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 Preface 

 Preface 
There are numerous requests in Internet forums that go something like this:

"I am new to using FPGAs. What are they? How do I start? Is there a tutorial 
and some cheap/free tools I can use to learn more?"

The short answer is “Yes”.

The long answer is this book. It will briefly describe FPGAs and then show you how to 
apply them to your problems using a low-cost board and some free software. My 
discussion will be oriented towards using Xilinx FPGAs, but most of what I'll say is 
applicable to other brands of FPGAs.

But first, a little history...

Writing Tutorials Sucks Donkeys!

Yeah, I mean it and I have the experience to back it up.

I've written a lot of documentation over the past twenty years. It's in the nature of my 
business. I need to write manuals and application notes for my FPGA board customers. I 
need to generate content for my web pages. I need to write documentation for myself 
just so I can remember what I've done and where I left off.

But the documentation I hate writing most of all is tutorials. With a tutorial, you can't 
assume your reader knows much of anything. You have to build from the ground up. That
requires a lot of text, figures, pictures, design examples, etc. And you have to polish and 
proofread it more thoroughly to make sure its meaning is clear because, if it isn't, 
someone is going to read it the wrong way and give you a bunch of static about it.

Allow me to take you on a trip down Memory Lane and recount some of the tutorials I've 
written:

FPGA Workout - 236 pages: I wrote this book back in 1994. It showed how to build 
electronics using the Intel FLEXlogic FPGAs. (You didn't know Intel built FPGAs? Seems 
that nobody else did either - they exited the FPGA business around 1995.) I self-
published this and had 2000 of them printed. I sold 1500, gave 300 away (one to 
every EE department in the USA), and watched the last 200 get ground under a 
bulldozer's tracks in the Wake County landfill (I just couldn't stand having them around
anymore).

The Practical Xilinx Designer Lab Book - 300 pages: I wrote this for Prentice Hall back 
in 1997. They were publishing a student package in cooperation with Xilinx that 
included this book along with the Foundation FPGA design software. It was a good 
product at the time. My book covered how to build electronics using Xilinx FPGAs. It 
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was a real bear working with Prentice Hall after self-publishing my first book. I created 
and proofread all the text and figures, then Prentice Hall re-entered all that material 
using Framemaker and I had to proofread it all again to catch any transcription errors. 
(To their credit, there weren't very many. Then again, I wasn't looking that hard.)

myCSoC - 213 pages: I wrote this e-book back in 2000. It discussed how to construct 
electronic systems around the Triscend TE505 chip. (The TE505 combined an 8051 
microcontroller with an FPGA on a single chip.) I distributed this book as PDFs from my
website and used it as a sales tool for the myCSoC Kit . That came to an end when 
Triscend went out of business around 2003 and Xilinx gobbled up their dessicated 
remains. (I still have five-hundred unused TE505 chips from that venture. Anybody 
want them? Anybody?)

The Practical Xilinx Designer Lab Book Version 1.5 - 450 pages: It wasn't enough to do
this once; I went ahead and did a revision! And I added an extra 150 pages of material
on - can you guess? - designing electronics using FPGAs. I tried to make a deal with 
Prentice Hall wherein I would write the print revision for free, and they would grant me
the electronic rights to distribute it on the web. This was 1999 and they just couldn't 
get their heads around this, but they knew they wanted no part of it. Instead, they just
paid me $15,000 for the re-write and told me to drop all the crazy talk. After the book 
was written, they packaged it with some CDROMs which - instead of containing the 
Xilinx software - contained test data for an anesthesiology text book! Yeesh, the 
customer support calls I got! Looking back on it, I realized that all the whipped cream 
in the world would never make this turd taste any better.

Pragmatic Logic Design With Xilinx Foundation 2.1i - 394 pages: This was what I 
originally wanted to do for Prentice Hall. An online book with a separate PDF for each 
chapter. Plenty of room to add as much text and as many figures as were needed 
because it didn't have to fit into a fixed amount of paper. Easily edited and changed to 
correct any errors that were found. I got five chapters of this text finished. Then Xilinx 
released a version of their free WebPACK tools that targeted FPGAs (instead of just 
CPLDs) and the market for the not-free Foundation software vanished. So did any 
incentive I had to finish this book.

Introduction to WebPACK X.Y - from 78 pages up to 130 pages: I wrote this tutorial to 
show how to use the free Xilinx ISE WebPACK software, which had a markedly different
user interface than the Foundation software. I wrote a version of the tutorial for 
WebPACK 1.5 and then 3.1 (these only supported Xilinx CPLDs), then two re-writes for 
4.1 (one for CPLDs and another for FPGAs), another re-write for 5.2 (FPGAs only, this 
time), two re-writes for 6.1 (one targeting the XSA-100 board, and another for the 
XSB-300E board), one more minor re-write for 6.3 (because of the introduction of the 
new XSA-3S1000 board), another re-write for 8.1, and a final re-write for ISE 
WebPACK 10. Xilinx is up to ISE 13 now and, thankfully, it still operates pretty much 
the same as version 10 because I haven't had the energy to re-write the tutorial. It 
still serves as a pretty good introduction to the Xilinx software.

All told, that's over two-thousand pages of tutorials. That's a lot, regardless of whether 
it's mostly roses or shit. What I hated most about doing the tutorials was the boring 
sameness of it. Each looks like a rehash of the previous one. So I cringe when I think 
about writing another (hence my three year hiatus from re-doing the WebPACK tutorial).

Here I Go Again

But it looks like I am writing another one. The XuLA board needs a tutorial; it's just too 
different from any of my other boards and the people who might use it probably have no 
experience with FPGAs. So they need something to help them get started. But, in order to
get me started, I'm going to write this tutorial a bit differently so it won't be so boring. 
Here are the guidelines I set for myself:
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I won't re-invent the wheel. There's no reason to re-write everything about digital logic 
design just so I can introduce you to FPGAs – the web is full of good information. I'll add 
links to good stuff I find to cut my workload and to produce a better text in less time.

I won't fence it in. What I really mean is: steal this book!. I'm placing the source directory
for it on Github. You can copy it, modify it, sell it - I don't care. I want you to do this! 
Please take it, add your own stuff and make it better. All I ask is that you respect the 
terms of the Creative Commons license I applied to this work. Basically, that means don't 
remove the names/affiliations of anyone else who worked on this, and provide others with
the same rights to it that you got. (But check the actual license to get the fine points.)

I won't let others fence it in. I'm using FOSS like LibreOffice and Inkscape to write this 
book. That removes some barriers for anyone who wants to work on it because they 
won't have to pay for the tools. And it keeps the source files in non-proprietary formats.

I won't be a prisoner of perfection. I've often held onto things too long before releasing 
them, trying to remove every error I can find. That's not the case with this book – you'll 
find spelling and grammar errors, subject/verb disagreements, inconsistent formatting, 
hand-drawn figures and lots of other stuff. But this won't matter to someone who really 
needs the material. (For those who do care about the finer points, you can tell me what 
errors you find and I'll get around to fixing them, or you can get the source and fix them 
for me.)

I'll use the right medium for the right message. Text and figures are great for a tutorial so
you can read along while you actually do it. Screencasts and videos are almost always 
more difficult to follow, especially all the diddling-about with typing text and clicking icons
that goes on with FPGA design tools. But there is a place for these, particularly when 
demonstrating the actual operation of some circuitry.

What This Is and Is Not

This book discusses how to use the Xilinx ISE WebPACK software to build FPGA designs 
for the XuLA FPGA board. Along the way, you'll see:

 How to start an FPGA project.

 How to target a design to a particular type of FPGA.

 How to describe a logic circuit using VHDL and/or schematics.

 How to detect and fix VHDL syntactical errors.

 How to synthesize a netlist from a circuit description.

 How to simulate a circuit.

 How to implement the netlist for an FPGA.

 How to check device utilization and timing for an FPGA.

 How to generate a bitstream for an FPGA.

 How to download a bitstream into an FPGA.

 How to test the programmed FPGA.

 How to detect and fix errors.

I'll also delve into things like:

 How to build hierarchical designs.

 How to build state machines.

 How to build mixed-mode designs using VHDL, Verilog and schematics.
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 How to use Digital Clock Managers.

 How to use block RAMs.

 How to use multipliers.

 How to use IP and soft cores.

 How to use external components like SDRAM, VGA, audio, ADC, DAC.

That said, here are some of the things this book will not teach you (I may be wrong here;
this book isn't even written yet, plus who knows what others may add):

 It will not teach you how to use VHDL. There are plenty of good VHDL textbooks 
already.

 It will not teach you how to choose the best type of FPGA for your particular 
design. I'm oriented toward using the FPGA on the XuLA board.

 It will not show you every feature of the ISE software and discuss how to set 
every option and property. This software already has a good help system and 
extensive manuals, so those should suffice.

In short, this book will get you started using the XILINX ISE software for doing FPGA 
designs with the XuLA board. After you finish, you should be able to move on to more 
advanced topics.

Really Important Stuff!

 Everything for this book is on Github! That includes all the FPGA design examples.
I won't be making any zipped archives since they would get out-of-date as 
changes and corrections are committed to Github. So go to 
https://github.com/xesscorp/FpgasNowWhat if you need anything related to this 
book.

 All the FPGA design examples in this book are targeted to the XuLA-200 board. 
You can still use them if you own a XuLA-50 board – just change the target FPGA 
in the project from xc3s200a-4vq100 to xc3s50a-4vq100. 
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 C.1  “I know nothing about
FPGAs. Now what?”

What Is Programmable Logic?

In the beginning (OK, actually in the 60's) there were discrete logic chips. Systems were 
built from lots of individual ANDs, ORs, flip-flops, etc. with a spaghetti-like maze of wiring
between them. It was difficult to modify such a system after you built it. Jeez, after a 
week or two it was difficult to remember what each of the chips was for!
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Manufacturing a system like this took a lot of time because each design change required 
that the wiring be redone which usually meant building a new printed circuit board. The 
chip makers addressed this problem by placing an unconnected array of AND-OR gates in 
a single chip called a programmable logic device (PLD). The PLD contained an array of 
fuses that could be blown open or left closed to connect various inputs to each AND gate. 
You could program a PLD with a set of Boolean sum-of-product equations to perform the 
logic functions needed in your system. You could change the function of a design by 
removing the PLDs, blowing a new fuse pattern into them, and then placing them back 
into the circuit board. This reduced the need to change the actual wiring of the printed 
circuit boards which held them.

Simple PLDs could only handle up to 10–20 logic equations, so you couldn't fit a very 
large logic design into just one of them. You had to figure out how to break your larger 
designs apart and fit them into a set of PLDs. This was time-consuming and meant you 
had to interconnect the PLDs with wires. The wires were a big no-no because eventually 
you would make some design change that couldn't be handled just by reprogramming the
PLDs and then you would have to build a new circuit board. The chip makers came to the 
rescue again by building much larger programmable chips called complex programmable 
logic devices (CPLDs) and field-programmable gate arrays (FPGAs). With these, you could
essentially get a complete system onto a single chip.
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A CPLD contains a bunch of PLD blocks like the one shown above, but their inputs and 
outputs are connected together by a global interconnection matrix. So a CPLD has two 
levels of programmability: each PLD block can be programmed, and then the 
interconnections between the PLDs can be programmed. 

An FPGA takes a different approach. It has a bunch of simple, configurable logic blocks 
(CLBs) interspersed within a switching matrix that can rearrange the interconnections 
between the them. Each logic block is individually programmed to perform a logic function
(such as AND, OR, XOR, etc.) and then the switches are programmed to connect the 
blocks so that the complete logic functions are implemented. 

CPLD and FPGA manufacturers use a variety of methods to make the connections 
between logic blocks. Some make chips with fuses or anti-fuses that are programmed by 
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passing a large current through them. These types of CPLDs and FPGAs are one-time 
programmable (OTP) because you can't rewire them internally once the fuses are blown.

Other manufacturers make the connections using pass transistors that are opened or 
closed by storing a charge on their gate electrodes using a high-voltage pulse. This type 
of programmable device resembles an EPROM or EEPROM: you can erase it and then 
place it in a special programmer socket and reprogram it. That's fine unless you have the 
CPLD or FPGA soldered into a circuit board.

Finally, some manufacturers use static RAM or Flash bits to control the pass transistors for
each interconnection. By loading each bit with a 1 or a 0, you can control whether the 
switch is closed or opened and, therefore, whether two logic elements are connected or 
not. CPLDs and FPGAs built using RAM/Flash switches can be reprogrammed without 
removing them from the circuit board. They are often said to be in-circuit 
reconfigurable or in-circuit programmable. They are different, however: a Flash-based 
FPGA always has its programming intact whether it is powered or not, but a RAM-based 
FPGA will be erased and stop functioning if it ever loses power. Even with this drawback, 
most FPGAs are RAM-based because the RAMs can be built on the chip using the same 
manufacturing process as for the CLBs and switches (that makes the chips cheaper to 
produce). The manufacturers also provide a separate, Flash-based chip that stores the 
programming switch settings externally and loads it into the FPGA whenever power is 
applied.

For the rest of this book, we'll concentrate on using RAM-based FPGAs from Xilinx. I'll 
introduce a little terminology because it will be important later on.

Within the CLBs of an FPGA are look-up tables (LUTs) that perform the actual logic 
operations. These are usually built as small RAMs that are loaded with a truth table. For 
example, an eight-bit RAM can perform a three-input AND operation if it is loaded as 
follows:

If the inputs for the AND gate are applied to the address pins of the RAM, then the output
of the RAM will only be 1 when location 7 = 111 is selected. This is exactly how a three-
input AND gate would operate. By setting the contents of the RAM in the right way, you 
can perform any logic function of three binary inputs. (Modern FPGAs use LUTs with four 
to six inputs.)

The output of a LUT can be used directly as an input to another LUT to make more 
complicated logic functions. Or it can be stored in a flip-flop for later use (there's usually 
at least one register for each LUT).

The switching matrix routes all the signals between the LUTs and registers and also to the
I/O blocks (IOBs) around the perimeter of the FPGA chip. The IOBs connect selected  
internal signals of the FPGA to the outside world and contain special analog circuitry to 
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adjust the input and output voltage levels, insert small delays, and handle single-ended 
or differential signaling.

Over time, other types of more specialized circuit blocks have found their way into FPGAs:
blocks of RAM, multipliers and DSP blocks, delay-locked and phase-locked loops, gigabit 
serial transceivers, and even complete microprocessors. But, at least when you're starting
off, your main concern will be the LUTs and registers. These are the equivalent of the 
program and data memories in a processor: the values in the LUTs and flip-flops 
determine how your logic circuit functions, and your design must fit into the available 
number of LUTs and flip-flops within your target FPGA.

Also, like a microprocessor, you need a way to write programs for your FPGA. That's the 
subject of the next chapter.
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 C.2  “I have no compiler. 
Now what?”

The Compilation Process: From Schematic to Bitstream

As you can imagine, figuring out which bits to set in the LUTs and the switching matrix in 
order to create a logic circuit is quite a chore. Not many people would want to delve into 
the details of this (probably the same ones who like to program in assembly). That's why 
the FPGA manufacturers provide development software that compiles a high-level 
description of a logic design and outputs a bitstream which sets the FPGA configuration 
bits appropriately.

The process the development software goes through to compile a design into a bitstream 
is depicted in the figure on the next page. Here's what happens:

1. You enter a description of your logic circuit using a hardware description 
language (HDL) such as VHDL or Verilog. Or you can also draw your design using 
a schematic editor. Or you can use a combination of the two.

2. A logic synthesizer transforms the HDL into a netlist. The netlist is just a 
description of the various logic gates in your design and how they are 
interconnected. (A schematic is already pretty close to a netlist, so it doesn't need
as much work done on it as the HDL code.)

3. The implementation phase employs three different tools. A translator merges 
together one or more netlists along with any design constraints (don't worry 
about those now). This is fed to a  mapper that combines gates in the netlist into 
groups that will fit efficiently into the LUTs of the FPGA. The gate groupings are 
sent to the place & route tool that assigns them to LUTs at various locations in the
FPGA and then determines how to connect them together using the routing 
resources (wires) in the switching matrix. This part takes the most time as finding
a placement that can be routed efficiently requires a lot of computation.

4. A bitstream generator takes the output of the implementation phase, combines it 
with a few other configuration settings, and outputs a binary bitstream. This 
bitstream (which, depending upon the size of the FPGA, can be many megabits in 
length) contains the truth-tables that will be loaded into the RAM of every LUT 
and the connection settings for the wiring matrix that will connect them.

5. At this point, a bitstream is just a bunch of 1s and 0s in a file on the computer. 
The downloader will transfer this file into a physical FPGA chip. In most cases, this
chip is already mounted on a circuit board where it waits for the bitstream that 
will make it perform its intended function.
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After downloading, you can apply patterns of input signals (or test vectors) to the I/O 
pins of the FPGA to check the operation of your design. This is often an effective way to 
do testing, but sometimes it's difficult to set up a particular combination of signals and 
look deeply into the internals of your design to see why it may not be performing as you 
intended.

If that's the case, you can use a simulator to try out test examples and see how your 
circuit reacts before you actually load it into an FPGA. There are several places in the 
design flow where you can perform a simulation. If you capture the netlist before it enters
the implementation tools, you can run a logic simulation that only tests the logical 
operations of the gates in your circuit. Such simulations are good for debugging the basic 
functions of your design.

As you tap the design flow at points further downstream, the netlist is augmented with 
more and more information about how your design will be placed into the FPGA. This 
allows you to perform a more realistic timing simulation that incorporates the effects of 
gate and wiring delays on the operation of your circuit. This is useful for detecting errors  
caused when signals arrive too quickly or slowly at their destinations. Because of this 
extra level of detail, timing simulations take longer to run than a pure logic simulation.

At this point you know the steps in the compilation process, but what you really want to 
know is how to get a compiler. That comes next.

