and efficiency at the same
time.

FPGAs!? Now What? www.xess.com 107
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Generating RAM

To demonstrate the use of ISE's CORE Generator, I'm going to use it to re-build the
BRAM-version of the single-port RAM example (BramSPInf). I'll begin with an empty
project (BramSPCoreGen) and add a new source file for the soon-to-be-generated RAM to
it.

FPGAs!? Now What? www.xess.com 108
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

For this example, I've given the CORE Generator source file the descriptive name of
BRAM.

FPGAs!? Now What? www.xess.com 109
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

The CORE Generator gives me a choice of either block or distributed RAMs. For this
example, I chose block RAM.

FPGAs!? Now What? www.xess.com 110
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Then I just click on the Finish button to add the BRAM core to the project.

Now the real fun begins! I have to set all the configuration parameters that define how
the block RAM works. There isn't much to do in the first configuration screen.

FPGAs!? Now What? www.xess.com 111
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

On the next screen, all I need to do is select a single-port RAM and move on.

Then I set the RAM's word width (eight bits) and the number of memory words it contains
(256).

FPGAs!? Now What? www.xess.com 112
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

I don't want any registers on the output of the generated RAM (although it will still be a
synchronous-read RAM even without them because it will be made from BRAMs) and I
don't want to initialize the RAM, so I can just click Next on this screen.

I also don't need a reset for the output of the RAM.

FPGAs!? Now What? www.xess.com 113
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Finally, I've set all the configuration parameters and CORE Generator can build the RAM
as specified.

After grinding away for about ten seconds, the BRAM.xco source file gets added to the
project. If I decide I need to change any of the RAM parameters, I can just double-click
the BRAM.xco file and proceed through the configuration screens again while making
modifications.

FPGAs!? Now What? www.xess.com 114
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Now that I have the RAM built by the CORE Generator, how do I use it in my VHDL file? To
figure that out, highlight the BRAM module and then double-click the View VHDL
Instantiation Template in the Process pane.

The template file that opens has two sections of interest. The first is the component
declaration for the generated RAM that I'll have to include verbatim in the architecture
header.

38 ------------- Begin Cut here for COMPONENT Declaration ------ COMP_TAG
39 COMPONENT BRAM
40 PORT (
41 clka : IN STD_LOGIC;
42 wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
43 addra : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
44 dina : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
45 douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
46);
47 END COMPONENT;
48 -- COMP_TAG_END ------ End COMPONENT Declaration ------------

The second section has a template for the generated RAM that I have to paste into the
body of my architecture and then edit the signal names.

53 ------------- Begin Cut here for INSTANTIATION Template ----- INST_TAG
54 your_instance_name : BRAM

FPGAs!? Now What? www.xess.com 115
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

55 PORT MAP (
56 clka => clka,
57 wea => wea,
58 addra => addra,
59 dina => dina,
60 douta => douta
61);
62 -- INST_TAG_END ------ End INSTANTIATION Template ------------

Now I can take the existing code from the BramSPInf.vhd file, put it in a file called
BramSPCoreGen.vhd and add it to this project. Then all I need to do is edit the file a bit
as follows.

The component declaration is entered as-is into the architecture header on lines 17-25.

16 architecture Behavioral of BRamSPCoreGen is
17 component BRAM
18 port (
19 clka : in std_logic;
20 wea : in std_logic_vector(0 downto 0);
21 addra : in std_logic_vector(7 downto 0);
22 dina : in std_logic_vector(7 downto 0);
23 douta : out std_logic_vector(7 downto 0)
24);
25 end component;

Next, the signal declaration for the inferred RAM isn't needed anymore, so it's been
removed. I've kept the RamWord_t subtype definition (line 32), however, because I still
need it for declaring the input and output buses of the RAM.

26 constant NO : std_logic := '0';
27 constant YES : std_logic := '1';
28 constant RAM_SIZE_C : natural := 256; -- Number of words in RAM.
29 constant RAM_WIDTH_C : natural := 8; -- Width of RAM words.
30 constant MIN_ADDR_C : natural := 1; -- Process RAM from this address ...
31 constant MAX_ADDR_C : natural := 5; -- ... to this address.
32 subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0); -- RAM word type.
33 signal wr_s : std_logic; -- Write-enable control.
34 signal addr_r, prevAddr_r : natural range 0 to RAM_SIZE_C-1;-- RAM address.
35 signal dataToRam_r : RamWord_t; -- Data to write to RAM.
36 signal dataFromRam_s : RamWord_t; -- Data read from RAM.
37 signal sum_r : natural range 0 to RAM_SIZE_C * (2**RAM_WIDTH_C)-1;

At the end of the architecture header, I declare three new eight-bit, std_logic_vector
signals for attaching to the RAM module's address and input/output data buses. This
makes it a bit easier to attach the RAM (which uses std_logic_vector signals for its I/O) to
the FSM (which uses natural and RamWord_t types of signals).

38 signal addrCoreGen_s : std_logic_vector(7 downto 0);
39 signal dataToRamCoreGen_s : std_logic_vector(7 downto 0);
40 signal dataFromRamCoreGen_s : std_logic_vector(7 downto 0);
41 begin
42

FPGAs!? Now What? www.xess.com 116
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

The first change in the architecture body is to remove the VHDL process that inferred the
BRAM and replace it with an instantiation of the RAM created using the CORE Generator
(lines 46-53). The clock for the RAM is connected to the master clock of the application
(line 48), and the RAM write-enable from the FSM attaches directly to the single bit of the
RAM's write-enable bus (line 49). But on lines 50-52, the RAM's address and data buses
are routed to the intermediate signals I defined previously. Then these intermediate
signals are attached to the analogous signals from the FSM (lines 56-58) after a bit of
type-casting to keep the synthesizer from complaining about mismatched signal types.