Getting and Installing Xilinx ISE WebPACK

Xilinx develops and sells their ISE FPGA tools, and they also distribute a free version 
called WebPACK. WebPACK won't generate bitstreams for the really large FPGAs and it 
lacks some special-function design tools, but it will perform all the functions I discussed in
the previous section for FPGAs containing up to 75,000 LUTs with hundreds of I/O pins. 
That will be more than sufficient for this tutorial.

To get WebPACK, just do a search for “xilinx webpack download” (use Google, Bing, 
whatever). If you click on the first link you get, it will probably take you to the page 
shown below. The latest version of the software should be highlighted along the left side 
(it's currently 13.1). Click on the Full Installer link for whatever operating system you're 
using (either Windows or Linux, currently).
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Before the download begins, you'll be presented with a sign-in screen. If you don't 
already have a Xilinx account, you'll have to create one. Then sign in using your ID and 
password. 

Then you'll have to go through a screen that verifies all your contact information. Click on
the Next button at the bottom and your download will begin. Now be prepared to wait an 
hour or two as the file is about 4 GB.

After the archive is downloaded, you can unpack it (that'll take a ten minutes) and run 
the installer. You'll go through a set of installation screens. Make sure you choose the 
WebPACK edition unless you want to pay money for one of the others or are willing to 
accept a time-limited license (usually 30 days).
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Also make sure to select the option to get a license key. (Yes, you will need a key even 
though WebPACK is free. The WebPACK license is not time-limited, so it will never expire.)

When the installation is almost done (that takes about 45 minutes), you'll see this screen 
appear. Select the WebPACK license as the one you want to get and click Next. 
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Then you'll get a screen showing the information that will be associated with your license.
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Click the Connect Now button to start the license generation process. Once you do, your
browser will open a window to Xilinx and you'll have to login using your account 
information (again). Then you'll have to verify your contact information (again). Finally, 
you'll get to this screen. Select the WebPACK checkbox and click on the Generate Node 
Locked License button.
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 Next you'll see a couple of confirmation screens like the following: 

After clicking the Next button in the final confirmation screen, you'll get an 
acknowledgment that your license has been emailed to you.
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Once you've received the email, save the attached license file somewhere (but remember 
where you put it!). Then go back to the Xilinx License Configuration Manager screen 
and click on the Manage Xilinx Licenses tab. Enter the location of your license file into 
the XILINXD_LICENSE_FILE field and click on the Set button. 
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Once you click on the Set button, a list of the enabled features in the WebPACK software 
should appear. You're done setting up your license, so click on the Close button.
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You can also click on the Finish button in the final window of the WebPACK installer. (You 
probably forgot all about that by now.)

The WebPACK installation is done! You've got your party dress on, now it's time to dance!

FPGAs!? Now What? www.xess.com 22
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 

 C.3  “I have a synthesizer. 
Now what?”

The “Hello, World” of FPGAs: the LED Blinker

Now that your WebPACK tools are installed, it's time to do your first FPGA design: an LED 
blinker. This blinker will take a 12 MHz square-wave clock signal (you'll see why in the 
next chapter) and slow it down so an LED will turn on-and-off about once per second (i.e.,
1 Hz).
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Starting a Design in WebPACK

You start WebPACK by double-clicking the  icon on the desktop. This will bring up 
an ISE Project Navigator window like the following one.
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If this is your first time using Navigator, it's a good idea to click on the Help button and 
bring up the Project Navigator Overview. Read this to get an idea of what all the 
panes in the Navigator window are used for.

To start your LED blinker design, click on the New Project... button in the Navigator 
window.
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This will bring up the New Project Wizard. The first thing to do is select a location for 
your project. (The screenshot below shows my choice; yours, of course, will be different.)

Then type in a name for the project. I've chosen “blinker”. (Notice how the project name 
is added to the end of the location you set previously. A folder with this name will be 
created there.) Then click on the Next button.
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The next screen that appears is used to select the type of FPGA you want to use for your 
design (i.e., the target). Set the Family, Device, Package and Speed fields as shown 
below. (This sets up your design for the particular FPGA used on the XuLA board.) Also, 
change any other fields that don't match the screenshot. Then click the Next button

FPGAs!? Now What? www.xess.com 27
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 “I have a synthesizer. Now what?”

Now you'll get a summary of the information you've entered about your blinker design. 
Click on the Finish button and your new project will appear in the Navigator window.
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The Actual Blinker Design (in VHDL!)

At this point, your project exists, but it doesn't do anything. It's time to enter the source 
information that describes how the blinker operates. In the Navigator window, right-click 
on the FPGA identifier (xc3s200a-4vq100 in this design) in the Hierarchy pane and select
New Source... from the drop-down menu.
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The New Source Wizard window appears. Here, you can select how you want to 
describe your design. For example, you could create the blinker from logic gates using 
schematics. Or maybe there is already a pre-built blinker circuit provided as an 
intellectual property (IP) core (don't bet on it!). But for this design, I will choose to use 
VHDL. VHDL (or Verilog, they're really quite similar) lets you describe the operations of 
logic designs using a high-level language. So, select VHDL Module from the list of source
types. Then type a name for the VHDL source file. There will only be one for this simple 
design, so you can just name it “blinker”. Then click on the Next button
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The next window that appears lets you define the input and output ports for the blinker 
design. Type “clk_i” into the first Port Name field. This will be the input for the 12 MHz 
clock signal. (The “_i” suffix on the port name is not necessary. I just use this notation to 
indicate which ports are inputs. That can help if I'm trying to figure out how an old design
works if I haven't seen it for a few years.)

Then you can add the output that drives the LED. Name this “blinker_o” and set it to be 
an output using the Direction drop-down list as shown below.
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That's all the inputs and outputs you need. Click on the Next button and you'll get a 
summary of your VHDL module. No surprises there! Click on the Finish button to 
complete the module.
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Now you should see the contents of your blinker VHDL module in the Navigator 
workspace pane to the right. (If you don't see it, click on the blinker.vhd tab along the 
bottom of the workspace.)

Most of the blinker.vhd file is comments, but there are a few spots you should look at:

Lines 20-21: These two lines open the STD_LOGIC_1164 package of the IEEE library. 
This library includes a bunch of useful functions and definitions and you'll see it 
included in most VHDL designs.

Lines 32-35: This is the entity section of the blinker where all the inputs and outputs are
declared. This is like the skin of the module which defines how everyone on the 
outside will see the blinker.

Lines 37-42: This is the architecture section of the blinker where all the functions are 
defined. This portion is the guts of the design where the inputs are taken in, 
worked on, and then the result is passed out through the outputs. Notice, 
however, that the architecture section is conspicuously empty – the blinker will do
nothing at this point!

So it's pretty clear that you need to put something into the architecture section to make 
the blinker work. A counter is a common component for reducing a 12 MHz clock down to 
a 1 Hz waveform. Why? Because a binary counter increments whenever the clock pulses 
and it goes through a binary sequence such as 000, 001, 010, 011, 100, 101, 110, 111, 
… If you look, you'll see that each bit of the counter pulses at half the frequency of the 
previous bit. (Look here for a better illustration of how binary counters work.) So if you 
build a counter with a enough bits, you can divide the 12 MHz clock downto 1 Hz.

But how many counter bits do you need? Well, a one-bit counter would divide the clock by
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two down to 6MHz. A two-bit counter would divide it by four downto 3 MHz. An N-bit 
counter would divide by 2N. So what value of N would divide by 12,000,000? It turns out 
you can't get exactly 12,000,000, but you can get 8,388,608 if you use N=23, or you can
get 16,777,216 with N=24. For no particularly good reason, let's use N=23.

Here's a more detailed view of the blinker design given what we just covered:

The 23-bit counter is incremented on the rising edge of the 12 MHz input clock. Bit 0 of 
the counter outputs a 6 MHz signal. (Why do we count the counter's bits starting from 
zero? BECAUSE THAT'S HOW ENGINEERS DO THINGS!!) Bit 1 outputs a 3 MHz signal. By 
the time we reach the final bit of the counter (bit 22), the signal is pulsing at a rate of 
12,000,000 / 8,388,608 = 1.43 Hz. This bit is output from the FPGA and is connected to 
the LED. So the LED flashes once every 0.7 seconds.

Now all you have to do is describe this 23-bit counter in VHDL. That's not too hard. Here 
it is:

Here's what's going on in the architecture section:

Line 38: This is the declaration for the register (cnt_r) that holds the 23-bit count 
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value. The value is represented as a vector of 23 binary digits with indexes from 
22 down to 0. (I used the “_r” suffix to remind myself that this is a register.)

Lines 41-46: This is a process that is triggered every time the clock input changes its 
value, either on the rising edge (i.e., from 0 1) or the falling edge (1 0). 
Within the process is an if statement that increments the value in the count 
register only on the rising edges of the clock.

Line 48: The most-significant bit of the count register is attached to the blinker output.
That's all there is to it. Now let's see if it passes through the synthesizer.

Synthesizing the Blinker (or Not)

To run the synthesizer, left-click on the blinker icon in the Hierarchy pane. Once you do 
that, you should see a list possible operations appear in the Process pane. Double-click 
the Synthesize – XST process icon to start the VHDL synthesizer.

FPGAs!? Now What? www.xess.com 35
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 “I have a synthesizer. Now what?”

Within a few seconds you should see the results of the synthesis, and it isn't good. In the 
bottom portion of Navigator, you'll see this:

That red “X” is never a good sign. In this particular instance, it means the synthesizer has
run into an error. As to what the error is, click on the Errors tab of the Transcript window 
to get the details.
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The synthesizer is telling you that the “+” operator cannot process its operands. In other 
words, there is no operation defined for adding an integer to a std_logic_vector. 
That's not a big problem; you just have to include the package that defines this particular
addition operator. It turns out it's defined in the STD_LOGIC_UNSIGNED package, so just 
add what's shown on line 22 to the VHDL like so:

Save the file and double-click the Synthesize – XST process icon again. Now you should 
see the synthesis completed successfully.

Now you have a netlist synthesized from your VHDL file. But does it work?
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Testing the Logic

Before you charge off and run the implementation tools so you can blast your design into 
an FPGA to see if it works, it might be wise to take a little time to do a logic simulation. 
(Now I admit I always run the implementation tools and blast my designs into an FPGA to
see if it works before even considering running a simulation, but you shouldn't emulate 
my bad habits.)

In order to simulate your design, you need something to exercise its inputs and watch its 
outputs. For your blinker design, you need an external wrapper that will apply a signal to 
the clock input and watch the output to see what it does. This wrapper is called a test 
bench.
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So you need to add a test bench to your project. To do this, right-click on the FPGA 
identifier in the Hierarchy pane and select New Source... in the pop-up menu. In the 
New Source Wizard window, select the VHDL Test Bench as the source type and name it 
“blinkerTestBench”. Then click on the Next button.

The next window that appears asks you to select a source file to associate with your test 
bench. Essentially, this is asking for the module to wrap the test bench around. There's 
only one module in your design (blinker), so that's your only choice. Click Next and move
on.
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You'll get a summary screen about the choices you've made. Again, no surprises! Click on
the Finish button to complete the addition of the test bench module.

When you return to the Navigator screen, take a look at your Hierarchy pane. Where's 
the test bench you just added? It's not actually missing, it just doesn't show up in the 
Implementation view of your project. In order to see the test bench, you have to select 
Simulation in the View pane like so:
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Once you select the Simulation view, the blinkerTestBench file shows up in the Hierarchy
pane. The important point to note here is that the test bench module is not something 
that will ever be implemented and downloaded to the FPGA. In fact, it might be difficult or
impossible to do so because the test bench might contain language constructs that are 
difficult or impossible to build in the FPGA (like accessing a file on the host computer to 
store test results). The test bench serves only to help in exercising the actual modules 
that will end up in the FPGA. Speaking of which, where is the blinker module?

By clicking on the “+” sign next to the blinkerTestBench icon, you can see the blinker 
module is displayed as a submodule contained in the blinkerTestBench module. The 
blinker module is labeled “uut” in the test bench. This stands for “unit under test” to 
indicate the blinker module is what is being tested.
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Now you'll want to double-click the blinkerTestBench file so you can add the VHDL code 
for exercising the blinker module. (It turns out you won't have to do much.) In the initial 
portion of the test bench file, you'll see the inclusion of the IEEE library (lines 28-29) and 
the entity declaration for the blinkerTestBench module. Notice that the entity section lists 
no inputs or outputs. That's because the test bench completely wraps the UUT and no 
inputs or outputs pierce the wrapper – everything happens inside the test bench.

The architecture section (see the following figure) instantiates the blinker module as the 
UUT, connects to its inputs and outputs, and then drives the inputs. Here are the details:

Lines 42-47: This is a component declaration so the rest of the code knows what the 
interface to the blinker module looks like. Hence, it looks very similar to the 
blinker module entity section.

Lines 50-54: Signals internal to the test bench are declared that will be connected to the
input and output ports of the blinker module.

Line 57: The period of the clock input is defined with the default value of 10 ns. Since 
you want to simulate the blinker with an input clock of 12 MHz, this constant 
should be changed to 83.3 ns.

Lines 62-65: The blinker module is instantiated here. Its input and output ports are 
connected to the similarly-named signals declared previously.

Lines 68-74: The clock signal is generated in by this process. The clock signal is forced 
to 0 and the process waits for half of the clock period. Then the clock is raised to 
1 and the process waits for the remaining half of the clock period. Then the entire
sequence repeats forever.

Lines 78-88: Test vectors for other inputs to the UUT can be generated in this process. 
Since the blinker module only has a clock input, there's nothing for this process to
do. So leave it unchanged.
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The test bench looks like it's ready, so it's time to run a simulation. Click on the 
blinkerTestBench entry in the Hierarchy pane, and then double-click the Simulate 
Behavioral Model in the Processes pane. (There's no need to run the Behavioral Check 
Syntax since only the clock period was changed.)
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The ISim window will appear and display the results of a 1 μs simulation run. (Click on 
the View  Zoom  To Full View menu item to make the entire waveform visible.)

Although the simulation only ran for a microsecond, there's already something wrong 
about it. The blinker_o output remains in an unknown state (signified by an “X”) even 
after the clock signal has pulsed twelve times. It should have gone to one or zero after 
the first clock pulse.

This is a symptom of an initialization problem. In this case, the counter register is not 
initialized to a known value at the start of the simulation. Since the counter value is 
unknown, the simulator can't determine the next value it should contain when a rising 
clock edge occurs. So all the counter bits stay in an unknown state, including the counter 
bit attached to the blinker_o output.

How do you fix this? Well, the right way would be to build some reset circuitry in the 
blinker module that sets the counter register to zero when a reset input is triggered. Then
the test bench could be modified to trigger the blinker module reset at the start of the 
simulation. But that's a lot of work. A simpler solution, but not recommended in general, 
is to initialize the counter register value when it is declared. To do this, double-click the 
blinker module in the Hierarchy pane of the Navigator window. This will open the blinker 
module. Then change the cnt_r declaration on line 39 to:

signal cnt_r : std_logic_vector(22 downto 0) := (others=>'0');
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This will initialize all the counter register bits to zero. Save the blinker.vhd file. Then re-
run the simulation by clicking on the Simulation  Relaunch menu item. Now the 
blinker_o output takes on a value of zero at the start of the simulation.

But you still don't know if the blinker output is going to do anything (except sit at zero) 
because the simulation duration is too small. The blinker output should pulse every 0.7 s, 
so a simulation time of 2.8 s will be enough to see four pulses. Enter “2.8s” into the 
simulation run-time field on the ISim toolbar and then click on the Run button.
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After a minute or two (because computing 2.8 s of simulation time takes a lot of work), 
the results of the simulation will appear. Use the  View  Zoom  To Full View menu 
item to display the entire simulation. You can see that the blinker_o output pulses four 
times during the 2.8 s simulation, giving a period of 0.7 s. So the blinker seems to be 
working as expected. 

This chapter has been all software. Even the blinker, when it runs, is executing in 
software. That's not the reason you're interested in FPGAs, is it? No! - you want to build 
circuits that run in the real world. And that's what you'll do in the next chapter.

FPGAs!? Now What? www.xess.com 47
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 

 C.4  “I have a netlist. 
Now what?”

Physical Hardware – the XuLA Board

OK, you've designed the blinker in VHDL. You've synthesized it. You've simulated it and it 
seems to work. But, up to now, it's all been virtual. Now it's time to get physical.

To get the blinker design into the real world, you'll need an FPGA chip. But the FPGA chip 
isn't much good by itself because its usually in a surface-mount package that can't be 
plugged directly into a breadboard. And it needs some type of interface to download the 
bitstream from the host (where WebPACK is running). And it would be nice to have some 
ancillary circuitry around the FPGA for providing clock signals, etc. For these reasons, 
you'll probably need an FPGA development board. For this book, I've chosen the XuLA 
board, but you can use other boards for the same purpose.

Here's a picture of the front and back of the XuLA board. The FPGA is the big chip on the 
front below the “XuLA” logo. (No, it is not the quarter.)
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Here's a block diagram of what's on the XuLA board. You can safely ignore the most of 
the board's circuitry for now. I've highlighted the following parts that will be important for
the blinker design:

FPGA: Of course the FPGA is important! I shouldn't need to explain why that is at this 
point. The FPGA is the Xilinx XC3S200A in a 100-pin QFP package (xc3s200a-
4vq100), just like the one you selected when you started the blinker project in 
the last chapter.

Clock input: The XuLA board provides a 12 MHz square-wave clock to the FPGA. That 
will be the clock you'll use as the input to the blinker design.