43 --***
44 -- Instantiate the block RAM created by CORE Generator.
45 --***
46 ram_u0 : BRAM
47 port map (
48 clka => clk_i,
49 wea(0) => wr_s,
50 addra => addrCoreGen_s,
51 dina => dataToRamCoreGen_s,
52 douta => dataFromRamCoreGen_s
53);
54
55 -- Connect the RAM signals to the signals from the FSM.
56 dataToRamCoreGen_s <= std_logic_vector(dataToRam_r);
57 dataFromRam_s <= RamWord_t(dataFromRamCoreGen_s);
58 addrCoreGen_s <= std_logic_vector(TO_UNSIGNED(addr_r,8));

That's all there is to it; the FSM code doesn't have to change at all since the generated-
RAM behaves the same as the VHDL-inferred RAM.

The synthesis report shows that a single BRAM is used for this design (line 11):

1 Device utilization summary:
2 ---------------------------
3
4 Selected Device : 3s200avq100-4
5
6 Number of Slices: 47 out of 1792 2%
7 Number of Slice Flip Flops: 44 out of 3584 1%
8 Number of 4 input LUTs: 88 out of 3584 2%
9 Number of IOs: 33

10 Number of bonded IOBs: 33 out of 68 48%
11 Number of BRAMs: 1 out of 16 6%
12 Number of MULT18X18SIOs: 1 out of 16 6%
13 Number of GCLKs: 1 out of 24 4%

FPGAs!? Now What? www.xess.com 117
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Finally, the simulation results for this design are identical to those for the inferred BRAM
in both the calculated result and the timing of the signal waveforms.

So after all that, was using CORE Generator worth it? Here are some of the
disadvantages:

 CORE Generator creates modules which use std_logic_vectors for their I/O buses. This
always requires some fiddling with the types to make the connections with other parts
of the VHDL that are using more application-appropriate types. (Using std_logic_vector
for module I/O is actually standard industry practice, so I can't really fault CORE
Generator for this.)

 Changing anything about the RAM – even width or size – requires another trip through
CORE Generator. And, after that, you may have to edit the component declaration and
instantiation and change the widths of the connecting buses.

 CORE Generator .xco files aren't portable to the design software for non-Xilinx FPGAs.

Even with these problems, there are times I would use CORE Generator:

 If I needed to build a large and/or wide RAM that takes advantage of some of the
special features of the FPGA hardware, then CORE Generator can be easier to use than
trying to craft the behavior in VHDL.

 If I needed to build something really complicated (e.g., an FFT module), then CORE
Generator would save me a lot of time writing and verifying the module.

Instantiating RAM

I already used instantiation in the previous example to drop the RAM built with CORE
Generator into the top-level VHDL code. Now I'm going to use it again for building an
interface to the SDRAM on the XuLA board.

The Winbond W9812 SDRAM chip stores 8-million sixteen-bit words – much more than
the internal RAMs in the FPGA can hold. This large memory works by storing bits as
charges on millions of tiny capacitors. Since the charge on a capacitor tends to leak away
over time (thus losing the bit that was stored there), the SDRAM memory cells need to be
refreshed every so often to restore their charge. (In essence, the SDRAM has to be
continually reminded of what it remembers so it doesn't forget. Kind of like me.)

FPGAs!? Now What? www.xess.com 118
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

SDRAMs are internally organized into banks, rows and columns. For example, the W9812
is divided into four banks, each containing 4096 rows, with each row made up of 512
columns, and with each column holding a sixteen-bit number. To access an individual
memory location requires a 23-bit address (4 x 4096 x 512 = 223). In order to cut down
on the number of address pins needed on the physical chip package, a multiplexed
address bus is used consisting of a two-bit bank-address bus and a twelve-bit row and
column address bus (for a total of fourteen address pins). To access a memory location,
the bank address is set and the row address is strobed-in which activates an internal row
of that bank in the SDRAM. After the activation completes, column elements can be
accessed by strobing in the column addresses without the need to re-enter the row
address.

The need for periodic refreshing, address multiplexing, and row-activation makes it more
complicated to use an SDRAM than the distributed or block RAMs I've already discussed.
For this reason, I created a controller module that simplifies the interface so SDRAM looks
more like a regular RAM with just an address and data bus. Here's a block diagram for the
application that sums the products of addresses and data, but using the SDRAM on the
XuLA board instead of internal RAMs. The SDRAM controller module (SdramCntl) handles
breaking the address into pieces, activating the appropriate bank, row and column, and
inserts the periodic refreshes needed by the SDRAM.

On one side of the SDRAM controller module is a host interface that connects to the FSM
with the following signals:

clk: This is the master clock input. Anything the SDRAM controller connects to has to be
synchronous with this clock.

rd: This active-high input initiates a read of a single word from the SDRAM. It is sampled
on the rising clock edge and must be held high until the read process completes
as indicated by the done signal going high. The read control must be lowered
before the next rising clock edge after the done signal goes high or else another
read operation will start.

wr: This active-high input initiates a write of a single word from the SDRAM. It is
sampled on the rising clock edge and must be held high until the done signal
indicates the write process completes. The write control must be lowered before
the next rising clock edge after the done signal goes high or else another write
operation will start.

FPGAs!? Now What? www.xess.com 119
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

done: This synchronous output signal goes high to indicate the completion of the
currently active read or write operation. It remains high for a single clock cycle.

addr: The address of the SDRAM word that is to be read or written is passed through this
input bus. The address value must be held stable until the done signal goes high.
The two most-significant bits of addr correspond to the bank address bits of the
SDRAM, the next log2(NROWS)-bits of addr correspond to the row address within

that bank, and the least-significant log2(NCOLS)-bits correspond to the column

address within that row.
dataToSdram: The data to be written to the SDRAM enters through this input bus. The

data value must be held stable until the done signal goes high.
dataFromSdram: The data read from the SDRAM comes out on this bus. This data must

be latched by the host-side logic on the rising clock edge after the done signal
goes high.