Prototyping header: Some pins on the FPGA chip are connected to header pins around 
the outside of the XuLA board. These header pins are a convenient way to access signals 
from the FPGA when the XuLA board is inserted into a standard breadboard. You'll output 
the blinker_o signal on one of the FPGA pins that goes to this header and connect an 
external LED to it.
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Finally, here's how the pins of the FPGA are assigned to the XuLA prototyping header. The
FPGA pin numbers begin with a “p” so, for example, pin p50 of the FPGA is connected to 
the CHAN3 pin of the prototyping header.
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Assigning I/O Signals to FPGA Pins

Now that you know a little bit about the hardware that will be running your blinker 
design, you can proceed to the implementation phase. Open the ISE Project Navigator 
and return to the blinker project. Then move your project from simulation mode to 
implementation mode by clicking on the Implementation button in the Views pane.

Before you can pass the synthesized netlist through the implementation tools, you'll need 
to tell them what pins of the FPGA will be used for the input and output ports of your 
blinker. Otherwise, the tools will just assign them to any pins it deems fit for the purpose.
An Implementation Constraints File (sometimes called a User Constraints File or UCF) is 
used to assign I/O signals to the FPGA pins.
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To add a constraints file to your project, right-click in the Hierarchy pane and select 
New Source... from the pop-up menu. In the New Source Wizard window, select 
Implementation Constraints File as the source type and give it the name “blinker”. 
(You don't have to give it the same name as the project, but I usually do.) Then click on 
the Next button.
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Another summary window will appear. Ho hum. Click on the Finish button and your 
constraints file will appear in the Hierarchy pane. Double-click on the constraints file and 
it will open in the workspace area to the right.

Type the following two lines into the blinker.ucf file and then save the file.

The first line assigns the clk_i net to pin location p43 of the FPGA. This is the pin that 
is driven by the 12 MHz clock on the XuLA board. (I know because I read the XuLA 
manual.) The implementation tools will look through the blinker netlist and see that 
clk_i is an input net, and then they will configure the IOB for p43 as an input buffer.

Similarly, the second line assigns output net blinker_o to pin location p44 whose IOB is 
then configured as an output driver. Why p44? Because that is one of the FPGA pins 
connected to the XuLA prototyping header. Pin p44 exits the XuLA board on the lower-
right corner pin labeled “CHAN-CLK”.

That's all you need to do before running the implementation tools.
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Doing the Implementation

After all this work, the actual implementation is going to be rather anticlimactic. To begin,
highlight the blinker module in the Hierarchy pane. Then, double-click Implement 
Design in the Processes pane.
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You'll see messages scrolling through the Console tab in the Transcript window. In less 
than a minute (depending upon the speed of your PC), the translation, mapping and place
& route phases will be done and a green check-mark will appear. You have successfully 
implemented your blinker! Now you have to get it into a form that you can download into 
the FPGA.
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Preparing the Bitstream

To generate the bitstream, all you have to do is double-click Generate Programming 
File in the Processes pane. But don't do that yet!

First, you have to change some configuration settings to make the bitstream compatible 
with the XuLA board. To do this, right-click on Generate Programming File and select 
Process Properties... from the pop-up menu. 

In the Process Properties window that appears, click on the Configuration Options 
category.
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Then, click on the Unused IOB Pins drop-down menu and select Float from the list of 
options. This will cause all FPGA I/O pins that are not specifically used in your design to 
float in a high-impedance state.

Now click on the Startup Options category and change the FPGA Start-Up Clock to 
JTAG clock. The FPGA on the XuLA board is programmed through the JTAG port and the 
clock that kickstarts your design right after downloading also comes through there. If you
select any other option, your design will just sit in the FPGA and not do anything because 
it hasn't gotten a startup clock. This is always a good thing to check if you have a design 
that acts like that. 
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After setting these two options, click on the OK button and return to Navigator. Now you 
can double-click Generate Programming File to build the bitstream for the blinker 
project.

If the bitstream is generated successfully, you should be rewarded with the sight of three 
green check-marks! 

Now that you have the blinker project bitstream, we will leave Navigator and use a XuLA-
specific tool to download the bitstream.

Installing the XSTOOLs Utilities

To download bitstreams to the XuLA board, you'll need to install the XSTOOLs utilities. 
You can download them here. After you download the installer, just double-click it and 
accept the default installation settings. You'll download the blinker bitstream to the XuLA 
board using the GXSLOAD utility that gets installed.
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Connecting the XuLA Board

Before you download the bitstream, you'll need to hook a resistor and LED to the XuLA 
Board. This is relatively easy. First, insert a XuLA board into a breadboard.

Then connect the ground connection of the XuLA board to the ground bus of the 
breadboard.
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Add a resistor from the prototyping header pin that carries the blinker_o signal. (The 
resistor value can be anywhere in the range of 100Ω to 500Ω.)

Insert an LED with the anode (the rounded side of the case) connected to the resistor and
the cathode (the flat side of the case) plugged into an empty breadboard row. (I 
apologize – the leads on my diode were too short and you can't actually see where they 
plug into the breadboard.)
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Then use a jumper wire to connect the LED's cathode to the ground bus. 

Finally, connect a mini-USB cable from the XuLA board to the PC that you installed the 
XSTOOLs utilities on. 

That's it! Time to dance.
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Downloading the Blinker Bitstream

To begin the downloading process, double-click the  icon. This will bring up the 
following window:

Select the Board Type using the drop-down list. Since the blinker project was targeted at
the XC3S200A, then you must be using a XuLA-200 board. (If you were using a XuLA-50 
board, then your target FPGA would have been the XC3S50A.)

As for the Port, it should be set to USB0 (if you only have one XuLA board connected to 
the PC).
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Next, open the folder where you stored your blinker project. Locate the blinker.bit 
bitstream file and drag-and-drop it into the FPGA/CPLD pane of the gxsload window.

Once the bitstream file is dropped into the FPGA/CPLD pane, the Load button becomes 
active (i.e., it's no longer grayed-out). Just click on the Load button and the blinker 
bitstream will download from the PC into the FPGA on the XuLA board.

When the download begins, the green LED on the XuLA board will flash as the bitstream 
enters the FPGA. This LED will stop flashing once the complete bitstream has entered the 
FPGA. Then the blinker circuit will take control of the FPGA and it will start to blink the 
other LED you inserted into the breadboard. This video shows the downloading and 
operation of the blinker. If you time the flashing of the LED, you'll see it is pulsing once 
every 0.7 s as we hoped.

This completes your first design. You coded it, synthesized it, simulated it, implemented 
it, generated it, built it, downloaded it and ran it. You are officially an FPGA designer. A 
beginner, true, but an FPGA designer none the less.
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 C.5  “Only 12 MHz! Now 
what?”

Speed Envy

In the last chapter, some of you were probably saying: “A 12 MHz clock? That's all!? My 
Arduino runs faster than that. My grandmother runs faster than that!” (Maybe your 
grandmother, but not mine, both of whom died long ago. If you see them up and running 
around, then something's really gone wrong.)

One of the unfortunate consequences of the popularization of computers has been 
people's fixation on clock speed, with more being better. But fear not that your Arduino-
toting compatriots will laugh at you, because the FPGA on the XuLA board has a feature 
that will let it run at over 300 MHz.

The Digital Clock Manager

Modern Xilinx FPGAs contain Digital Clock Managers (or DCMs) that serve many functions,
one of which is multiplying the frequency of a clock. A Digital Frequency Synthesizer 
(DFS) within the DCM can multiply an incoming clock signal by any integer in the range 
2..32 and then divide it by any factor in the range 1..32. Here's an example of generating
an 18 MHz clock:

FPGAs!? Now What? www.xess.com 64
TUT001 (V1.0) Feb 28, 2013

http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf
http://www.xess.com/


 “Only 12 MHz! Now what?”

With a 12 MHz input clock and a multiplier of 32, you can theoretically generate a clock 
up to 384 MHz, but the practical electrical limit for a Spartan-3A device is between 320 to
350 MHz (depending upon the speed grade of the FPGA).

Adding a DFS to the Blinker

Now, how am I going to demonstrate the operation of a DFS to you if you don't have an 
oscilloscope to view the incoming and outgoing clock signals? Simple! We can take the 
blinker design from the previous chapter, add a DFS to multiply the input clock, and then 
see if the blinker pulses faster.

So the first thing to do is to add the DFS to the blinker VHDL file. But how do you 
describe a DFS in VHDL? After all, it's not something simple like a NAND gate or a 
counter.

Well, Xilinx has made it easy for you by creating a device primitive for the DFS. (It's 
called a primitive because it can't be decomposed into a collection of simpler components.
Perhaps atom would have been a better name.) You can instantiate the DFS device 
primitive into your VHDL source and not have to worry about how it is actually built.

But you need to know what the inputs and outputs of the DFS primitive are in order to 
use it. To get this information, click on the Edit  Language Templates... menu item. 
This will make the Language Templates tab appear in the workspace pane like so:
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To find the DFS primitive, click on the VHDL folder and expand it until you see the DCM 
item appear. Then select the DCM item and a VHDL template for instantiating this 
primitive will appear in the rightmost pane.

The VHDL template is intimidating! There are eighteen inputs and outputs and twelve 
generic parameters for tuning the operation of the DCM primitive. But we can ignore most
of them and accept their default settings. The only things we care about for this 
application are the reset (RST), input clock (CLK_IN), the DFS output clock (CLK_FX), 
and the DFS multiplier (CLKFX_MULTIPLY) and divider (CLKFX_DIVIDE).

After instantiating the DCM and doing some trimming and editing, the blinker VHDL looks 
like what's shown on the following page. Here's what changed:

Lines 26-27: Since the DCM primitive is being used, these lines need to be 
uncommented to bring in the Xilinx primitive libraries.

Line 35: A new signal, clk_fast, was added to carry the clock generated by the DFS.

Lines 39-48: The DCM is instantiated here. The DFS divider and multiplier are set to one
and four, respectively, on lines 41 and 42. The DFS output is connected to the 
clk_fast signal on line 45, and the input clock is connected to the DFS clock 
input on line 46. The reset input is tied to an inactive level on line 47.

Lines 50-55: The clock for the counter was changed from clk_in to clk_fast.
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After the VHDL file is finished, you can run the synthesizer to see if there are any 
problems. (There aren't, at least when I did it).
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Does It Work?

That's always the question, especially when you are applying a chip feature that you 
haven't used before. So let's run a simulation to find out. First, add a new test bench to 
your project:

Then go into the test bench VHDL file and change the clock period to match the 12 MHz 
clock period:
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Then switch to the Simulation view of your project and click on the Simulate 
Behavioral Model item in the Processes pane. When the ISim window appears, enter 
2.8s in the simulation duration field and then click on the run button.

Then be prepared to wait … for … a … very … long … time. On my PC the simulation took 
about 30 minutes, probably because simulating the DFS is computationally demanding. 
After the simulation finishes, compress the view so the entire 2.8 s time interval is visible 
and count the number of blinker pulses. You should see sixteen pulses. Remember in the 
previous blinker design, there were only four pulses in the 2.8 s window. So it appears – 
at least in the simulation – that the DFS has multiplied the 12 MHz clock by a factor of 
four.

But Does It Really Work?

That's always the real question: Will it work in the FPGA? Well, it's easy enough to find 
out. Here are the high points for how to do that:

1. Connect an LED and resistor to the XuLA board just as you did for the previous 
blinker project. Then connect the XuLA board to a USB port on your PC.

2. Add a constraints file to your project that's identical to the one you used for the 
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previous blinker project since the LED and clock pin assignments haven't 
changed.

3. Right-click the Generate Programming File process item and select Process 
Properties... from the pop-up menu. Then select the options to float any unused 
I/O pins after configuration and to use the JTAG clock as the start-up clock.

4. Double-click the Generate Programming File process. This will run the 
synthesis and implementation tools in sequence and then create a downloadable 
bitstream.

5. Start the GXSLOAD tool and drag-and-drop the fast_blinker.bit file into the FPGA 
pane. Then click the Load button to download the bitstream into the FPGA on the 
XuLA board.

After doing these steps, you should be rewarded by seeing the LED attached to the XuLA 
board blinking away at about six times per second.
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 C.6  “No LEDs! No buttons! 
Now what?”

Blinky Envy

By now you're probably saying to yourself: “Trying to tell what my design is doing by 
looking at a flashing LED really sucks! All the other FPGA boards have loads of flashing 
LEDs. And they have bunches of buttons and switches! My XuLA board has nothing!”

Now when you learned how to ride a bike, you might have started out using training 
wheels. These were helpful – they let you get experience with the bike without getting 
hurt (unless your parents push you out in a busy street – but that's another story). But 
after a while, you couldn't wait to get rid of those training wheels. Wherever you went, 
they just screamed out: “I'm a bike-riding noob! Come give me a wedgie!” But the worst 
part is they got in the way; you couldn't get any speed up because those training wheels 
were dragging on the ground. Luckily, they weren't welded to the bike and you could take
them off. Then you could use the bike for what it was for: getting you from here to there 
faster and easier than being on foot.

LEDs and buttons are similar to training wheels: good when getting started, but a 
hindrance after that. LEDs and buttons are meant to operate at human interaction 
speeds, like 10 Hz or less. But FPGAs are meant for applications that run at hundreds of 
MHz; it's a waste to have them waiting around while you look at an LED and then push a 
button to tell them what to do! Plus, they're hard to use for anything but the simplest 
designs: do you really want to flip switches to input a three-digit hexadecimal number 
and then translate the pattern on a bunch of LEDs back into hex? (If you do, then I've got
a PDP-8 in the basement with your name on it!)

But LEDs and buttons are different from training wheels in one important aspect: they 
aren't easy to take off when you're done with them. They're usually soldered to the board
where they take up space (and make the board larger than it needs to be). They interfere
electrically when you use the FPGA pins for other purposes (unless there are jumpers to 
disconnect them, taking up even more space). And they're never connected to the pin 
you want them on (although this is less of a problem with FPGAs since you can move your
I/O signals from pin to pin as you please).

Still, there is no denying that you need some way to observe what your design is doing. 
Logic probes are one solution (sort of a portable LED), but limited in the amount of 
information they can present (just like an LED). Oscilloscopes are good for capturing 
signal behavior, especially at high frequencies, but most scopes have four inputs or less 
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and they cost a fair bit of money (around $300 for a minimal scope). Logic analyzers 
provide a lot of inputs that can be sampled at hundreds of MHz, but they are truly a pain 
to hook up to your circuit (but they are much cheaper now: as little as $50). A companion
to the logic analyzer is the digital pattern generator which can drive signals into your 
design and which suffers from the same connection difficulties as the analyzer.

The ideal solution for observing what your application circuit is doing would have these 
characteristics:

 Free.

 Flexible.

 Easy to use.

 Takes up no space.

 Uses no FPGA pins.

 Lets you drive inputs into your circuit and also observe its response.

 Drives inputs into your circuit and observes its response automatically.

 Goes away when you no longer need it.

This sounds like a fantasy product, but you actually already have it! The FPGA itself can 
provide the circuitry you need to monitor and control your own application circuit. Here's 
the basic idea: shift a test vector into the FPGA, apply it in parallel to the inputs of your 
circuit, load the output response of your circuit into the shift register and shift it out of 
the FPGA (see the figure below).

You need three things to make this work:

1. Hardware modules are needed for the interface through the FPGA's JTAG port, the
shift register, and other housekeeping details.

2. Firmware is needed for the microcontroller on the XuLA board so it can transfer 
the test vectors and responses between the FPGA's JTAG port and the USB port of
a host PC.

3. Software is needed on the host PC to make it easy to generate, transmit, receive 
and display the test vectors and responses.

Now that's a lot of stuff to build and test, but luckily I've already done that for you. All 
you have to do is apply it to your own circuits. And I'll show you an example of how to do 
that using our old friend – you guessed it – the LED blinker!
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Monitoring the LED Blinker from the Host PC

Modifying the LED Blinker Project
Before diving into the VHDL code, it might be helpful to get a picture of what we're trying 
to do. The original LED blinker circuit from Chapter 3 is shown at the bottom of the figure 
below: it takes a 12 MHz clock, divides the frequency down using a counter, and attaches 
one bit of the counter to an LED so it flashes about once per second. The counter bit is 
also loaded into a shift-register (although it's not just a shift-register) where its value can
be shifted out of the FPGA through the JTAG port and on to a PC. The PC could also shift 
in bits to drive inputs to the counter, but the counter has no inputs so these signals are 
left dangling. There are a few other signals running around in the background that aren't 
shown so I don't complicate the very simple technique that is being used here. Don't 
worry, you'll be seeing them soon.
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Now on to the VHDL. The list of files needed to add the JTAG interface and shift-register 
modules to the LED blinker project are shown below. Here's what each one does:

HostIo.vhd: This file contains the VHDL for the JTAG entry point and shift-register  
modules that will let the host PC talk to the blinker circuit in the FPGA.

Common.vhd: Some helpful VHDL functions that are used in the HostIo.vhd code are 
defined in this file.

SyncToClk.vhd: This file describes some synchronization circuitry that is used in the 
HostIo.vhd file, but which has no role to play in this example. You need it to keep 
the VHDL synthesizer from complaining about undefined modules.

pc_blinker.vhd: This is where the original LED blinker VHDL code is augmented with the
modules found in HostIo.vhd.

pc_blinker.ucf: The same pin assignments for the original LED blinker are repeated in 
this file.

The pc_blinker module is where we want to concentrate our attention. Let's take a look 
inside:

The first three lines are the same as for the original LED blinker. They just import some 
standard packages from the IEEE library. But the fourth line is new: it imports the JTAG 
entry point and shift-register modules from the HostIo.vhd file. The work library just 
refers to the directory where the whole project is stored; HostIoPckg refers to the 
package of modules defined in the HostIo.vhd file; all just says to import every module 
found in the HostIoPckg (although I could have been more discriminating and just 
imported the modules that were needed by this design).