The signals on the other side of the SdramCntl module attach directly to the SDRAM chip:

sdRas#: This active-low output drives the row-address strobe input of the SDRAM.
sdCas#: This active-low output drives the column-address strobe input of the SDRAM.
sdWe#: This active-low output drives the write-enable input of the SDRAM.
sdBs: This output selects one of the two banks of SDRAM. (Due to a shortage of pins on

the XuLA FPGA chip, the other bank-select pin of the SDRAM had to be
permanently tied to ground, thus preventing access to the other two banks.)

sdAddr: The row and column addresses for the SDRAM memory location are output on
this bus.

sdData: The data word to be written to SDRAM exits the FPGA on this bus during write
operations, and data from the SDRAM enters the FPGA on this bus during read
operations.

sdCke: This active-high output drives the clock-enable input of the SDRAM. (Due to a
shortage of pins on the XuLA FPGA chip, the clock-enable pin on the SDRAM was
tied high, thus keeping the SDRAM from ever entering a quiescent state.)

sdCs#: This active-low output drives the chip-select of the SDRAM. (Due to a shortage of
pins on the XuLA FPGA chip, the chip-select pin on the SDRAM was tied to ground,
thus keeping the SDRAM permanently enabled.)

sdDqmh: This active-high output drives the SDRAM input that disables the drivers for the
upper-half of the data bus during read operations. (Due to a shortage of pins on
the XuLA FPGA chip, this pin on the SDRAM was tied low so the upper-half of the
databus is always enabled.)

sdDqml: This active-high output drives the SDRAM input that disables the drivers for the
lower-half of the data bus during read operations. (Due to a shortage of pins on
the XuLA FPGA chip, this pin on the SDRAM was tied low so the lower-half of the
databus is always enabled.)

The SDRAM controller module supports several modes of operation, but I'll use it here in
its simplest and lowest-performance form to do non-pipelined reads and writes of SDRAM.

The timing waveforms for a non-pipelined read operation are shown below. These assume
the read operation accesses a memory location in the currently active bank and row of
the SDRAM. The sequence of actions is:

Cycle 1: The SDRAM address is applied and the read control signal is driven high. The
address and read control must be held stable until the done signal goes high.

Cycle 2: The column address is output on the pins that go to the SDRAM chip and the
SDRAM control signals are set to initiate a read operation.

Cycle 3: The SDRAM initiates a read of the given column address on the rising clock
edge.

Cycle 4: The SDRAM waits for the data to arrive from the given address.
Cycle 5: The data from the SDRAM arrives sometime during this cycle and is guaranteed

FPGAs!? Now What? www.xess.com 120
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

to be stable by the end of the cycle.
Cycle 6: The data from the SDRAM is clocked into a register on the rising clock edge. The

done signal goes high to signal the host-side logic that the data is available on the
dataFromRam bus. The read control must be lowered before the next rising clock
edge or else another read operation will be initiated.

Cycle 7: The done signal goes low again but the output data remains stable until another
read operation is completed.

Next up are the timing waveforms for a non-pipelined write operation. This example
assumes the write operation accesses a memory location in the currently active bank and
row of the SDRAM. The sequence of actions is:

Cycle 1: The SDRAM address and the data to be stored there are applied and the write
control signal is driven high. The address, data and write control must be held
stable until the done signal goes high.

Cycle 2: The data and the column address are output on the pins that go to the SDRAM
chip and the SDRAM control signals are set to initiate the write operation. The
done signal goes high because the SDRAM controller is effectively done at this
point since the SDRAM can complete the write operation on its own.

Cycle 3: On the rising clock edge the SDRAM latches the address and data and initiates a
write operation. The output drivers on the data bus are disabled to free the
SDRAM data bus.

Cycles 4 and 5: The SDRAM continues its internal operations to write the data into the
given address.

In the previous sequence of actions for a read or write operation, it was assumed the
operation was initiated as soon as the appropriate control signal was asserted. There are
several cases when the SDRAM controller delays the initiation of an operation:

When a row is being refreshed. In this case, SDRAM controller completes the row
refresh operation. Then the SDRAM banks are precharged and the bank and row
containing the given address are activated. Then the read or write operation can
progress as described above.

FPGAs!? Now What? www.xess.com 121
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

When the given address is not in the currently active bank or row of the SDRAM.
In this case, the controller precharges the SDRAM banks and the bank and row
containing the given address is activated. Then the read or write operation can
progress as described above.

When a previous write operation is still in progress. For write operations, the
SDRAM controller indicates the operation is complete before the SDRAM chip has
actually finished storing the data. If another read or write operation is initiated
before the SDRAM chip is actually done, then the SDRAM controller will delay the
current operation until the SDRAM is completely finished writing the previous
data. Then the current operation proceeds, including any preceding activation
steps that are needed.

You don't actually have to be concerned with these delays because the SDRAM controller
handles them automatically. All you have to do is initiate a read or write operation and
hold your signals steady until the done signal goes high.

In adition to the FSM and SDRAM controller modules, there is a clock generator module
(ClkGen) that takes the 12 MHz input clock to the FPGA and ramps it up to 100 MHz. This
high-speed clock exits the FPGA and goes to the clock input of the SDRAM. It also gets
fed back into the FPGA and drives the clock inputs of the FSM and SDRAM controller. This
effectively synchronizes the internal operations of the FPGA with those of the SDRAM
since each receives a clock signal with approximately the same amount of accumulated
chip-I/O and PCB trace delays.