1   library IEEE;
2   use IEEE.STD_LOGIC_1164.all;
3   use IEEE.STD_LOGIC_UNSIGNED.all;
4   use work.HostIoPckg.all;  -- Package for PC <=> FPGA communications.
5   

The next few lines declare the interface for the LED blinker. It is identical to the entity 
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declaration used in the original LED blinker. Even though we are going to monitor the LED
blinker with the PC, the signals that pass in and out of the JTAG port do not need to be 
declared here.

6   entity pc_blinker is
7     port (clk_i     : in  std_logic;
8           blinker_o : out std_logic);
9   end entity;

10   
The architecture section comes next. The 23-bit counter for the LED blinker is declared on
line 12. Lines 14 and 15 declare two, 1-bit vectors: one for carrying bits from the PC to 
the blinker's inputs, and one to carry the outputs of the blinker back to the PC. (There are
no inputs to the blinker, but a dummy signal is needed just to have something to connect 
to the shift-register module.) Even though these are both single-bit signals, they need to 
be declared as std_logic_vectors in order to match the declared I/O types of the modules 
in the HostIoPckg.

Lines 17-20 declare the signals that connect from the JTAG entry point to the shift-
register. A selection signal and a clock are declared which are used to shift bits in and out 
of the register on the tdi_s and tdo_s signals.

11   architecture Behavioral of pc_blinker is
12     signal cnt_r         : std_logic_vector(22 downto 0) := (others => '0');
13     -- Connections between the shift-register module and the blinker.
14     signal toBlinker_s   : std_logic_vector(0 downto 0); -- From PC to blnkr.
15     signal fromBlinker_s : std_logic_vector(0 downto 0); -- From blnkr to PC.
16     -- Connections between JTAG entry point and the shift-register module.
17     signal inShiftDr_s   : std_logic; -- True when bits shift btwn PC & FPGA.
18     signal drck_s        : std_logic; -- Bit shift clock.
19     signal tdi_s         : std_logic; -- Bits from host PC to the blinker.
20     signal tdo_s         : std_logic; -- Bits from blinker to the host PC.
21   Begin
22   

Next up is circuitry for the LED blinker. It's identical to what you've already seen in 
Chapter 3.

23     -------------------------------------------------------------------------
24     -- Application circuitry: the LED blinker.
25     -------------------------------------------------------------------------
26   
27     -- This counter divides the input clock.
28     process(clk_i) is
29     begin
30       if rising_edge(clk_i) then
31         cnt_r <= cnt_r + 1;
32       end if;
33     end process;
34   
35     blinker_o <= cnt_r(22); -- This counter bit blinks the LED.
36   

The JTAG entry point module follows. The I/O for this module connects to the internal 
signals declared on lines 17-20.

37     -------------------------------------------------------------------------
38     -- JTAG entry point.
39     -------------------------------------------------------------------------
40   
41     -- Main entry point for the JTAG signals between the PC and the FPGA.
42     UBscanToHostIo : BscanToHostIo
43       port map (
44         inShiftDr_o => inShiftDr_s,
45         drck_o      => drck_s,
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46         tdi_o       => tdi_s,
47         tdo_i       => tdo_s
48         );
49   

Finally, there's the shift-register module that grabs the output from the blinker counter 
and sends it back to the PC. Line 55 assigns an identifier of '1' to this module so the PC 
can select it for access (I know this seems unnecessary, but it will make sense later). 
Lines 58-61 tie this module to the JTAG entry point module. And line 67 - arguably the 
most important of all - connects the bit of the counter that drives the LED to the shift-
register so it can be loaded and shifted back to the PC.

50     -------------------------------------------------------------------------
51     -- Shift-register.
52     -------------------------------------------------------------------------
53   
54     -- This is the shift-register module between blinker and JTAG entry point.
55     UHostIoToBlinker : HostIoToDut
56       generic map (ID_G => "00000001") -- The identifier used by the PC.
57       port map (
58         -- Connections to the BscanToHostIo JTAG entry-point module.
59         inShiftDr_i     => inShiftDr_s,
60         drck_i          => drck_s,
61         tdi_i           => tdi_s,
62         tdo_o           => tdo_s,
63         -- Connections to the blinker.
64         vectorToDut_o   => toBlinker_s,   -- From PC to blinker (dummy sig).
65         vectorFromDut_i => fromBlinker_s  -- From blinker to PC.
66         );
67   
68     fromBlinker_s <= cnt_r(22 downto 22); -- Blinker output to shift reg.
69   
70   end architecture;

Once the pc_blinker.vhd and the other files are included in the pc_blinker project, the 
Hierarchy pane looks like this:
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The HostIoToRam and SyncBusToClock modules aren't used in this project; they're just 
showing up because their code is included in the VHDL files. In order to make sure the 
pc_blinker design is compiled and not one of these, right-click on the pc_blinker identifier 
and select Set as top module from the pop-up menu.
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Before generating the bitstream, remember to change the configuration settings to make 
the it compatible with the XuLA board. Right-click on Generate Programming File and 
select Process Properties... from the pop-up menu. 

In the Configuration Options tab of the Process Properties window that appears,  
click on the Unused IOB Pins drop-down menu and select Float from the list of options.
This will cause all FPGA I/O pins that are not specifically used in this design to float in a 
high-impedance state.
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Now click on the Startup Options category and change the FPGA Start-Up Clock to 
JTAG clock.

After setting these two options, click on the OK button and return to Navigator. Now you 
can double-click Generate Programming File to build the bitstream for the pc_blinker 
project.

Changing the XuLA Firmware
The XuLA board's factory-installed firmware does not support the commands needed to 
use the HostIoPckg modules. Therefore, you must upgrade the firmware using the XuLA 
Firmware Update command placed in the Windows Start menu when you installed the 
XSTOOLs software. If your XSTOOLs software does not have this command, you can 
install the latest software from the XESS website or use the firmware upgrade command 
in the FMW subdirectory for this project.

Once you've upgraded the XuLA firmware, you won't need to change it again. The 
upgrade provides all the features of the previous firmware while adding support for the 
HostIoPckg modules.

PC Software for Talking with the LED Blinker
The host-side software that communicates with the LED blinker is contained in a single 
file: pc_blinker_test.py. This is a Python script file, so you'll need a Python interpreter on 
your PC to run it. You can get a complete Python environment for free from Enthought or 
ActiveState. (Please use the 32-bit version of Python to avoid run-time problems 
encountered with the 64-bit version.)

After installing Python, you'll also need to install the XsTools package that supports 
communications between the XuLA board and the PC. That's easy to do using the 
command:

C:\> easy_install xstools
or:

C:\> pip install xstools

Here's what's in the pc_blinker_test.py file. It starts by importing all the functions and 
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classes needed to drive the inputs and read the outputs of a device-under-test (DUT) in 
the FPGA.

1   from xstools.xsdutio import * # Import funcs/classes for PC <=> FPGA link.
2   

Then the program prints out a description of what it's trying to do.

3   print '''\n
4   ##################################################################
5   # This program tests the interface between the host PC and the FPGA 
6   # on the XuLA board that has been programmed to act as a blinker.
7   # You should see the state of the LED displayed on the screen
8   # flip back-and-forth between one and zero about once per second.
9   ##################################################################

10   '''
Next, the program defines two identifiers: one for the USB port index of the XuLA board 
(which is usually 0 because your XuLA port is usually USB0), and another for the interface
identifier of the blinker in the FPGA (as defined on line 56 of the pc_blinker.vhd file).

11   USB_ID = 0  # USB port index for the XuLA board connected to the host PC.
12   BLINKER_ID = 1  # This is the identifier for the blinker in the FPGA.
13   

Now create an object that lets the host talk to the blinker in the FPGA. The USB and 
blinker identifiers are needed to initialize the object. You also pass in two arrays: one 
which defines the sizes of the input fields to the blinker, and another that defines the sizes
of the output fields. (As I said before, while there are no inputs to the blinker, we still 
needed to define a single dummy input so we also need to recognize that dummy input 
when we create the blinker object here.)

14   # Create a blinker intfc obj with one 1-bit input and one 1-bit output.
15   blinker = XsDut(USB_ID, BLINKER_ID, [1], [1])
16   

Finally, go into an infinite loop where the state of the counter output that drives the LED 
is monitored using the Read() method of the blinker object. Then print the value of the 
counter bit along with a RETURN character to go back to the start of the line. When this 
program is run, this will give the effect of the LED value flipping back-and-forth between 
one and zero.

17   while True: # Do this forever...
18       led = blinker.Read() # Read the current state of the LED.
19       print 'LED: %1d\r' % led.unsigned, # Print the LED state and return.

Putting It All Together
At this point, I assume you have the pc_blinker ISE project compiled and the bitstream is 
ready to go, the firmware in your XuLA board has been upgraded to support the 
HostIoPckg modules, and you have Python installed and the pc_blinker_test.py file 
available. Now all you have to do is this:

1. Download the pc_blinker.bit file to the FPGA on the XuLA board using GXSLOAD.

2. Run the Python program in a command window as follows:
C:\SFW> python pc_blinker_test.py

Then you should see the following text appear in the command window:
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What I can't show here is the digit flipping back-and-forth between one and zero. But you
can see it in this exciting video. Notice how the LED and the digit are synchronized with 
each other, showing that the PC is able to accurately display what the FPGA is doing.
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Testing a Subtractor

I know you've really grown to love the LED blinker over the past few chapters, but it's 
time to move on to something new: a subtractor. The subtractor circuit in this section 
takes two eight-bit inputs (a minuend and a subtrahend) and calculates their difference.

Here's a picture of how the subtractor is hooked up to the JTAG entry point and the shift-
register. It's not too different from what we did with the LED blinker except here there are
two, byte-wide inputs and a byte-wide output instead of just a single output bit. That 
means we have more data to shift in and out of the circuit for each test, but that's not a 
big complication. The HostIoPckg modules will handle all that transparently.

We use the same VHDL files as in the previous section, except we replace the 
pc_blinker.vhd file with the pc_subtractor.vhd file that contains the following code:

1   library IEEE;
2   use IEEE.STD_LOGIC_1164.all;
3   use IEEE.STD_LOGIC_UNSIGNED.all;
4   use work.HostIoPckg.all;  -- Package for PC <=> FPGA communications.
5   

We're not connecting the subtractor to the outside world, so there are no inputs or 
outputs declared in the entity section.

6   entity pc_subtractor is
7   end entity;
8   

On line 11, the signal from the shift-register module to the subtractor is declared to be 
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sixteen bits wide in order to hold both byte-wide operands. On line 12, another byte-wide 
signal is declared to carry the result from the subtractor to the shift register. Aliases to 
these signals are declared on lines 13 – 15 so we can use more understandable names in 
the rest of the code.

9   architecture Behavioral of pc_subtractor is
10     -- Connections between the shift-register module and the subtractor.
11     signal toSub_s     : std_logic_vector(15 downto 0); -- From PC to subtrctr.
12     signal fromSub_s   : std_logic_vector(7 downto 0);  -- From subtrctr to PC.
13     alias minuend_s    is toSub_s(7 downto 0);  -- Subtrctr's 1st operand.
14     alias subtrahend_s is toSub_s(15 downto 8); -- Subtrctr's 2nd oprnd.
15     alias difference_s is fromSub_s;            -- Subtractor's output.
16     -- Connections between JTAG entry point and the shift-register module.
17     signal inShiftDr_s : std_logic; -- True when bits shift btwn PC & FPGA.
18     signal drck_s      : std_logic; -- Bit shift clock.
19     signal tdi_s       : std_logic; -- Bits from host PC to the subtractor.
20     signal tdo_s       : std_logic; -- Bits from subtractor to the host PC.
21   begin
22   

The actual subtraction operation is defined on line 27.

23     ---------------------------------------------------------------------------
24     -- Application circuitry: the subtractor.
25     ---------------------------------------------------------------------------
26   
27     difference_s <= minuend_s - subtrahend_s;
28   

The JTAG entry point is the same as in the previous example.

29     ---------------------------------------------------------------------------
30     -- JTAG entry point.
31     ---------------------------------------------------------------------------
32   
33     -- Main entry point for the JTAG signals between the PC and the FPGA.
34     UBscanToHostIo : BscanToHostIo
35       port map (
36         inShiftDr_o => inShiftDr_s,
37         drck_o      => drck_s,
38         tdi_o       => tdi_s,
39         tdo_i       => tdo_s
40         );
41   

On line 48, the shift-register module is assigned an identifier of '4' so the PC can select it 
for access. The signals from the shift-register to the minuend and subtrahend operands of
the subtractor are connected on line 56. The difference output by the subtractor is 
connected to the shift-register on line 57.

42     ---------------------------------------------------------------------------
43     -- Shift-register.
44     ---------------------------------------------------------------------------
45   
46     -- Shift-register module between subtractor and JTAG entry point.
47     UHostIoToSubtractor : HostIoToDut
48       generic map (ID_G => "00000100")    -- The identifier used by the PC.
49       port map (
50         -- Connections to the BscanToHostIo JTAG entry-point module.
51         inShiftDr_i     => inShiftDr_s,
52         drck_i          => drck_s,
53         tdi_i           => tdi_s,
54         tdo_o           => tdo_s,
55         -- Connections to the subtractor.
56         vectorToDut_o   => toSub_s, -- From PC to sbtrctr subtrahend & minuend.
57         vectorFromDut_i => fromSub_s  -- From subtractor difference to PC.
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58         );
59   
60   end architecture;

Here's the design hierarchy for the pc_subtractor project:

At this point, you can compile the design to create the bitstream. (As in the previous 
example, remember to set the pc_subtractor as the top module and to assign the JTAG 
clock as the start-up clock and place the unused FPGA pins in a high-impedance state.)

With the VHDL completed and compiled, it's time to move on to the microcontroller 
firmware. You should have already updated that to handle the HostIoPckg modules in the 
previous example, so there's no need to do it again.

Finally, a new host-side program is needed to drive the subtractor's inputs and monitor its
output. Here's the Python source code from the pc_subtractor_test.py file. As in the 
previous example, it starts by importing all the functions and classes in the XsTools 
Python package. It also imports a random number library that is used to generate random
inputs to the subtractor.

1   from xstools.xsdutio import * # Import funcs/classes for PC <=> FPGA link.
2   from random import *  # Import some random number generator routines.
3   
4   print '''
5   ##################################################################
6   # This program tests the interface between the host PC and the FPGA 
7   # on the XuLA board that has been programmed to act as a subtractor.
8   ##################################################################
9   '''

10   
On line 12, the program defines an identifier to match that of the subtractor in the FPGA 
(as defined on line 48 of the pc_subtractor.vhd file).

11   USB_ID = 0  # USB port index for the XuLA board connected to the host PC.
12   SUBTRACTOR_ID = 4  # This is the identifier for the subtractor in the FPGA.
13   

Now create an object that lets the host talk to the subtractor in the FPGA (line 15). The 
USB and subtractor identifiers are needed to initialize the object. You also pass in two 
arrays: one which declares  the inputs to the subtractor to be two byte-wide fields, and 
another that declares the output as a single byte-wide field.
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14   # Create a subtractor intfc obj with two 8-bit inputs and one 8-bit output.
15   subtractor = XsDut(USB_ID, SUBTRACTOR_ID, [8, 8], [8])
16   

Finally, iterate through 100 test cases (line 18) where a random minuend and subtrahend 
are generated (lines 19 and 20) and sent to the subtractor using its Exec() method (line 
21) which also returns their difference. Print the operands and the resulting difference 
(line 22). Then, do the same subtraction operation in Python and compare it to the 
previous result returned by the subtractor in the FPGA (line 23). Report whether the 
results agree or not (lines 24 – 26).

17   # Test the subtractor by iterating through some random inputs.
18   for i in range(0, 100):
19       minuend    = randint(0, 127)  # Get a random, positive byte...
20       subtrahend = randint(0, 127)  # And subtract this random byte from it.
21       diff = subtractor.Exec(minuend, subtrahend) # Use the subtractor in FPGA.
22       print '%3d - %3d = %4d' % (minuend, subtrahend, diff.int),
23       if diff.int == minuend - subtrahend: # Compare Python result to FPGA's.
24           print '==> CORRECT!'  # Print this if the differences match.
25       else:
26           print '==> ERROR!!!'  # Oops! Something's wrong with the subtractor.

Now that everything is ready, you can test the subtractor like this:

1. Download the pc_subtractor.bit file to the FPGA on the XuLA board using 
GXSLOAD.

2. Run the Python program in a command window as follows:
C:\SFW> python pc_subtractor_test.py

Then you should see something similar to the following text appear in the command 
window:

##################################################################
# This program tests the interface between the host PC and the FPGA 
# on the XuLA board that has been programmed to act as a subtractor.
##################################################################

 68 -  60 =    8 ==> CORRECT!
107 - 114 =   -7 ==> CORRECT!
 90 -  47 =   43 ==> CORRECT!
105 -  91 =   14 ==> CORRECT!
 71 - 114 =  -43 ==> CORRECT!
 60 - 115 =  -55 ==> CORRECT!
 19 -  80 =  -61 ==> CORRECT!
...

Two at Once!

You've seen how to use the HostIoPckg modules to test individual designs, but how would
you control and monitor a design built from several submodules? You could just build a 
larger shift-register and hook everything to that of course, but then you would have to 
worry about screwing-up the inputs to one submodule while you were twiddling the bits of
another.
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A better way is to give each submodule its own shift-register and connect them all 
through the JTAG port. But how do you select which shift-register is connected to the 
JTAG port? Well, that's where the shift-register identifiers come in. Before the host-side 
PC accesses any shift-register, it sends an eight-bit identifier. The shift-register that has 
that identifier will enable itself and accept bits shifted in from the JTAG port, and it will 
unlock its TDO output so its contents can be shifted out of the JTAG port. All the other 
shift-registers will ignore the bits coming from the JTAG port and will force their TDO 
outputs to zero. (I told you these weren't just shift-registers.) Then, the TDO outputs of 
all the shift-registers are logically OR'ed together and sent to the JTAG port. Since all the 
inactive shift-registers hold their TDO outputs at zero, only the TDO output of the 
selected shift-register actually gets to the JTAG port and out to the host PC. An example 
of how the JTAG port and shift-registers are connected is shown below, using the LED 
blinker and the subtractor as the submodules.