Finally, I include a single HostIoToDut module to transfer the value in the summation
register back to the PC. Looking at this value will tell me if the FPGA and SDRAM
performed correctly or not.

The top-level module of the SdramSPInst ISE project that connects all these modules
together is shown below. The first order of business is to pull in the necessary VHDL
packages for the clock generator, SDRAM controller and the PC-to-XuLA transfer modules
(lines 8-10).

1 --***
2 -- SDRAM, single-port, instantiated.
3 --***
4
5 library IEEE;
6 use IEEE.STD_LOGIC_1164.all;
7 use IEEE.NUMERIC_STD.all;
8 use work.ClkgenPckg.all; -- For the clock generator module.
9 use work.SdramCntlPckg.all; -- For the SDRAM controller module.

10 use work.HostIoPckg.HostIoToDut; -- For the FPGA<=>PC transfer link
module.

11
In the entity declaration, the output for the summation has been removed since the
HostIo package will be used to send it to the PC. The I/O signals for connecting the FPGA
to the SDRAM have also been added.

12 entity SdramSPInst is
13 port (
14 fpgaClk_i : in std_logic; -- 12 MHz clock from external clock source.
15 sdClk_o : out std_logic; -- 100 MHz clock to SDRAM.
16 sdClkFb_i : in std_logic; -- 100 MHz clock fed back into FPGA.
17 sdRas_bo : out std_logic; -- SDRAM row address strobe.
18 sdCas_bo : out std_logic; -- SDRAM column address strobe.
19 sdWe_bo : out std_logic; -- SDRAM write-enable.
20 sdBs_o : out std_logic; -- SDRAM bank-address.
21 sdAddr_o : out std_logic_vector(11 downto 0); -- SDRAM address bus.
22 sdData_io : inout std_logic_vector(15 downto 0) -- SDRAM data bus.
23);

FPGAs!? Now What? www.xess.com 122
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

24 end entity;
25

In the architecture header, there's no need to add the component declarations for any of
the modules because their respective VHDL packages already include this information.

Note also that several of the declared registers have been divided into two, distinct
signals: one with a _r suffix that holds the current value, and another with a _x suffix
that holds the signal value that will become current on the next rising clock edge. The
reason for this will become clear when I discuss the FSM portion of the code.

26 architecture Behavioral of SdramSPInst is
27 constant NO : std_logic := '0';
28 constant YES : std_logic := '1';
29 constant RAM_SIZE_C : natural := 256; -- # of words in RAM.
30 constant RAM_WIDTH_C : natural := 16; -- Width of RAM words.
31 constant MIN_ADDR_C : natural := 1; -- Process RAM from here
32 constant MAX_ADDR_C : natural := 5; -- ... to here.
33 subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0); -- RAM word type.
34 signal clk_s : std_logic; -- Internal clock.
35 signal wr_s : std_logic; -- Write-enable control.
36 signal rd_s : std_logic; -- Read-enable control.
37 signal done_s : std_logic; -- R/W operation done signal.
38 signal addr_r, addr_x : natural range 0 to RAM_SIZE_C-1; -- addr.
39 signal dataToRam_r, dataToRam_x : RamWord_t; -- Data to write to RAM.
40 signal dataFromRam_s : RamWord_t; -- Data read from RAM.
41 -- Convert the busses for connection to the SDRAM controller.
42 signal addrSdram_s : std_logic_vector(22 downto 0); –- Address.
43 signal dataToSdram_s : std_logic_vector(sdData_io'range); -- Data.
44 signal dataFromSdram_s : std_logic_vector(sdData_io'range); -- Data.
45 -- FSM state.
46 type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE); -- FSM states.
47 signal state_r, state_x : state_t := INIT; -- FSM state reg.
48 signal sum_r, sum_x : natural range 0 to RAM_SIZE_C * (2**RAM_WIDTH_C)-1;
49 signal sumDut_s : std_logic_vector(15 downto 0); -- Send sum bck to PC.
50 signal nullDutOut_s : std_logic_vector(0 downto 0); -- HostIo dummy output.
51 begin
52

The clock generator module multiplies the 12 MHz input clock by 25/3 to create the 100
MHz clock that is output to the SDRAM. The 100 MHz clock also re-enters the FPGA and
becomes the master clock for all the rest of the FPGA circuitry (line 60).

53 --***
54 -- Generate a 100 MHz clock from the 12 MHz input clock and send it out
55 -- to the SDRAM. Then feed it back in to clock the internal logic.
56 --***
57 Clkgen_u1 : Clkgen
58 generic map (BASE_FREQ_G => 12.0, CLK_MUL_G => 25, CLK_DIV_G => 3)
59 port map(I => fpgaClk_i, O => sdClk_o);
60 clk_s <= sdClkFb_i; -- SDRAM clock feeds back into the FPGA.
61

The SDRAM controller module is instantiated on lines 66-87. The FREQ_G generic
parameter (line 68) is used to inform the module of the input clock frequency so it can
accurately calculate the timing delays that the SDRAM requires. The rest of the
instantiation is just the connection of I/O signals to the FSM and the external SDRAM.

62 --***
63 -- Instantiate the SDRAM controller that connects to the FSM
64 -- and interfaces to the external SDRAM chip.
65 --***
66 SdramCntl_u0 : SdramCntl
67 generic map(
68 FREQ_G => 100.0, -- Use clock freq. to calc. timing parameters.