The VHDL code for the circuit shown above is stored in the pc_blink_sub.vhd file. It 
basically looks like the VHDL files for the two previous examples were just smashed into 
the same file.

1   library IEEE;
2   use IEEE.STD_LOGIC_1164.all;
3   use IEEE.STD_LOGIC_UNSIGNED.all;
4   use work.HostIoPckg.all;  -- Package for PC <=> FPGA communications.
5   
6   entity pc_blink_sub is
7     port (clk_i     : in  std_logic;
8           blinker_o : out std_logic);
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9   end entity;
10   

The only change in the signal declarations for the merged design is that two individual 
TDO signals are created, one for the LED blinker (line 27) and another for the subtractor 
(line 28).

11   architecture Behavioral of pc_blink_sub is
12     signal cnt_r         : std_logic_vector(22 downto 0) := (others => '0');
13     -- Connections between first shift-register module and the blinker.
14     signal toBlinker_s   : std_logic_vector(0 downto 0);  -- From PC to blnkr.
15     signal fromBlinker_s : std_logic_vector(0 downto 0);  -- From blnkr to PC.
16     -- Connections between second shift-register module and the subtractor.
17     signal toSub_s   : std_logic_vector(15 downto 0);  -- From PC to subtrctr.
18     signal fromSub_s : std_logic_vector(7 downto 0);   -- From subtrctr to PC.
19     alias minuend_s is toSub_s(7 downto 0);     -- Subtrctr's 1st operand.
20     alias subtrahend_s is toSub_s(15 downto 8); -- Subtrctr's 2nd oprnd.
21     alias difference_s is fromSub_s;      -- Subtractor's output.
22     -- Connections between JTAG entry point and the shift-register modules.
23     signal inShiftDr_s   : std_logic; -- True when bits shift btwn PC & FPGA.
24     signal drck_s        : std_logic; -- Bit shift clock.
25     signal tdi_s         : std_logic; -- Bits from host PC to blnkr/subtrctr.
26     signal tdo_s         : std_logic; -- Bits from blnkr/subtrctr to host PC.
27     signal tdoBlinker_s  : std_logic; -- Bits from the blinker to the host PC.
28     signal tdoSub_s      : std_logic; -- Bits from the sbtrctr to the host PC.
29   begin
30   

The VHDL for the LED blinker and subtractor stay the same; they're just merged into the 
same section.

31     ---------------------------------------------------------------------------
32     -- Application circuitry
33     ---------------------------------------------------------------------------
34   
35     -- This counter divides the input clock.
36     process(clk_i) is
37     begin
38       if rising_edge(clk_i) then
39         cnt_r <= cnt_r + 1;
40       end if;
41     end process;
42   
43     blinker_o <= cnt_r(22); -- This counter bit blinks the LED.
44   
45     -- This is the subtractor.
46     difference_s <= minuend_s - subtrahend_s;
47   

The JTAG entry-point doesn't change at all. Only one entry-point is needed no matter how
many shift-register modules you use.

48     ---------------------------------------------------------------------------
49     -- JTAG entry point.
50     ---------------------------------------------------------------------------
51   
52     -- Main entry point for the JTAG signals between the PC and the FPGA.
53     UBscanToHostIo : BscanToHostIo
54       port map (
55         inShiftDr_o => inShiftDr_s,
56         drck_o      => drck_s,
57         tdi_o       => tdi_s,
58         tdo_i       => tdo_s
59         );
60   
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This is where the TDO outputs of the LED blinker and subtractor are OR'ed together. The 
result is passed into the JTAG entry-point above.

61     -- OR the bits from both shift-registers and send them back to the PC.
62     -- (Non-selected modules pull their TDO outputs low, so only bits from 
63     -- the active module are transferred.)
64     tdo_s <= tdoBlinker_s or tdoSub_s;
65   

Next, two shift-registers are created. The only change from the previous examples is that 
the TDO outputs of the shift-registers are connected to the individual TDO signals (lines 
78 and 94) that are OR'ed together on line 64.

66     ---------------------------------------------------------------------------
67     -- Shift-registers.
68     ---------------------------------------------------------------------------
69   
70     -- Shift-register module between blinker and JTAG entry point.
71     UHostIoToBlinker : HostIoToDut
72       generic map (ID_G => "00000001")    -- The identifier used by the PC.
73       port map (
74         -- Connections to the BscanToHostIo JTAG entry-point module.
75         inShiftDr_i     => inShiftDr_s,
76         drck_i          => drck_s,
77         tdi_i           => tdi_s,
78         tdo_o           => tdoBlinker_s, -- Serial bits from blinker output.
79         -- Connections to the blinker.
80         vectorToDut_o   => toBlinker_s,   -- From PC to blinker (dummy sig).
81         vectorFromDut_i => fromBlinker_s  -- From blinker to PC.
82         );
83   
84     fromBlinker_s <= cnt_r(22 downto 22);  -- Blinker output to shift reg.
85   
86     -- Shift-register module between subtractor and JTAG entry point.
87     UHostIoToSubtractor : HostIoToDut
88       generic map (ID_G => "00000100")    -- The identifier used by the PC.
89       port map (
90         -- Connections to the BscanToHostIo JTAG entry-point module.
91         inShiftDr_i     => inShiftDr_s,
92         drck_i          => drck_s,
93         tdi_i           => tdi_s,
94         tdo_o           => tdoSub_s,-- Serial bits from subtractor result.
95         -- Connections to the subtractor.
96         vectorToDut_o   => toSub_s, -- From PC to sbtrctr subtrahend & minuend.
97         vectorFromDut_i => fromSub_s -- From subtractor difference to PC.
98         );
99   

100   end architecture;

That's all there is to it! You can compile it and download the bitstream into the XuLA 
board.

You don't need a new Python test program – the ones from the previous examples will 
work just fine. The shift-register module identifier coded into each program will select the 
appropriate portion of the circuit for testing. You can run them in any order and they will 
produce the correct result. (Just don't try to run them simultaneously since they will 
collide when trying to use the same USB link.)

FPGAs!? Now What? www.xess.com 89
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 “No LEDs! No buttons! Now what?”

So What?

At this point you might be saying: “I'm adding tons of VHDL code and writing Python 
programs that access DLLs that access firmware that talks to the FPGA just so I can see a
blinking LED. My head hurts! All I wanted was some LEDs and some buttons! Is that too 
much to ask?”

I can understand those feelings, but I'll restate the advantages you get from the 
techniques shown in this chapter:

It's free. LEDs and buttons cost money and board space, and those things would add 
cost to the XuLA board. While cheaper isn't always better, it is always cheaper.

It's flexible. You can use it with multiple sub-circuits each having hundreds of inputs 
and outputs and perform tests that are limited only by your ability to write programs 
for them.

It' easy to use. OK, stop laughing! Admittedly, it's not as easy as using a single LED 
with the blinker project, but most of your circuits aren't going to be that simple. Even 
the byte-wide subtractor would require sixteen switches for the inputs and eight LEDs 
for the output. Would you want to build that for just a single test, or try flipping the 
switches to test all 65,536 different input combinations?

It takes no space. You need space to attach a bunch of switches and LEDs and even 
more headroom to manipulate and observe them. With these techniques, you can fit 
the XuLA board into some pretty tight spaces and still have controllability and 
observability. (It does take up space inside the FPGA, using about 3% of the LUTs and 
flip-flops in an XC3S200A.)

It uses no FPGA pins. All it needs is the JTAG port and those pins can't even by used by
the application circuitry in the FPGA. Without these techniques, testing a simple 16-bit 
wide subtractor would require 48 I/O pins, and that's impractical with the XuLA board.

It's automated. Once you write your test program, all you have to do is run it 
whenever you want to perform that test. So it's faster to run the test, making it more 
likely you'll do so because it takes so little effort. (This is the same advantage you get 
from writing simulation testbenches for your designs.)

It's removable. Once you're done testing your circuit, you can remove the HostIoPckg 
modules and reclaim any space they consumed in the FPGA.

You'll be seeing a lot more of this technique in the coming chapters, so if I haven't 
convinced you, then you might as well stop reading now. For example, in a future chapter
I'll use a variation on this technique to read and write RAMs and registers in the FPGA. Try
that with LEDs and buttons!
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 C.7  “RAMs! Now What!?”
There are two metrics that almost everybody uses to evaluate an FPGA: how much logic 
can it hold, and how much memory does it contain. Up to now, I've concentrated pretty 
much on logic design and ignored memory. That will change in this chapter: I am going to
talk about memory. A lot.

There are three types of memory you can use with your FPGA:

Distributed RAM: This is internal memory built from the FPGA's LUTs as I discussed 
briefly back in Chapter 1.

Block RAM: This is also internal memory, but built using one or more larger, special-
purpose block RAM (BRAM) components interspersed throughout the FPGA fabric.

External RAM: Just like the name says, this is memory housed in a RAM chip outside the
FPGA that's connected to the FPGA's pins. 

Along with the three types of memory, there are three ways to include RAM in your VHDL 
design:

Inference: You can write your VHDL code in such a way that the logic synthesizer can 
infer your desire to use memory and will instantiate and connect the correct FPGA
components for you.

Core Generator: You can use the ISE CORE Generator tool to build the memory you 
want from the FPGA components and then instantiate this higher-level module in 
your VHDL.

Instantiation: You can plunk down RAM modules and/or external memory interfaces in 
your VHDL and then wire them together to build the memory you want.

In the sections that follow, I'll use each of these techniques to implement various types of
memory.

Inferring RAM

Inferring Distributed RAM
To show how to build RAM by inference, I'm going to build a simple application (located in
the DRamSPInf project directory) that will store some numbers into a single-port 
distributed RAM and then read each RAM address, multiply the address with whatever 
number is stored there, and then sum all these products together. (I know this is a stupid
example, but it shows the basics: how to write to RAM and how to read the data back. 
Plus, you get to use a hardware multiplier! Does it get any better than that!?)

The beginning section of the DRamSPInf.vhd file will look pretty familiar by now. In this 
example, I'm using the NUMERIC_STD library to support the arithmetic operations I'll 
need.

101   --*********************************************************************
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102   -- Distributed RAM, single-port, inferred.
103   --*********************************************************************
104   
105   library IEEE;
106   use IEEE.STD_LOGIC_1164.all;
107   use IEEE.NUMERIC_STD.all;
108   

The entity declaration for my application follows. The I/O is pretty simple: just an input 
clock to drive the logic and a 32-bit output for the final sum-of-products.

109   entity DRamSPInf is
110     port (
111       clk_i : in  std_logic;
112       sum_o : out std_logic_vector(31 downto 0) := (others => '0')
113       );
114   end entity;
115   

The architecture section starts with some constants to specify the number of RAM 
locations (line 19) and the number of bits in each word (line 20). Lines 21 and 22 specify 
the beginning and ending addresses for the summation process.

116   architecture Behavioral of DRamSPInf is
117     constant NO          : std_logic := '0';
118     constant YES         : std_logic := '1';
119     constant RAM_SIZE_C  : natural   := 16;  -- Number of words in RAM.
120     constant RAM_WIDTH_C : natural   := 8;   -- Width of RAM words.
121     constant MIN_ADDR_C  : natural   := 1;   -- Process RAM from this address
122     constant MAX_ADDR_C  : natural   := 5;   -- ... to this address.

Line 23 defines a subtype of the NUMERIC_STD unsigned bit vector which has the same 
length as the RAM word. This subtype is used to define a type of array with the same 
number of elements as the RAM (line 23). Then the actual RAM is declared on line 25.

123     subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0); -- RAM word type.
124     type Ram_t is array (0 to RAM_SIZE_C-1) of RamWord_t;  -- RAM word array.
125     signal ram_r         : Ram_t;         -- RAM declaration.

  

Lines 26-29 declare the RAM's write-enable control line, the address bus, and the input 
and output data buses. The address bus is sized such that it can hold any possible RAM 
address, and the input and output data bus types are the same as that of the RAM words 
for a similar reason. Finally, the register that holds the summation is sized to hold the 
product of the largest possible address and data word (line 30). That completes the 
declaration section of the architecture.

126     signal wr_s          : std_logic;     -- Write-enable control.
127     signal addr_r        : natural range 0 to RAM_SIZE_C-1;  -- RAM address.
128     signal dataToRam_r   : RamWord_t;     -- Data to write to RAM.
129     signal dataFromRam_s : RamWord_t;     -- Data read from RAM.
130     signal sum_r         : natural range 0 to RAM_SIZE_C*(2**RAM_WIDTH_C)-1;
131   begin
132   
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The first thing I do in the body of the architecture is create the VHDL code that will infer 
the distributed RAM. But, can I write the VHDL any way I want and still have the 
synthesizer figure out that I'm trying to build a RAM? Probably not! That's why the ISE 
software provides a set of templates to guide me. Simply click the Edit  Language 
Templates... menu item and a Language Templates tab will appear. Then expand the 
tree structure until you reach the Single Port, Async Read template for the distributed 
RAM:

I cut-and-pasted the template code into lines 36-46 and replaced the template names 
with the actual signal names for my example. If a rising clock edge occurs (line 39) when 
the write-enable line is high (line 40), then whatever is on the input data bus is written 
into the RAM at the current address (line 41). So this is a synchronous-write RAM.

Meanwhile, the RAM output bus shows whatever data is stored at the current address 
(line 46). This is an asynchronous-read RAM since the output value will change whenever 
the address changes, regardless of the clock.  

133     --*********************************************************************
134     -- RAM is inferred from this process.
135     --*********************************************************************
136     Ram_p : process (clk_i)
137     begin
138       -- Write to the RAM at the given address if the write-enable is high.
139       if rising_edge(clk_i) then
140         if wr_s = YES then
141           ram_r(addr_r) <= dataToRam_r;
142         end if;
143       end if;
144     end process;
145     -- Continually read data from whatever RAM address is present.
146     dataFromRam_s <= ram_r(addr_r);
147   
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The finite-state machine (FSM) that performs the summation of the RAM contents is 
shown on lines 48-88. The FSM starts off in the INIT state (line 54) and performs an 
operation and changes state on each rising edge of the input clock (line 56). In the INIT 
state (lines 58-62), the FSM sets the address and input data buses to the RAM at their 
initial values (0 and 1, respectively) and sets the write-control signal high to enable 
writing. Then it moves to the next state.

148     --*********************************************************************
149     -- State machine that initializes RAM and then reads RAM to compute
150     -- the sum of products of the RAM address and data.
151     --*********************************************************************
152     Fsm_p : process (clk_i)
153       type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE);
154       variable state_v : state_t := INIT;    -- Start off in init state.
155     begin
156       if rising_edge(clk_i) then
157         case state_v is
158           when INIT =>
159             wr_s        <= YES;          -- Enable writing of RAM.
160             addr_r      <= MIN_ADDR_C;   -- Start writing data at this address.
161             dataToRam_r <= TO_UNSIGNED(1, RAM_WIDTH_C); -- Initial write value.
162             state_v     := WRITE_DATA;    -- Go to next state.

In the WRITE_DATA state, the FSM increments the address (line 65) and adds three to 
the data value to write to RAM (line 66) as long as the address has not reached its 
maximum (line 64). When the maximum address is reached, the write-enable is lowered 
(line 68), the address is reset to its beginning value (line 69), and the summation register
is initialized to zero (line 70). Then the FSM moves to the next state (line 71). At this 
point, the RAM locations 1 through 5 should be loaded with the values 1, 4, 7, 10 and 13.

163           when WRITE_DATA =>
164             if addr_r < MAX_ADDR_C then   -- If haven't reach final address ...
165               addr_r      <= addr_r + 1;  -- go to next address ...
166               dataToRam_r <= dataToRam_r + 3; -- and write this value.
167             else  -- Else, the final address has been written...
168               wr_s    <= NO;              -- so turn off writing, ...
169               addr_r  <= MIN_ADDR_C;      -- go back to the start, ...
170               sum_r   <= 0;               -- clear the sum-of-products, ...
171               state_v := READ_AND_SUM_DATA;  -- and go to next state.
172             end if;

In the READ_AND_SUM_DATA state, the FSM gets the number read from the RAM 
location, multiplies it by the location's address and then adds it to the summation register
(line 77). It also increments the address to point to the next location (line 78). This is 
repeated until the maximum address is reached (line 79). At that point, the summation 
register has the complete sum-of-products, so the FSM moves into the DONE state (line 
80) where it remains forever.

173           when READ_AND_SUM_DATA =>
174             if addr_r <= MAX_ADDR_C then  -- If haven't reached final address
175               -- add product of RAM address and data read
176               -- from RAM to the summation ...
177               sum_r  <= sum_r + TO_INTEGER(dataFromRam_s * addr_r);
178               addr_r <= addr_r + 1;       -- and go to the next address.
179             else  -- Else, the final address has been read ...
180               state_v := DONE;            -- so go to the next state.
181             end if;
182           when DONE =>                    -- Summation complete ...
183             null;                         -- so wait here and do nothing.
184           when others =>                  -- Erroneous state ...
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185             state_v := INIT;              -- so re-run the entire process.
186         end case;
187       end if;
188     end process;
189     

The next few lines just dump the value in the summation register onto the output bus of 
this module.

190     -- Output the sum of the RAM address-data products.
191     sum_o <= std_logic_vector(TO_UNSIGNED(sum_r, sum_o'length));
192   
193   end architecture;

At this point, I can run the synthesizer on this design and see how the RAM is 
implemented by checking the synthesis report. 
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Scrolling through the report, I see the following:

1   INFO:Xst:3231 - The small RAM <Mram_ram_r> will be implemented on LUTs in 
order to maximize performance and save block RAM resources. If you want to 
force its implementation on block, use option/constraint ram_style.

2       -----------------------------------------------------------------------
3       | ram_type           | Distributed                         |          |
4       -----------------------------------------------------------------------
5       | Port A                                                              |
6       |     aspect ratio   | 16-word x 8-bit                     |          |
7       |     clkA           | connected to signal <clk_i>         | rise     |
8       |     weA            | connected to signal <wr_s>          | high     |
9       |     addrA          | connected to signal <addr_r>        |          |

10       |     diA            | connected to signal <dataToRam_r>   |          |
11       |     doA            | connected to signal <dataFromRam_s> |          |
12       -----------------------------------------------------------------------

Line 1 indicates the RAM was implemented using LUTs, and this is further confirmed on 
line 3 where it shows a distributed RAM was used. The size of the RAM (line 6) matches 
the number of locations and word-size that I specified in the VHDL. The connections to 
the clock, write-enable, address bus, and input/output data buses also match with the 
VHDL.

Now it's time to see if the RAM works. I added a simple VHDL test-bench file 
(DramSPInf_tb.vhd) to the project that just applies a clock to the FSM and RAM. Then I 
ran the simulator.
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I want to see more than just the clock and the output summation, so I expand the design
instances a bit and select the FSM portion.

Within the list of simulation objects for the FSM, I select the RAM's write-enable, address 
and input/output data buses and drag them into the pane of observable signals.

FPGAs!? Now What? www.xess.com 97
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 “RAMs! Now What!?”

Now I can re-run the simulation and see what happens. On the first rising clock edge, the
address (addr_r) and data (datatoram_r) are initialized to 1, and the write-enable is 
raised. Over the next five rising clock edges, the values 1, 4, 7, 10, and 13 are written to 
addresses 1 through 5. The write-enable goes low after the last write and then the values
are read back from RAM (datafromram_s). Multiplying each value by its address gives 1x1
+ 2x4 + 3x7 +4x10 + 5x13 = 135 which matches the final value on the sum output.

I can also view the contents of the RAM by selecting the Memory tab and double-clicking 
the ram_r memory. This shows the right data is stored at the right addresses.
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At this point, I've managed to infer a small 16x8 distributed RAM and managed to make it
operate correctly (at least, in simulation). But what if I need more memory? That's when 
block RAMs come into play.

Inferring Block RAM
The FPGA's internal BRAMs provide a total of 18 Kb of memory in a variety of word widths
(anywhere from 1 to 36 bits). I can infer BRAM the same way that I did distributed RAM: 
look-up the associated language template and then customize it for my application. In 
this case, I use the 1 Clock, 1 Write Port, 1 Read Port BRAM.

The customized BRAM code is shown on lines 36-46 of BRamSPInf.vhd and it looks very 
similar to the previous code for the distributed RAM with one important exception: block 
RAM reads are synchronous. The read operation has been pulled into the process block 
and only gets updated on the rising clock edge. So if an address is applied to a BRAM, the
value stored at that address only appears after the next rising clock edge. This has 
implications on the FSM portion of the application.  

36     Ram_p : process (clk_i)
37     begin
38       -- Write to the RAM at the given address if the write-enable is high.
39       if rising_edge(clk_i) then
40         if wr_s = YES then
41           ram_r(addr_r) <= dataToRam_r;
42         end if;
43         -- Synchronously read from whatever RAM address is present.
44         dataFromRam_s <= ram_r(addr_r);
45       end if;
46     end process;

The one-cycle delay caused by the synchronous read nature of BRAMs has implications on
the FSM process. On line 78 below, the calculation has been changed to the product of 
the current data from the BRAM and the address sent to the BRAM in the previous cycle 
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(stored in the newly-added signal prevAddr_r). Also, the exit from the  
READ_AND_SUM_DATA state occurs when the RAM address goes one location past the 
maximum address in order for read of the last address to be completed (line 75).

Another issue that needs to be handled is the initial entry into the READ_AND_SUM_DATA
state. At that time, there is no valid data coming from the BRAM because the read 
operation from the first address has not completed yet. To keep from corrupting the 
summation, the prevAddr_r register is cleared upon exiting from the WRITE_DATA state 
(line 72) so that the first multiplication (line 78) returns a zero. This is a hack that works 
for this particular application. A more general solution would be to place a one-cycle wait 
state between the WRITE_DATA and READ_AND_SUM_DATA states to allow the first 
BRAM read operation time to complete.

52     Fsm_p : process (clk_i)
53       type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE);
54       variable state_v : state_t := INIT;    -- Start off in init state.
55     begin
56       if rising_edge(clk_i) then
57         case state_v is
58           when INIT =>
59             wr_s        <= YES;           -- Enable writing of RAM.
60             addr_r      <= MIN_ADDR_C;    -- Start writing data at this address
61             dataToRam_r <= TO_UNSIGNED(1, RAM_WIDTH_C);  -- Initial value.
62             state_v     := WRITE_DATA;    -- Go to next state.
63           when WRITE_DATA =>
64             if addr_r < MAX_ADDR_C then   -- If haven't reach final address ...
65               addr_r      <= addr_r + 1;  -- go to next address ...
66               dataToRam_r <= dataToRam_r + 3; -- and write this value.
67             else  -- Else, the final address has been written...
68               wr_s    <= NO;              -- so turn off writing, ...
69               addr_r  <= MIN_ADDR_C;      -- go back to the start, ...
70               sum_r   <= 0;               -- clear the sum-of-products, ...
71               state_v := READ_AND_SUM_DATA;  -- and go to next state.
72               prevAddr_r <= 0;            -- THIS IS A HACK!
73             end if;
74           when READ_AND_SUM_DATA =>
75             if addr_r <= MAX_ADDR_C + 1 then -- If not the final address+1 ...
76               -- add product of previous RAM address and data read 
77               -- from that address to the summation ...
78               sum_r  <= sum_r + TO_INTEGER(dataFromRam_s * prevAddr_r);
79               addr_r <= addr_r + 1;       -- and go to next address.
80             else  -- Else, the final address has been read ...
81               state_v := DONE;            -- so go to the next state.
82             end if;
83             prevAddr_r <= addr_r;         -- Store current address ...
84           when DONE =>                    -- Summation complete ...
85             null;                         -- so wait here and do nothing.
86           when others =>                  -- Erroneous state ...
87             state_v := INIT;              -- so re-run the entire process.
88         end case;
89       end if;
90     end process;
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Now if I increase RAM_SIZE_C to 256 and synthesize the design, the synthesis report 
shows that a block RAM is used to build the memory:

1   INFO:Xst:3225 - The RAM <Mram_ram_r> will be implemented as BLOCK RAM
2       -----------------------------------------------------------------------
3       | ram_type           | Block                               |          |
4       -----------------------------------------------------------------------
5       | Port A                                                              |
6       |     aspect ratio   | 256-word x 8-bit                    |          |
7       |     mode           | write-first                         |          |
8       |     clkA           | connected to signal <clk_i>         | rise     |
9       |     weA            | connected to signal <wr_s>          | high     |

10       |     addrA          | connected to signal <addr_r>        |          |
11       |     diA            | connected to signal <dataToRam_r>   |          |
12       -----------------------------------------------------------------------
13       | optimization       | speed                               |          |
14       -----------------------------------------------------------------------
15       | Port B                                                              |
16       |     aspect ratio   | 256-word x 8-bit                    |          |
17       |     mode           | write-first                         |          |
18       |     clkB           | connected to signal <clk_i>         | rise     |
19       |     addrB          | connected to internal node          |          |
20       |     doB            | connected to signal <dataFromRam_s> |          |
21       -----------------------------------------------------------------------
22       | optimization       | speed                               |          |
23       -----------------------------------------------------------------------

But if I return RAM_SIZE_C to 16 and re-synthesize, the memory is built with distributed 
RAM again even though the VHDL specifies a synchronous read operation. This happens 
because the synthesizer judges that a distributed RAM is more efficient for smaller 
memories, so it places a register on the outputs of the distributed RAM to implement the 
synchronous read behavior and uses the combination in place of a BRAM. 

So the synthesizer is able to switch the method for building RAMs in the FPGA based on 
how much storage is needed. However, you can force the synthesizer to use a particular 
type of RAM by right-clicking on the Synthesize-XST process and selecting Process 
Properties...

FPGAs!? Now What? www.xess.com 101
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 “RAMs! Now What!?”

Then set the style of RAM to Distributed or Block, depending upon what you want. Note
that this setting will be applied to all the RAMs in your design, so it's probably best to 
leave it set at Auto and let the synthesizer select the best RAM implementation on a 
case-by-case basis.

Simulating the 256 x 8 BRAM version of the application gives the following results.

Note that the final sum is the same as for the previous design, but the result appears at 
115 ns instead of 105 ns – one full clock-cycle later than for the distributed RAM version. 
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That's a direct result of the synchronous read nature of the BRAM.

Integrating RAM into the FSM
While I can successfully infer distributed or block RAMs using the VHDL I've already 
shown, requiring a separate process to describe the RAM is a bit clunky. It would be nice 
if this could be integrated right into the FSM process so the intent of the code would be 
clearer. Below is a re-write of the architecture section from the distributed RAM example 
that does just that (DramSPInfClear.vhd). The separate process for the RAM has been 
removed and lines 46 and 59 of the FSM process have been changed so that the write 
and read operations are now expressed as accesses directly to the RAM array.

35     Fsm_p : process (clk_i)
36       type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE);
37       variable state_v : state_t := INIT;
38     begin
39       if rising_edge(clk_i) then
40         case state_v is
41           when INIT =>
42             addr_r      <= MIN_ADDR_C;
43             dataToRam_r <= TO_UNSIGNED(1, RAM_WIDTH_C);
44             state_v     := WRITE_DATA;
45           when WRITE_DATA =>
46             ram_r(addr_r) <= dataToRam_r; –- Write to RAM
47             if addr_r < MAX_ADDR_C then
48               addr_r      <= addr_r + 1;
49               dataToRam_r <= dataToRam_r + 3;
50             else
51               addr_r  <= MIN_ADDR_C;
52               sum_r   <= 0;
53               state_v := READ_AND_SUM_DATA;
54             end if;
55           when READ_AND_SUM_DATA =>
56             if addr_r <= MAX_ADDR_C then
57               -- add product of RAM address and data read 
58               -- from RAM to the summation …
59               sum_r  <= sum_r + TO_INTEGER(ram_r(addr_r) * addr_r); –- Read RAM
60               addr_r <= addr_r + 1;
61             else
62               state_v := DONE;
63             end if;
64           when DONE =>
65             null;
66           when others =>
67             state_v := INIT;
68         end case;
69       end if;
70     end process;
71   
72     -- Output the sum of the RAM address-data products.
73     sum_o <= std_logic_vector(TO_UNSIGNED(sum_r, sum_o'length));
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The synthesis report indicates that the synthesizer is still able to infer the correct type of 
RAM from this VHDL, and the simulator shows that the calculated result is the same as 
that of the original dual-process VHDL.

In addition, I can even increase RAM_SIZE_C to 256 and the synthesizer will shift to 
using a BRAM while still maintaining the same timing behavior. This is not always 
guaranteed. You may write obfuscated code that hides its intent, or request read/write 
behavior that the synthesizer just can't translate. In those cases, you may have to revert 
to a more explicit style of VHDL like in the first two examples I discussed.

Inferring Multi-Port RAM
So far I've used a simple, single-port RAM with a single address bus and both input and 
output data buses. The FPGA also supports dual-port RAMs which have an additional 
address and output data bus, thus making it possible to read data from two locations at 
once. Dual-port RAMs can also be inferred from VHDL as in the inner-product application 
shown below.

1   --*********************************************************************
2   -- Distributed RAM, dual-port, inferred more clearly.
3   --*********************************************************************
4   
5   library IEEE;
6   use IEEE.STD_LOGIC_1164.all;
7   use IEEE.NUMERIC_STD.all;
8   
9   entity DRamDPInfClear is

10     port (
11       clk_i       : in  std_logic;
12       innerProd_o : out std_logic_vector(31 downto 0) := (others => '0')
13       );
14   end entity;
15   
16   architecture Behavioral of DRamDPInfClear is
17     constant NO          : std_logic := '0';
18     constant YES         : std_logic := '1';
19     constant RAM_SIZE_C  : natural   := 16;
20     constant RAM_WIDTH_C : natural   := 8;
21     constant VEC_LEN_C   : natural   := 5;    -- Length of vectors.
22     subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0);
23     type Ram_t is array (0 to RAM_SIZE_C-1) of RamWord_t;
24     signal ram_r         : Ram_t;         -- RAM declaration.
25     signal dataToRam_r   : RamWord_t;     -- Data to write to RAM.
26     signal vec1Ptr_r     : natural range 0 to RAM_SIZE_C-1;  -- Ptr to 1st vec.
27     signal vec2Ptr_r     : natural range 0 to RAM_SIZE_C-1;  -- Ptr to 2nd vec.
28     signal innerProd_r   : natural range 0 to (2**RAM_WIDTH_C - 1)**2;
29   begin
30   
31     --*********************************************************************
32     -- State machine that initializes RAM with two vectors and then reads 
33     -- the vectors simultaneously from RAM to compute the inner-product.
34     --*********************************************************************
35     Fsm_p : process (clk_i)
36       type state_t is (INIT, WRITE_VECS, INNER_PRODUCT, DONE);
37       variable state_v : state_t := INIT;
38     begin
39       if rising_edge(clk_i) then
40         case state_v is
41           when INIT =>
42             vec1Ptr_r   <= 0;             -- Init ptr for writing data to RAM.
43             dataToRam_r <= TO_UNSIGNED(1, dataToRam_r'length); -- Init data val
44             state_v     := WRITE_VECS;
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45           when WRITE_VECS =>              -- Init the 1st and 2nd vectors.
46             ram_r(vec1Ptr_r) <= dataToRam_r;  -- Write data to RAM at curr ptr.
47             if vec1Ptr_r < 2 * VEC_LEN_C - 1 then  -- Still init'ing both vecs.
48               vec1Ptr_r   <= vec1Ptr_r + 1;  -- point at next RAM location ...
49               dataToRam_r <= dataToRam_r + 1;  -- and load with the next value.
50             else  -- Else, finished initializing the vectors.
51               vec1Ptr_r   <= 0;  -- Init ptr to 1st vector at start of RAM.
52               vec2Ptr_r   <= VEC_LEN_C;  -- Init ptr to 2nd vec follow 1st vec.
53               innerProd_r <= 0;  -- Init inner-product summation register.
54               state_v     := INNER_PRODUCT;  -- Go to next state.
55             end if;
56           when INNER_PRODUCT =>  -- Compute inner-prod of 1st and 2nd vectors.
57             if vec1Ptr_r <= VEC_LEN_C - 1 then  -- Still proc'ing vec elems...
58               -- Add the product of the current elements from the 1st
59               -- and 2nd vectors using two simultaneous reads of the RAM.
60               innerProd_r <= innerProd_r + 
61                              TO_INTEGER(ram_r(vec1Ptr_r) * ram_r(vec2Ptr_r));
62               vec1Ptr_r   <= vec1Ptr_r + 1;  -- Inc to next element of 1st vec.
63               vec2Ptr_r   <= vec2Ptr_r + 1;  -- Inc to next element of 2nd vec.
64             else  -- Else, all the vector elements have been processed ...
65               state_v := DONE;            -- so go to the next state.
66             end if;
67           when DONE =>                    -- Inner-product complete ...
68             null;                         -- so wait here and do nothing.
69           when others =>                  -- Erroneous state ...
70             state_v := INIT;              -- so re-run the entire process.
71         end case;
72       end if;
73     end process;
74   
75     -- Output the inner-product.
76     innerProd_o <= std_logic_vector(
77                        TO_UNSIGNED(innerProd_r, innerProd_o'length));
78     
79   end architecture;

The basic idea of the inner-product FSM is to write a sequence of values to the RAM in the
WRITE_VECS state. Then, two pointers are initialized: one pointing at the first vector at 
the beginning of the RAM (line 51), and another pointing at the second vector 
immediately following the first vector (line 52). In the INNER_PRODUCT state, the 
contents of the RAM addressed by each pointer are read out simultaneously, multiplied 
and added to the inner-product register (lines 60-61), after which the pointers are 
incremented (lines 62-63). The basic operations are depicted below.
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After the VHDL shown above is synthesized, the synthesis report shows a single dual-port
distributed RAM has been used (line 6).

1   Advanced HDL Synthesis Report
2   
3   Macro Statistics
4   # FSMs                                                 : 1
5   # RAMs                                                 : 1
6    16x8-bit dual-port distributed RAM                    : 1
7   # Multipliers                                          : 1
8    8x8-bit multiplier                                    : 1
9   # Adders/Subtractors                                   : 4

10    16-bit adder                                          : 1
11    4-bit adder                                           : 2
12    8-bit adder                                           : 1
13   # Registers                                            : 32
14    Flip-Flops                                            : 32
15   # Comparators                                          : 2
16    4-bit comparator less                                 : 1
17    4-bit comparator lessequal                            : 1

Given the data the RAM is initialized with, the inner product should be 1x6 + 2x7 + 3x8 +
4x9 + 5x10 = 130. Running a simulation on the VHDL shows that it produces the correct 
result.
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If a dual-port RAM can be synthesized, are triple- and quad-port RAMs possible? The 
answer is yes! Although the FPGA hardware itself is limited to building single and dual-
port RAMs, the synthesizer can replicate data into multiple RAMs to provide the number of
simultaneous read operations that are required. For example, here is how a triple-port 
RAM is realized:

Notice that the number of RAM blocks has doubled, but half of it goes unused. That's 
usually what happens with digital systems: you can make them go faster by using more 
circuitry, or slower using less, but you seldom achieve speed and efficiency at the same 
time.
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Generating RAM

To demonstrate the use of ISE's CORE Generator, I'm going to use it to re-build the 
BRAM-version of the single-port RAM example (BramSPInf). I'll begin with an empty 
project (BramSPCoreGen) and add a new source file for the soon-to-be-generated RAM to
it.
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For this example, I've given the CORE Generator source file the descriptive name of 
BRAM.
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The CORE Generator gives me a choice of either block or distributed RAMs. For this 
example, I chose block RAM.
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Then I just click on the Finish button to add the BRAM core to the project.