FPGAs!? Now What? www.xess.com 123
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

69 DATA_WIDTH_G => RAM_WIDTH_C -- Width of data words.
70)
71 port map(
72 clk_i => clk_s,
73 -- FSM side.
74 rd_i => rd_s,
75 wr_i => wr_s,
76 done_o => done_s,
77 addr_i => addrSdram_s,
78 data_i => dataToSdram_s,
79 data_o => dataFromSdram_s,
80 -- SDRAM side.
81 sdRas_bo => sdRas_bo,
82 sdCas_bo => sdCas_bo,
83 sdWe_bo => sdWe_bo,
84 sdBs_o(0) => sdBs_o,
85 sdAddr_o => sdAddr_o,
86 sdData_io => sdData_io
87);
88

Next, the host-side address and data buses are routed to the intermediate signals the
same way I did in the previous CORE Generator example.

89 -- Connect the SDRAM controller signals to the FSM signals.
90 dataToSdram_s <= std_logic_vector(dataToRam_r);
91 dataFromRam_s <= RamWord_t(dataFromSdram_s);
92 addrSdram_s <= std_logic_vector(TO_UNSIGNED(addr_r, addrSdram_s'length));
93

The biggest change in this example is to the FSM VHDL code. I have divided it into two,
separate processes: a combinatorial process that computes the current outputs and the
next state given the current inputs and state (lines 100-151), and a sequential process
that updates the registers with their new values upon a rising clock edge (lines 157-165).

The combinatorial process starts with a sensitivity list. Basically, this includes every signal
in the process that appears on the right-hand side of an assignment statement or in a
conditional statement. If any of these signals changes value, then the entire process is
re-evaluated.

94 --***
95 -- State machine that initializes RAM and then reads RAM to compute
96 -- the sum of products of the RAM address and data. This section
97 -- is combinatorial logic that sets the control bits for each state
98 -- and determines the next state.
99 --***

100 FsmComb_p : process(state_r, addr_r, dataToRam_r,
101 sum_r, dataFromRam_s, done_s)
102 begin

The first thing the combinatorial process does is set the default values for various outputs
and registers. These assignments will be overridden further-on in the process when a
given signal needs to be changed. Note that signals with a _x suffix are always on the
left-hand side of an assignment while signals with a _r suffix are on the right.

103 -- Disable RAM reads and writes by default.
104 rd_s <= NO; -- Don't write to RAM.
105 wr_s <= NO; -- Don't read from RAM.
106 -- Load the registers with their current values by default.
107 addr_x <= addr_r;
108 sum_x <= sum_r;
109 dataToRam_x <= dataToRam_r;
110 state_x <= state_r;

FPGAs!? Now What? www.xess.com 124
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

111
112 case state_r is
113

The initialization state operates pretty much the same as always, but note how the
default values of some of the signals have been overridden.

114 when INIT => -- Initialize the FSM.
115 addr_x <= MIN_ADDR_C; -- Start writing data at this addr.
116 dataToRam_x <= TO_UNSIGNED(1, RAM_WIDTH_C); -- Initial write value.
117 state_x <= WRITE_DATA; -- Go to next state.
118

When values are being written to the SDRAM, the write-enable is asserted until the done
signal from the SDRAM controller goes high (line 120). Once that occurs, and before the
next rising clock edge, the write-enable signal has to be disabled. This is the reason the
FSM was divided into combinatorial and sequential portions. If a one-process sequential
FSM like those in the previous examples was used, then the write-enable signal would not
change until the next rising clock edge after the done signal went high, and that would be
too late. With a combinatorial process, the write-enable goes low as soon as the done
signal is asserted.

119 when WRITE_DATA => -- Load RAM with values.
120 if done_s = NO then -- While current RAM write is not complete ...
121 wr_s <= YES; -- keep write-enable active.
122 elsif addr_r < MAX_ADDR_C then -- If haven't reach final address ...
123 addr_x <= addr_r + 1; -- go to next address ...
124 dataToRam_x <= dataToRam_r + 3; -- and write this value.
125 else -- Else, the final address has been written ...
126 addr_x <= MIN_ADDR_C; -- go back to the start, ...
127 sum_x <= 0; -- clear the sum-of-products, ...
128 state_x <= READ_AND_SUM_DATA; -- and go to next state.
129 end if;
130

Reading values back from the SDRAM also uses the done signal to gate the read-enable
signal and to accumulate to the sum-of-products only when the data becomes available
(lines 134-142).

131 when READ_AND_SUM_DATA => -- Read RAM and sum address*data products
132 if done_s = NO then -- While current RAM read is not complete ...
133 rd_s <= YES; -- keep read-enable active.
134 elsif addr_r <= MAX_ADDR_C then -- If not the final address ...
135 -- add product of previous RAM address and data read
136 -- from that address to the summation ...
137 sum_x <= sum_r + TO_INTEGER(dataFromRam_s * addr_r);
138 addr_x <= addr_r + 1; -- and go to next address.
139 if addr_r = MAX_ADDR_C then -- If last addr has been read ...
140 state_x <= DONE; -- go to the next state.
141 end if;
142 end if;
143
144 when DONE => -- Summation complete ...
145 null; -- so wait here and do nothing.
146 when others => -- Erroneous state ...
147 state_x <= INIT; -- so re-run the entire process.
148
149 end case;
150
151 end process;
152

Here's the sequential process of the FSM. On the rising clock edge, the registers get
updated with the values calculated in the combinatorial process.

153 --***

FPGAs!? Now What? www.xess.com 125
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

154 -- Update the FSM's registers with their next values as computed by
155 -- the FSM's combinatorial section.
156 --***
157 FsmUpdate_p : process(clk_s)
158 begin
159 if rising_edge(clk_s) then
160 addr_r <= addr_x;
161 dataToRam_r <= dataToRam_x;
162 state_r <= state_x;
163 sum_r <= sum_x;
164 end if;
165 end process;
166

The final thing to do is send the summation value back to the PC. Since I'm only using a
single HostIoToDut module in this application, I can employ an easy-to-use version that
already incorporates the BscanToHostIo module internally.

167 --***
168 -- Send the summation to the HostIoToDut module and then on to the PC.
169 --***
170 sumDut_s <= std_logic_vector(TO_UNSIGNED(sum_r, 16));
171 HostIoToDut_u2 : HostIoToDut
172 generic map (SIMPLE_G => true) -– Use simple form of module.
173 port map (
174 vectorFromDut_i => sumDut_s, -– Send sum back to PC.
175 vectorToDut_o => nullDutOut_s –- Dummy output. Not used.
176);
177
178 end architecture;

FPGAs!? Now What? www.xess.com 126
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

That completes the top-level module in the SdramSPInst.vhd file. Here's the SdramSPInst
ISE project hierarchy:

Compiling the project in the same way as all the previous examples (you should know the
drill by now) generates the SdramSPInst.bit file.

Of course, to go with the FPGA bitstream, I need a Python program on the PC to grab the
summation value from the XuLA board. Here's what's in the sdram_test.py file. It starts
by importing all the functions and classes in the XsTools package.

1 from xstools.xsdutio import * # Import funcs/classes for PC <=> FPGA link.
2

Then the program prints out a description of what it's trying to do.

3 print '''\n
4 ##
5 # Read the summation of the address * data products from the
6 # FSM + SDRAM application on the XuLA board.
7 ##
8 '''

Next, the program defines two identifiers: one for the USB port index of the XuLA board
(which is usually 0 because your XuLA port is usually USB0), and another for the interface
identifier of the HostIoToDut module attached to the summation register in the FPGA (the
identifier is 255 by default for the simple version of the module).

9 USB_ID = 0 # USB port index for the XuLA board connected to the host PC.

FPGAs!? Now What? www.xess.com 127
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

10 DUT_ID = 255 # This is the default identifier for the DUT in the FPGA.
11

Now create an object that lets the PC talk to the HostIoToDut module in the FPGA. The
USB and DUT identifiers are needed to initialize the object. Then two arrays are needed:
one which defines the size of the summation register that will be read back to the PC, and
another that defines the size of the single dummy output of the HostIoToDut module.
(Obviously the dummy output of the HostIoToDut module doesn't do anything; I just need
at least one output to keep the VHDL synthesizer from complaining. And because the
dummy output is there, I need to account for it in the Python code even though nothing is
done with that, either.)

12 # Create an intfc obj with one 16-bit input and one 1-bit output.
13 dut = XsDut(USB_ID, DUT_ID, [16], [1])

Finally, use the Read() method of the dut object to get the value in the summation
register. Then print the value of the sum and exit.

14 sum = dut.Read(); # Read the 16-bit summation from the FPGA.
15 print 'Sum = %d\r' % sum.unsigned

At this point, I assume you have the SdramSPInst ISE project compiled and the bitstream
is ready to go, the firmware in your XuLA board has been upgraded to support the
HostIoPckg modules (you should have already done that in the previous chapter), and
you have Python installed and the sdram_test.py file is available. Now all you have to do
is this:

1. Download the SdramSPInst.bit file to the FPGA on the XuLA board using
GXSLOAD.

2. Run the Python program in a command window as follows:
C:\SFW> python sdram_test.py

Then you should see the following text appear in the command window:

The value in the sum register matches the results found in the previous examples, so the
SDRAM circuitry appears to be working.

FPGAs!? Now What? www.xess.com 128
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “RAMs! Now What!?”

Now you might ask (if you're still there): “Why did you go to all the trouble of running
this on the actual hardware instead of doing a simulation like in the other examples?” The
answer to that is simple: the ISE simulator knows how to model the behavior of the
distributed and block RAMs built into the FPGA itself, but it has no built-in model for the
external SDRAM chip. So I just went straight to the hardware and prayed that it worked.

The problem with doing it in hardware is that if the result is incorrect, then how do you
find where the problem is? Is it in the FSM? Is the SDRAM controller being operated in the
correct manner? Is the problem inside the SDRAM controller itself? (If so, take a look in
the SdramCntl.vhd file and tell me you would want to debug that! I did back in 2001 after
I wrote it and believe me, it was not pretty.)

So, while throwing a “Hail Mary” with the hardware sometimes works, we really need a
backup plan to debug systems that extend beyond the boundaries of the FPGA. That's
what I'll show you in the next chapter.

FPGAs!? Now What? www.xess.com 129
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 C.8 “Verilog! Now What!?”
Back in the 80's, there was a TV commercial for Reeses Peanut Butter Cups that went
something like this. Some dude is bebopping down the sidewalk on his skateboard eating
from a jar of peanut butter. Another dork is riding down the sidewalk on a bike eating a
chocolate bar. They don't see each other as they arrive at an intersection (probably
because THEY ARE TOO BUSY EATING!) and a horrendous crash occurs. The first guy is
lying on the ground and says “Hey, you got chocolate in my peanut butter!” The second
guy retorts “Oh, yeah? You got peanut butter on my chocolate!”. (Nowadays the
conversation would go something like this: “I'm going to sue you 'til your eyeballs
explode!”; “Yeah? Say hello to my 9mm.”) Well, they each try the mixed concoction and
arrive at the shared realization that chocolate and peanut butter taste pretty good
together. Then they gaze into each other's eyes, join hands, and go off to start a B&B in
the Napa Valley wine country.

So what does this have to do with using FPGAs? Not much, really; I just thought it was
funny. But it is kind of similar to how VHDL and Verilog users view their favorite language
as superior and it shouldn't be mixed with the other when, in reality, sometimes a
combination of them is unavoidable and desirable. I'll demonstrate this with a simulation
of the FPGA sum-of-products circuit and the external SDRAM from the last chapter.