Now the real fun begins! I have to set all the configuration parameters that define how 
the block RAM works. There isn't much to do in the first configuration screen.
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On the next screen, all I need to do is select a single-port RAM and move on.

Then I set the RAM's word width (eight bits) and the number of memory words it contains
(256).
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I don't want any registers on the output of the generated RAM (although it will still be a 
synchronous-read RAM even without them because it will be made from BRAMs) and I 
don't want to initialize the RAM, so I can just click Next on this screen.

I also don't need a reset for the output of the RAM.
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Finally, I've set all the configuration parameters and CORE Generator can build the RAM 
as specified.

After grinding away for about ten seconds, the BRAM.xco source file gets added to the 
project. If I decide I need to change any of the RAM parameters, I can just double-click 
the BRAM.xco file and proceed through the configuration screens again while making 
modifications.
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Now that I have the RAM built by the CORE Generator, how do I use it in my VHDL file? To
figure that out, highlight the BRAM module and then double-click the View VHDL 
Instantiation Template in the Process pane.

The template file that opens has two sections of interest. The first is the component 
declaration for the generated RAM that I'll have to include verbatim in the architecture 
header.

38   ------------- Begin Cut here for COMPONENT Declaration ------ COMP_TAG
39   COMPONENT BRAM
40     PORT (
41       clka : IN STD_LOGIC;
42       wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
43       addra : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
44       dina : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
45       douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
46     );
47   END COMPONENT;
48   -- COMP_TAG_END ------ End COMPONENT Declaration ------------

The second section has a template for the generated RAM that I have to paste into the 
body of my architecture and then edit the signal names.

53   ------------- Begin Cut here for INSTANTIATION Template ----- INST_TAG
54   your_instance_name : BRAM
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55     PORT MAP (
56       clka => clka,
57       wea => wea,
58       addra => addra,
59       dina => dina,
60       douta => douta
61     );
62   -- INST_TAG_END ------ End INSTANTIATION Template ------------

Now I can take the existing code from the BramSPInf.vhd file,  put it in a file called 
BramSPCoreGen.vhd and add it to this project. Then all I need to do is edit the file a bit 
as follows.

The component declaration is entered as-is into the architecture header on lines 17-25.

16   architecture Behavioral of BRamSPCoreGen is
17     component BRAM
18       port (
19         clka  : in  std_logic;
20         wea   : in  std_logic_vector(0 downto 0);
21         addra : in  std_logic_vector(7 downto 0);
22         dina  : in  std_logic_vector(7 downto 0);
23         douta : out std_logic_vector(7 downto 0)
24         );
25     end component;

Next, the signal declaration for the inferred RAM isn't needed anymore, so it's been 
removed. I've kept the RamWord_t subtype definition (line 32), however, because I still 
need it for declaring the input and output buses of the RAM.

26     constant NO          : std_logic := '0';
27     constant YES         : std_logic := '1';
28     constant RAM_SIZE_C  : natural   := 256;  -- Number of words in RAM.
29     constant RAM_WIDTH_C : natural   := 8; -- Width of RAM words.
30     constant MIN_ADDR_C  : natural   := 1; -- Process RAM from this address ...
31     constant MAX_ADDR_C  : natural   := 5; -- ... to this address.
32     subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0);   -- RAM word type.
33     signal wr_s          : std_logic;     -- Write-enable control.
34     signal addr_r, prevAddr_r : natural range 0 to RAM_SIZE_C-1;-- RAM address.
35     signal dataToRam_r   : RamWord_t;     -- Data to write to RAM.
36     signal dataFromRam_s : RamWord_t;     -- Data read from RAM.
37     signal sum_r         : natural range 0 to RAM_SIZE_C * (2**RAM_WIDTH_C)-1;

At the end of the architecture header, I declare three new eight-bit, std_logic_vector 
signals for attaching to the RAM module's address and input/output data buses. This 
makes it a bit easier to attach the RAM (which uses std_logic_vector signals for its I/O) to
the FSM (which uses natural and RamWord_t types of signals).

38     signal addrCoreGen_s : std_logic_vector(7 downto 0);
39     signal dataToRamCoreGen_s : std_logic_vector(7 downto 0);
40     signal dataFromRamCoreGen_s : std_logic_vector(7 downto 0);
41   begin
42   

FPGAs!? Now What? www.xess.com 116
TUT001 (V1.0) Feb 28, 2013

http://www.xess.com/


 “RAMs! Now What!?”

The first change in the architecture body is to remove the VHDL process that inferred the 
BRAM and replace it with an instantiation of the RAM created using the CORE Generator 
(lines 46-53). The clock for the RAM is connected to the master clock of the application 
(line 48), and the RAM write-enable from the FSM attaches directly to the single bit of the
RAM's write-enable bus (line 49). But on lines 50-52, the RAM's address and data buses 
are routed to the intermediate signals I defined previously. Then these intermediate 
signals are attached to the analogous signals from the FSM (lines 56-58) after a bit of 
type-casting to keep the synthesizer from complaining about mismatched signal types.

43     --*********************************************************************
44     -- Instantiate the block RAM created by CORE Generator.
45     --*********************************************************************
46     ram_u0 : BRAM
47       port map (
48         clka   => clk_i,
49         wea(0) => wr_s,
50         addra  => addrCoreGen_s,
51         dina   => dataToRamCoreGen_s,
52         douta  => dataFromRamCoreGen_s
53         );
54         
55     -- Connect the RAM signals to the signals from the FSM.
56     dataToRamCoreGen_s <= std_logic_vector(dataToRam_r);
57     dataFromRam_s <= RamWord_t(dataFromRamCoreGen_s);
58     addrCoreGen_s <= std_logic_vector(TO_UNSIGNED(addr_r,8));

That's all there is to it; the FSM code doesn't have to change at all since the generated-
RAM behaves the same as the VHDL-inferred RAM.

The synthesis report shows that a single BRAM is used for this design (line 11):

1   Device utilization summary:
2   ---------------------------
3   
4   Selected Device : 3s200avq100-4 
5   
6    Number of Slices:                       47  out of   1792     2%  
7    Number of Slice Flip Flops:             44  out of   3584     1%  
8    Number of 4 input LUTs:                 88  out of   3584     2%  
9    Number of IOs:                          33

10    Number of bonded IOBs:                  33  out of     68    48%  
11    Number of BRAMs:                         1  out of     16     6%  
12    Number of MULT18X18SIOs:                 1  out of     16     6%  
13    Number of GCLKs:                         1  out of     24     4%  
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Finally, the simulation results for this design are identical to those for the inferred BRAM 
in both the calculated result and the timing of the signal waveforms.

So after all that, was using CORE Generator worth it? Here are some of the 
disadvantages:

 CORE Generator creates modules which use std_logic_vectors for their I/O buses. This 
always requires some fiddling with the types to make the connections with other parts 
of the VHDL that are using more application-appropriate types. (Using std_logic_vector
for module I/O is actually standard industry practice, so I can't really fault CORE 
Generator for this.)

 Changing anything about the RAM – even width or size – requires another trip through 
CORE Generator. And, after that, you may have to edit the component declaration and 
instantiation and change the widths of the connecting buses.

 CORE Generator .xco files aren't portable to the design software for non-Xilinx FPGAs.

Even with these problems, there are times I would use CORE Generator:

 If I needed to build a large and/or wide RAM that takes advantage of some of the 
special features of the FPGA hardware, then CORE Generator can be easier to use than 
trying to craft the behavior in VHDL.

 If I needed to build something really complicated (e.g., an FFT module), then CORE 
Generator would save me a lot of time writing and verifying the module.

Instantiating RAM

I already used instantiation in the previous example to drop the RAM built with CORE 
Generator into the top-level VHDL code. Now I'm going to use it again for building an 
interface to the SDRAM on the XuLA board.

The Winbond W9812 SDRAM chip stores 8-million sixteen-bit words – much more than 
the internal RAMs in the FPGA can hold. This large memory works by storing bits as 
charges on millions of tiny capacitors. Since the charge on a capacitor tends to leak away 
over time (thus losing the bit that was stored there), the SDRAM memory cells need to be
refreshed every so often to restore their charge. (In essence, the SDRAM has to be 
continually reminded of what it remembers so it doesn't forget. Kind of like me.)
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SDRAMs are internally organized into banks, rows and columns. For example, the W9812 
is divided into four banks, each containing 4096 rows, with each row made up of 512 
columns, and with each column holding a sixteen-bit number. To access an individual 
memory location requires a 23-bit address (4 x 4096 x 512 = 223). In order to cut down 
on the number of address pins needed on the physical chip package, a multiplexed 
address bus is used consisting of a two-bit bank-address bus and a twelve-bit row and 
column address bus (for a total of fourteen address pins). To access a memory location, 
the bank address is set and the row address is strobed-in which activates an internal row 
of that bank in the SDRAM. After the activation completes, column elements can be 
accessed by strobing in the column addresses without the need to re-enter the row 
address.

The need for periodic refreshing, address multiplexing, and row-activation makes it more 
complicated to use an SDRAM than the distributed or block RAMs I've already discussed. 
For this reason, I created a controller module that simplifies the interface so SDRAM looks
more like a regular RAM with just an address and data bus. Here's a block diagram for the
application that sums the products of addresses and data, but using the SDRAM on the 
XuLA board instead of internal RAMs. The SDRAM controller module (SdramCntl) handles 
breaking the address into pieces, activating the appropriate bank, row and column, and 
inserts the periodic refreshes needed by the SDRAM.

On one side of the SDRAM controller module is a host interface that connects to the FSM 
with the following signals:

clk: This is the master clock input. Anything the SDRAM controller connects to has to be 
synchronous with this clock.

rd: This active-high input initiates a read of a single word from the SDRAM. It is sampled 
on the rising clock edge and must be held high until the read process completes 
as indicated by the done signal going high. The read control must be lowered 
before the next rising clock edge after the done signal goes high or else another 
read operation will start.

wr: This active-high input initiates a write of a single word from the SDRAM. It is 
sampled on the rising clock edge and must be held high until the done signal 
indicates the write process completes. The write control must be lowered before 
the next rising clock edge after the done signal goes high or else another write 
operation will start.
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done: This synchronous output signal goes high to indicate the completion of the 
currently active read or write operation. It remains high for a single clock cycle.

addr: The address of the SDRAM word that is to be read or written is passed through this
input bus. The address value must be held stable until the done signal goes high. 
The two most-significant bits of addr correspond to the bank address bits of the 
SDRAM, the next log2(NROWS)-bits of addr correspond to the row address within 

that bank, and the least-significant log2(NCOLS)-bits correspond to the column 

address within that row.
dataToSdram: The data to be written to the SDRAM enters through this input bus. The 

data value must be held stable until the done signal goes high.
dataFromSdram: The data read from the SDRAM comes out on this bus. This data must 

be latched by the host-side logic on the rising clock edge after the done signal 
goes high.

The signals on the other side of the SdramCntl module attach directly to the SDRAM chip:

sdRas#: This active-low output drives the row-address strobe input of the SDRAM.
sdCas#: This active-low output drives the column-address strobe input of the SDRAM.
sdWe#: This active-low output drives the write-enable input of the SDRAM.
sdBs: This output selects one of the two banks of SDRAM. (Due to a shortage of pins on 

the XuLA FPGA chip, the other bank-select pin of the SDRAM had to be 
permanently tied to ground, thus preventing access to the other two banks.)

sdAddr: The row and column addresses for the SDRAM memory location are output on 
this bus.

sdData: The data word to be written to SDRAM exits the FPGA on this bus during write 
operations, and data from the SDRAM enters the FPGA on this bus during read 
operations.

sdCke: This active-high output drives the clock-enable input of the SDRAM. (Due to a 
shortage of pins on the XuLA FPGA chip, the clock-enable pin on the SDRAM was 
tied high, thus keeping the SDRAM from ever entering a quiescent state.)

sdCs#: This active-low output drives the chip-select of the SDRAM. (Due to a shortage of
pins on the XuLA FPGA chip, the chip-select pin on the SDRAM was tied to ground,
thus keeping the SDRAM permanently enabled.)

sdDqmh: This active-high output drives the SDRAM input that disables the drivers for the
upper-half of the data bus during read operations. (Due to a shortage of pins on 
the XuLA FPGA chip, this pin on the SDRAM was tied low so the upper-half of the 
databus is always enabled.)

sdDqml: This active-high output drives the SDRAM input that disables the drivers for the 
lower-half of the data bus during read operations. (Due to a shortage of pins on 
the XuLA FPGA chip, this pin on the SDRAM was tied low so the lower-half of the 
databus is always enabled.)

The SDRAM controller module supports several modes of operation, but I'll use it here in 
its simplest and lowest-performance form to do non-pipelined reads and writes of SDRAM.

The timing waveforms for a non-pipelined read operation are shown below. These assume
the read operation accesses a memory location in the currently active bank and row of 
the SDRAM. The sequence of actions is:

Cycle 1: The SDRAM address is applied and the read control signal is driven high. The 
address and read control must be held stable until the done signal goes high.

Cycle 2: The column address is output on the pins that go to the SDRAM chip and the 
SDRAM control signals are set to initiate a read operation.

Cycle 3: The SDRAM initiates a read of the given column address on the rising clock 
edge.

Cycle 4: The SDRAM waits for the data to arrive from the given address.
Cycle 5: The data from the SDRAM arrives sometime during this cycle and is guaranteed 
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to be stable by the end of the cycle.
Cycle 6: The data from the SDRAM is clocked into a register on the rising clock edge. The

done signal goes high to signal the host-side logic that the data is available on the
dataFromRam bus. The read control must be lowered before the next rising clock 
edge or else another read operation will be initiated.

Cycle 7: The done signal goes low again but the output data remains stable until another
read operation is completed.

Next up are the timing waveforms for a non-pipelined write operation. This example 
assumes the write operation accesses a memory location in the currently active bank and 
row of the SDRAM. The sequence of actions is:

Cycle 1: The SDRAM address and the data to be stored there are applied and the write 
control signal is driven high. The address, data and write control must be held 
stable until the done signal goes high.

Cycle 2: The data and the column address are output on the pins that go to the SDRAM 
chip and the SDRAM control signals are set to initiate the write operation. The 
done signal goes high because the SDRAM controller is effectively done at this 
point since the SDRAM can complete the write operation on its own.

Cycle 3: On the rising clock edge the SDRAM latches the address and data and initiates a
write operation. The output drivers on the data bus are disabled to free the 
SDRAM data bus.

Cycles 4 and 5: The SDRAM continues its internal operations to write the data into the 
given address.

In the previous sequence of actions for a read or write operation, it was assumed the 
operation was initiated as soon as the appropriate control signal was asserted. There are 
several cases when the SDRAM controller delays the initiation of an operation:

When a row is being refreshed. In this case, SDRAM controller completes the row 
refresh operation. Then the SDRAM banks are precharged and the bank and row 
containing the given address are activated. Then the read or write operation can 
progress as described above.
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When the given address is not in the currently active bank or row of the SDRAM.
In this case, the controller precharges the SDRAM banks and the bank and row 
containing the given address is activated. Then the read or write operation can 
progress as described above.

When a previous write operation is still in progress. For write operations, the 
SDRAM controller indicates the operation is complete before the SDRAM chip has 
actually finished storing the data. If another read or write operation is initiated 
before the SDRAM chip is actually done, then the SDRAM controller will delay the 
current operation until the SDRAM is completely finished writing the previous 
data. Then the current operation proceeds, including any preceding activation 
steps that are needed.

You don't actually have to be concerned with these delays because the SDRAM controller 
handles them automatically. All you have to do is initiate a read or write operation and 
hold your signals steady until the done signal goes high.

In adition to the FSM and SDRAM controller modules, there is a clock generator module 
(ClkGen) that takes the 12 MHz input clock to the FPGA and ramps it up to 100 MHz. This 
high-speed clock exits the FPGA and goes to the clock input of the SDRAM. It also gets 
fed back into the FPGA and drives the clock inputs of the FSM and SDRAM controller. This 
effectively synchronizes the internal operations of the FPGA with those of the SDRAM 
since each receives a clock signal with approximately the same amount of accumulated 
chip-I/O and PCB trace delays.

Finally, I include a single HostIoToDut module to transfer the value in the summation 
register back to the PC. Looking at this value will tell me if the FPGA and SDRAM 
performed correctly or not.

The top-level module of the SdramSPInst ISE project that connects all these modules 
together is shown below. The first order of business is to pull in the necessary VHDL 
packages for the clock generator, SDRAM controller and the PC-to-XuLA transfer modules 
(lines 8-10).

1   --*********************************************************************
2   -- SDRAM, single-port, instantiated.
3   --*********************************************************************
4   
5   library IEEE;
6   use IEEE.STD_LOGIC_1164.all;
7   use IEEE.NUMERIC_STD.all;
8   use work.ClkgenPckg.all;             -- For the clock generator module.
9   use work.SdramCntlPckg.all;          -- For the SDRAM controller module.

10   use work.HostIoPckg.HostIoToDut;     -- For the FPGA<=>PC transfer link 
module.

11   
In the entity declaration, the output for the summation has been removed since the 
HostIo package will be used to send it to the PC. The I/O signals for connecting the FPGA 
to the SDRAM have also been added.