Simulating SDRAM

As I said at the end of the last chapter, ISE knows how to simulate the internal RAMs of
the FPGA, but it doesn't know jack about the behavior the external SDRAM on the XuLA
board – it doesn't have those models. So to run a simulation, we need a VHDL model of
the XuLA's Winbond W9812 8M x 16 SDRAM to combine with the VHDL for the FPGA
circuit. Unfortunately, I've never been able to find a VHDL model of the W9812. Winbond
does supply a Verilog model of the W9812, but it's encrypted so it will only work with the
NC-Verilog simulator. That's not much help.

So there's no VHDL model for the W9812, and there's no vanilla-Verilog version, either.
Luckily, the free market works in my favor here. All memory vendors are competing for
the same slots in PCs, tablets and phones, so they all make their chips interoperable to
try to steal business from each other. That means we can use an SDRAM model from
another manufacturer in place of the one from Winbond. In this case, Micron supplies a
Verilog model for their equivalent 8M x 16 SDRAM, the MT48LC8M16A2:
http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc ={428A5CC9-2A78-
447E-939B-6F3A40D538C6}#sim.

FPGAs!? Now What? www.xess.com 130
TUT001 (V1.0) Feb 28, 2013

http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc=%7B428A5CC9-2A78-447E-939B-6F3A40D538C6%7D#sim
http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc=%7B428A5CC9-2A78-447E-939B-6F3A40D538C6%7D#sim
http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc
http://www.winbond.com/hq/enu/ProductAndSales/ProductLines/SpecialtyDRAM/SDRAM/W9812G6JH.htm
http://www.winbond.com/hq/enu/ProductAndSales/ProductLines/SpecialtyDRAM/SDRAM/W9812G6JH.htm
http://www.xess.com/

 “Verilog! Now What!?”

After downloading the archive from Micron, I just unpack it and store the mt48lcm16a2.v
Verilog file in the folder for the SdramSPInst ISE project I built in the last chapter. Then I
reopen the project in ISE and select the Add Source... item from the pop-up menu.

Once the dialog for selecting the source file appears, I highlight the mt48lcm16a2.v file
and click Open which should add the Verilog file to my previously pristine VHDL project.

FPGAs!? Now What? www.xess.com 131
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

When adding the SDRAM model, I make sure to only associate the SDRAM Verilog file
with simulation processes! That's because the SDRAM model contains stuff that's un-
synthesizable or, at least, very inefficient to synthesize. I don't want ISE trying to build
the SDRAM inside the FPGA if I run the implementation tools. That would only lead to
tears.

Now it's time to create a simulation test bench, so I do the whole New Source... thing.

FPGAs!? Now What? www.xess.com 132
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

Then I add a VHDL test bench source file called SdramSPInstTb.

Next I associate the test bench with the SdramSPInst.vhd file containing the sum-of-
products module.

FPGAs!? Now What? www.xess.com 133
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

Now the test bench appears at the top of the design hierarchy with the original
SdramSPInst as a submodule.

Note that the SDRAM Verilog model is outside the test bench hierarchy, so my next task is
to integrate that into the mix by attaching it to the sum-of-products module within the
SdramSPInstTb.vhd file. In effect, the test bench file emulates the XuLA board because it
describes how an FPGA programmed with a sum-of-products function is connected to an
external SDRAM. But to make this connection, I have to figure out the I/O definitions for
the SDRAM from the Verilog source. Here is the pertinent portion of the mt48lc8m16a2.v
file:

42 module mt48lc8m16a2 (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm);
43
44 parameter addr_bits = 12;
45 parameter data_bits = 16;
46 parameter col_bits = 9;
47 parameter mem_sizes = 2097151;
48
49 inout [data_bits - 1 : 0] Dq;
50 input [addr_bits - 1 : 0] Addr;
51 input [1 : 0] Ba;
52 input Clk;
53 input Cke;
54 input Cs_n;
55 input Ras_n;
56 input Cas_n;
57 input We_n;
58 input [1 : 0] Dqm;

Using this information, I can go into the SdramSPInstTb.vhd file and add an equivalent
VHDL component declaration that uses the same module name with the same I/O names,
in the same order, and with the same vector widths as follows:

60 component mt48lc8m16a2
61 port(
62 Dq : inout std_logic_vector(15 downto 0);
63 Addr : in std_logic_vector(11 downto 0);
64 Ba : in std_logic_vector(1 downto 0);

FPGAs!? Now What? www.xess.com 134
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

65 Clk : in std_logic;
66 Cke : in std_logic;
67 Cs_n : in std_logic;
68 Ras_n : in std_logic;
69 Cas_n : in std_logic;
70 We_n : in std_logic;
71 Dqm : in std_logic_vector(1 downto 0)
72);
73 end component;

Then I instantiate and connect the mt48lc8m16a2 module to the SdramSPInst module
like so:

97 -- Instantiate the Unit Under Test (UUT)
98 uut: SdramSPInst PORT MAP (
99 fpgaClk_i => fpgaClk_i, -- 12 MHz XuLA clock.

100 sdClk_o => sdClk_o, -- 100 MHz clock from DCM.
101 sdClkFb_i => sdClkFb_i, -- 100 MHz clock fed back into FPGA.
102 sdRas_bo => sdRas_bo, -- Row-address strobe.
103 sdCas_bo => sdCas_bo, -- Column-address strobe.
104 sdWe_bo => sdWe_bo, -- Write-enable.
105 sdBs_o => sdBs_o, -- Bank-select.
106 sdAddr_o => sdAddr_o, -- 12-bit address bus.
107 sdData_io => sdData_io -- 16-bit data bus.
108);
109 sdClkFb_i <= sdClk_o; -- Feedback 100 MHz clock to FPGA.
110
111 -- Use the mt48lc8m16a2 declaration from above to instantiate
112 -- the SDRAM here and connect it to the UUT.
113 sdram: mt48lc8m16a2 port map(
114 Dq => sdData_io, -- 16-bit data bus.
115 Addr => sdAddr_o, -- 12-bit address bus.
116 Ba(0) => sdBs_o, -- One bank-select pin.
117 Ba(1) => '0', -- The other is tied to GND on XuLA PCB.
118 Clk => sdClk_o, -- 100 MHz clock.
119 Cke => '1', -- Clock-enable tied high on XuLA PCB.
120 Cs_n => '0', -- Chip-enable tied low on XuLA PCB.
121 Ras_n => sdRas_bo, -- Row-address strobe.
122 Cas_n => sdCas_bo, -- Column-address strobe.
123 We_n => sdWe_bo, -- Write-enable.
124 Dqm(0) => '0', -- Data qualifier masks tied low ...
125 Dqm(1) => '0' -- on the XuLA PCB.
126);

Finally, I define the clock period to match the 12 MHz clock of the XuLA board:

93 constant fpgaClk_period : time := 83.3333 ns; -- 12 MHz XuLA clock.

Then I place the clock signal name into the process that generates the clock:

130 fpgaClk_process :process
131 begin
132 fpgaClk_i <= '0';
133 wait for fpgaClk_period/2;
134 fpgaClk_i <= '1';
135 wait for fpgaClk_period/2;
136 end process;

FPGAs!? Now What? www.xess.com 135
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

After making these changes, I'm rewarded by seeing the inclusion of the Micron SDRAM
as a submodule of the test bench:

Now it's time to run the simulation. I highlight the SdramSPInstTb test bench module in
the Hierarchy pane and double-click the Simulate Behavioral Model process in the
Processes pane. The ISim window will appear. I type 202 uS into the simulation run-
time field and click on the button to run the simulation. (The reason for the long
simulation run-time is that the SDRAM has a 200uS initialization delay before it can
perform any read/write operations.)

Looking at the simulation waveforms after the initialization period, you can see the five
write operations as the sum-of-products circuit loads the SDRAM with data: 1 is written to
address 1, 4 to address 2, 7 to address 3, and so on as in the example from the previous
chapter.

FPGAs!? Now What? www.xess.com 136
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

After the writes, the data is read back from the SDRAM. Notice that 1 is read from
address 1, 4 from address 2, and so on. It appears the SDRAM Verilog model is working
correctly for the basic read and write functions.

FPGAs!? Now What? www.xess.com 137
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

The final test of the SDRAM model is whether the computed sum-of-products value is
correct. To check this, I highlight the uut instance in the Instance and Process Name
pane and then look for the sum_r register in the Objects pane. There I see that
the sum register contains the value of 135 at the end of the simulation. This matches the
result I saw in the SDRAM example of the last chapter.

So to recap, here's what I did:

1. Found a file containing a Verilog model for some circuit.

2. Added the file to my project and associated it with simulation processes only.

3. Opened the Verilog file and found the I/O declarations for the model.

4. Created a component declaration in my VHDL code that has the same module
name with the same I/O names, in the same order, and with the same vector
widths.

5. Instantiated and connected the module wherever it was needed just as if it was
another VHDL component.

The example I've just described was done for simulation purposes. Is there any difference
if I had wanted to include a Verilog module for actual implementation in my FPGA? Not

FPGAs!? Now What? www.xess.com 138
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

 “Verilog! Now What!?”

really, except in that case I would want to associate that module with both simulation and
implementation processes, rather than just simulation alone. Everything else would stay
the same.

FPGAs!? Now What? www.xess.com 139
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/

	Table of Contents
	Preface
	Writing Tutorials Sucks Donkeys!
	Here I Go Again
	What This Is and Is Not
	Really Important Stuff!

	C.1 “I know nothing about FPGAs. Now what?”
	What Is Programmable Logic?

	C.2 “I have no compiler. Now what?”
	The Compilation Process: From Schematic to Bitstream
	Getting and Installing Xilinx ISE WebPACK

	C.3 “I have a synthesizer. Now what?”
	The “Hello, World” of FPGAs: the LED Blinker
	Starting a Design in WebPACK
	The Actual Blinker Design (in VHDL!)
	Synthesizing the Blinker (or Not)
	Testing the Logic

	C.4 “I have a netlist. Now what?”
	Physical Hardware – the XuLA Board
	Assigning I/O Signals to FPGA Pins
	Doing the Implementation
	Preparing the Bitstream
	Installing the XSTOOLs Utilities
	Connecting the XuLA Board
	Downloading the Blinker Bitstream

	C.5 “Only 12 MHz! Now what?”
	Speed Envy
	The Digital Clock Manager
	Adding a DFS to the Blinker
	Does It Work?
	But Does It Really Work?

	C.6 “No LEDs! No buttons! Now what?”
	Blinky Envy
	Monitoring the LED Blinker from the Host PC
	Modifying the LED Blinker Project
	Changing the XuLA Firmware
	PC Software for Talking with the LED Blinker
	Putting It All Together

	Testing a Subtractor
	Two at Once!
	So What?

	C.7 “RAMs! Now What!?”
	Inferring RAM
	Inferring Distributed RAM
	Inferring Block RAM
	Integrating RAM into the FSM
	Inferring Multi-Port RAM

	Generating RAM
	Instantiating RAM

	C.8 “Verilog! Now What!?”
	Simulating SDRAM