12   entity SdramSPInst is
13     port (
14       fpgaClk_i : in    std_logic;  -- 12 MHz clock from external clock source.
15       sdClk_o   : out   std_logic;  -- 100 MHz clock to SDRAM.
16       sdClkFb_i : in    std_logic;  -- 100 MHz clock fed back into FPGA.
17       sdRas_bo  : out   std_logic;  -- SDRAM row address strobe.
18       sdCas_bo  : out   std_logic;  -- SDRAM column address strobe.
19       sdWe_bo   : out   std_logic;  -- SDRAM write-enable.
20       sdBs_o    : out   std_logic;  -- SDRAM bank-address.
21       sdAddr_o  : out   std_logic_vector(11 downto 0);  -- SDRAM address bus.
22       sdData_io : inout std_logic_vector(15 downto 0)   -- SDRAM data bus.
23       );
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24   end entity;
25   

In the architecture header, there's no need to add the component declarations for any of 
the modules because their respective VHDL packages already include this information.

Note also that several of the declared registers have been divided into two, distinct 
signals: one with a _r suffix that holds the current value, and another with a _x suffix 
that holds the signal value that will become current on the next rising clock edge. The 
reason for this will become clear when I discuss the FSM portion of the code.

26   architecture Behavioral of SdramSPInst is
27     constant NO              : std_logic := '0';
28     constant YES             : std_logic := '1';
29     constant RAM_SIZE_C      : natural   := 256; -- # of words in RAM.
30     constant RAM_WIDTH_C     : natural   := 16;  -- Width of RAM words.
31     constant MIN_ADDR_C      : natural   := 1; -- Process RAM from here
32     constant MAX_ADDR_C      : natural   := 5; -- ... to here.
33     subtype RamWord_t is unsigned(RAM_WIDTH_C-1 downto 0);  -- RAM word type.
34     signal clk_s             : std_logic;  -- Internal clock.
35     signal wr_s              : std_logic;  -- Write-enable control.
36     signal rd_s              : std_logic;  -- Read-enable control.
37     signal done_s            : std_logic;  -- R/W operation done signal.
38     signal addr_r, addr_x    : natural range 0 to RAM_SIZE_C-1; -- addr.
39     signal dataToRam_r, dataToRam_x : RamWord_t;  -- Data to write to RAM.
40     signal dataFromRam_s     : RamWord_t;  -- Data read from RAM.
41     -- Convert the busses for connection to the SDRAM controller.
42     signal addrSdram_s       : std_logic_vector(22 downto 0); –- Address.
43     signal dataToSdram_s     : std_logic_vector(sdData_io'range); -- Data.
44     signal dataFromSdram_s   : std_logic_vector(sdData_io'range);  -- Data.
45     -- FSM state.
46     type state_t is (INIT, WRITE_DATA, READ_AND_SUM_DATA, DONE); -- FSM states.
47     signal state_r, state_x         : state_t   := INIT; -- FSM state reg.
48     signal sum_r, sum_x : natural range 0 to RAM_SIZE_C * (2**RAM_WIDTH_C)-1;
49     signal sumDut_s     : std_logic_vector(15 downto 0); -- Send sum bck to PC.
50     signal nullDutOut_s : std_logic_vector(0 downto 0); -- HostIo dummy output.
51   begin
52   

The clock generator module multiplies the 12 MHz input clock by 25/3 to create the 100 
MHz clock that is output to the SDRAM. The 100 MHz clock also re-enters the FPGA and 
becomes the master clock for all the rest of the FPGA circuitry (line 60).

53   --*********************************************************************
54     -- Generate a 100 MHz clock from the 12 MHz input clock and send it out
55     -- to the SDRAM. Then feed it back in to clock the internal logic.
56     --*********************************************************************
57     Clkgen_u1 : Clkgen
58       generic map (BASE_FREQ_G => 12.0, CLK_MUL_G => 25, CLK_DIV_G => 3)
59       port map(I               => fpgaClk_i, O => sdClk_o);
60     clk_s <= sdClkFb_i;  -- SDRAM clock feeds back into the FPGA.
61   

The SDRAM controller module is instantiated on lines 66-87. The FREQ_G generic 
parameter (line 68) is used to inform the module of the input clock frequency so it can 
accurately calculate the timing delays that the SDRAM requires. The rest of the 
instantiation is just the connection of I/O signals to the FSM and the external SDRAM.

62     --*********************************************************************
63     -- Instantiate the SDRAM controller that connects to the FSM
64     -- and interfaces to the external SDRAM chip.
65     --*********************************************************************
66     SdramCntl_u0 : SdramCntl
67       generic map(
68         FREQ_G       => 100.0,  -- Use clock freq. to calc. timing parameters.
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69         DATA_WIDTH_G => RAM_WIDTH_C  -- Width of data words.
70         )
71       port map(
72         clk_i     => clk_s,
73         -- FSM side.
74         rd_i      => rd_s,
75         wr_i      => wr_s,
76         done_o    => done_s,
77         addr_i    => addrSdram_s,
78         data_i    => dataToSdram_s,
79         data_o    => dataFromSdram_s,
80         -- SDRAM side.
81         sdRas_bo  => sdRas_bo,
82         sdCas_bo  => sdCas_bo,
83         sdWe_bo   => sdWe_bo,
84         sdBs_o(0) => sdBs_o,
85         sdAddr_o  => sdAddr_o,
86         sdData_io => sdData_io
87         );
88   

Next, the host-side address and data buses are routed to the intermediate signals the 
same way I did in the previous CORE Generator example.

89     -- Connect the SDRAM controller signals to the FSM signals.     
90     dataToSdram_s <= std_logic_vector(dataToRam_r);
91     dataFromRam_s <= RamWord_t(dataFromSdram_s);
92     addrSdram_s   <= std_logic_vector(TO_UNSIGNED(addr_r, addrSdram_s'length));
93   

The biggest change in this example is to the FSM VHDL code. I have divided it into two, 
separate processes: a combinatorial process that computes the current outputs and the 
next state given the current inputs and state (lines 100-151), and a sequential process 
that updates the registers with their new values upon a rising clock edge (lines 157-165).

The combinatorial process starts with a sensitivity list. Basically, this includes every signal
in the process that appears on the right-hand side of an assignment statement or in a 
conditional statement. If any of these signals changes value, then the entire process is 
re-evaluated.

94     --*********************************************************************
95     -- State machine that initializes RAM and then reads RAM to compute
96     -- the sum of products of the RAM address and data. This section
97     -- is combinatorial logic that sets the control bits for each state 
98     -- and determines the next state.
99     --*********************************************************************

100     FsmComb_p : process(state_r, addr_r, dataToRam_r,
101                         sum_r, dataFromRam_s, done_s)
102     begin

The first thing the combinatorial process does is set the default values for various outputs
and registers. These assignments will be overridden further-on in the process when a 
given signal needs to be changed. Note that signals with a _x suffix are always on the 
left-hand side of an assignment while signals with a _r suffix are on the right.

103       -- Disable RAM reads and writes by default.
104       rd_s        <= NO;                  -- Don't write to RAM.
105       wr_s        <= NO;                  -- Don't read from RAM.
106       -- Load the registers with their current values by default.
107       addr_x      <= addr_r;
108       sum_x       <= sum_r;
109       dataToRam_x <= dataToRam_r;
110       state_x     <= state_r;
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111   
112       case state_r is
113   

The initialization state operates pretty much the same as always, but note how the 
default values of some of the signals have been overridden.

114         when INIT =>                      -- Initialize the FSM.
115           addr_x      <= MIN_ADDR_C;      -- Start writing data at this addr.
116           dataToRam_x <= TO_UNSIGNED(1, RAM_WIDTH_C);  -- Initial write value.
117           state_x     <= WRITE_DATA;      -- Go to next state.
118   

When values are being written to the SDRAM, the write-enable is asserted until the done 
signal from the SDRAM controller goes high (line 120). Once that occurs, and before the 
next rising clock edge, the write-enable signal has to be disabled. This is the reason the 
FSM was divided into combinatorial and sequential portions. If a one-process sequential 
FSM like those in the previous examples was used, then the write-enable signal would not
change until the next rising clock edge after the done signal went high, and that would be
too late. With a combinatorial process, the write-enable goes low as soon as the done 
signal is asserted.

119         when WRITE_DATA =>                -- Load RAM with values.
120           if done_s = NO then  -- While current RAM write is not complete ...
121             wr_s <= YES;                  -- keep write-enable active.
122           elsif addr_r < MAX_ADDR_C then  -- If haven't reach final address ...
123             addr_x      <= addr_r + 1;    -- go to next address ...
124             dataToRam_x <= dataToRam_r + 3;  -- and write this value.
125           else                 -- Else, the final address has been written ...
126             addr_x  <= MIN_ADDR_C;        -- go back to the start, ...
127             sum_x   <= 0;                 -- clear the sum-of-products, ...
128             state_x <= READ_AND_SUM_DATA;    -- and go to next state.
129           end if;
130   

Reading values back from the SDRAM also uses the done signal to gate the read-enable 
signal and to accumulate to the sum-of-products only when the data becomes available 
(lines 134-142).

131         when READ_AND_SUM_DATA => -- Read RAM and sum address*data products
132           if done_s = NO then     -- While current RAM read is not complete ...
133             rd_s <= YES;          -- keep read-enable active.
134           elsif addr_r <= MAX_ADDR_C then  -- If not the final address ...
135             -- add product of previous RAM address and data read 
136             -- from that address to the summation ...
137             sum_x  <= sum_r + TO_INTEGER(dataFromRam_s * addr_r);
138             addr_x <= addr_r + 1;        -- and go to next address.
139             if addr_r = MAX_ADDR_C then  -- If last addr has been read ...
140               state_x <= DONE;           -- go to the next state.
141             end if;
142           end if;
143   
144         when DONE =>                      -- Summation complete ...
145           null;                           -- so wait here and do nothing.
146         when others =>                    -- Erroneous state ...
147           state_x <= INIT;                -- so re-run the entire process.
148           
149       end case;
150   
151     end process;
152   

Here's the sequential process of the FSM. On the rising clock edge, the registers get 
updated with the values calculated in the combinatorial process.

153     --*********************************************************************
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154     -- Update the FSM's registers with their next values as computed by
155     -- the FSM's combinatorial section.       
156     --*********************************************************************
157     FsmUpdate_p : process(clk_s)
158     begin
159       if rising_edge(clk_s) then
160         addr_r      <= addr_x;
161         dataToRam_r <= dataToRam_x;
162         state_r     <= state_x;
163         sum_r       <= sum_x;
164       end if;
165     end process;
166   

The final thing to do is send the summation value back to the PC. Since I'm only using a 
single HostIoToDut module in this application, I can employ an easy-to-use version that 
already incorporates the BscanToHostIo module internally.

167     --*********************************************************************
168     -- Send the summation to the HostIoToDut module and then on to the PC.
169     --*********************************************************************
170     sumDut_s <= std_logic_vector(TO_UNSIGNED(sum_r, 16));
171     HostIoToDut_u2 : HostIoToDut
172       generic map (SIMPLE_G => true)    -– Use simple form of module.
173       port map (
174         vectorFromDut_i => sumDut_s,    -– Send sum back to PC.
175         vectorToDut_o   => nullDutOut_s –- Dummy output. Not used.
176         );
177   
178   end architecture;
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That completes the top-level module in the SdramSPInst.vhd file. Here's the SdramSPInst
ISE project hierarchy:

Compiling the project in the same way as all the previous examples (you should know the
drill by now) generates the SdramSPInst.bit file.

Of course, to go with the FPGA bitstream, I need a Python program on the PC to grab the 
summation value from the XuLA board. Here's what's in the sdram_test.py file. It starts 
by importing all the functions and classes in the XsTools package.

1   from xstools.xsdutio import * # Import funcs/classes for PC <=> FPGA link.
2   

Then the program prints out a description of what it's trying to do.

3   print '''\n
4   ##################################################################
5   # Read the summation of the address * data products from the
6   # FSM + SDRAM application on the XuLA board.
7   ##################################################################
8   '''

Next, the program defines two identifiers: one for the USB port index of the XuLA board 
(which is usually 0 because your XuLA port is usually USB0), and another for the interface
identifier of the HostIoToDut module attached to the summation register in the FPGA (the 
identifier is 255 by default for the simple version of the module).

9   USB_ID = 0    # USB port index for the XuLA board connected to the host PC.
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10   DUT_ID = 255  # This is the default identifier for the DUT in the FPGA.
11   

Now create an object that lets the PC talk to the HostIoToDut module in the FPGA. The 
USB and DUT identifiers are needed to initialize the object. Then two arrays are needed: 
one which defines the size of the summation register that will be read back to the PC, and
another that defines the size of the single dummy output of the HostIoToDut module. 
(Obviously the dummy output of the HostIoToDut module doesn't do anything; I just need
at least one output to keep the VHDL synthesizer from complaining. And because the 
dummy output is there, I need to account for it in the Python code even though nothing is
done with that, either.)

12   # Create an intfc obj with one 16-bit input and one 1-bit output.
13   dut = XsDut(USB_ID, DUT_ID, [16], [1])

Finally, use the Read() method of the dut object to get the value in the summation 
register. Then print the value of the sum and exit.

14   sum = dut.Read(); # Read the 16-bit summation from the FPGA.
15   print 'Sum = %d\r' % sum.unsigned

At this point, I assume you have the SdramSPInst ISE project compiled and the bitstream
is ready to go, the firmware in your XuLA board has been upgraded to support the 
HostIoPckg modules (you should have already done that in the previous chapter), and 
you have Python installed and the sdram_test.py file is available. Now all you have to do 
is this:

1. Download the SdramSPInst.bit file to the FPGA on the XuLA board using 
GXSLOAD.

2. Run the Python program in a command window as follows:
C:\SFW> python sdram_test.py

Then you should see the following text appear in the command window:

The value in the sum register matches the results found in the previous examples, so the 
SDRAM circuitry appears to be working.
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Now you might ask (if you're still there): “Why did you go to all the trouble of running 
this on the actual hardware instead of doing a simulation like in the other examples?” The
answer to that is simple: the ISE simulator knows how to model the behavior of the 
distributed and block RAMs built into the FPGA itself, but it has no built-in model for the 
external SDRAM chip. So I just went straight to the hardware and prayed that it worked.

The problem with doing it in hardware is that if the result is incorrect, then how do you 
find where the problem is? Is it in the FSM? Is the SDRAM controller being operated in the
correct manner? Is the problem inside the SDRAM controller itself? (If so, take a look in 
the SdramCntl.vhd file and tell me you would want to debug that! I did back in 2001 after
I wrote it and believe me, it was not pretty.)

So, while throwing a “Hail Mary” with the hardware sometimes works, we really need a 
backup plan to debug systems that extend beyond the boundaries of the FPGA. That's 
what I'll show you in the next chapter.
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 C.8  “Verilog! Now What!?”
Back in the 80's, there was a TV commercial for Reeses Peanut Butter Cups that went 
something like this. Some dude is bebopping down the sidewalk on his skateboard eating 
from a jar of peanut butter. Another dork is riding down the sidewalk on a bike eating a 
chocolate bar. They don't see each other as they arrive at an intersection (probably 
because THEY ARE TOO BUSY EATING!) and a horrendous crash occurs. The first guy is 
lying on the ground and says “Hey, you got chocolate in my peanut butter!” The second 
guy retorts “Oh, yeah? You got peanut butter on my chocolate!”. (Nowadays the 
conversation would go something like this: “I'm going to sue you 'til your eyeballs 
explode!”; “Yeah? Say hello to my 9mm.”) Well, they each try the mixed concoction and 
arrive at the shared realization that chocolate and peanut butter taste pretty good 
together. Then they gaze into each other's eyes, join hands, and go off to start a B&B in 
the Napa Valley wine country.

So what does this have to do with using FPGAs? Not much, really; I just thought it was 
funny. But it is kind of similar to how VHDL and Verilog users view their favorite language 
as superior and it shouldn't be mixed with the other when, in reality, sometimes a 
combination of them is unavoidable and desirable. I'll demonstrate this with a simulation 
of the FPGA sum-of-products circuit and the external SDRAM from the last chapter.

Simulating SDRAM

As I said at the end of the last chapter, ISE knows how to simulate the internal RAMs of 
the FPGA, but it doesn't know jack about the behavior the external SDRAM on the XuLA 
board – it doesn't have those models. So to run a simulation, we need a VHDL model of 
the XuLA's Winbond W9812 8M x 16 SDRAM to combine with the VHDL for the FPGA 
circuit. Unfortunately, I've never been able to find a VHDL model of the W9812. Winbond 
does supply a Verilog model of the W9812, but it's encrypted so it will only work with the 
NC-Verilog simulator. That's not much help.

So there's no VHDL model for the W9812, and there's no vanilla-Verilog version, either. 
Luckily, the free market works in my favor here. All memory vendors are competing for 
the same slots in PCs, tablets and phones, so they all make their chips interoperable to 
try to steal business from each other. That means we can use an SDRAM model from 
another manufacturer in place of the one from Winbond. In this case, Micron supplies a 
Verilog model for their equivalent 8M x 16 SDRAM, the  MT48LC8M16A2: 
http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc  ={428A5CC9-2A78-  
447E-939B-6F3A40D538C6}#sim.

FPGAs!? Now What? www.xess.com 130
TUT001 (V1.0) Feb 28, 2013

http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc=%7B428A5CC9-2A78-447E-939B-6F3A40D538C6%7D#sim
http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc=%7B428A5CC9-2A78-447E-939B-6F3A40D538C6%7D#sim
http://www.micron.com/parts/dram/sdram/mt48lc8m16a2p-7e?pc
http://www.winbond.com/hq/enu/ProductAndSales/ProductLines/SpecialtyDRAM/SDRAM/W9812G6JH.htm
http://www.winbond.com/hq/enu/ProductAndSales/ProductLines/SpecialtyDRAM/SDRAM/W9812G6JH.htm
http://www.xess.com/


 “Verilog! Now What!?”

After downloading the archive from Micron, I just unpack it and store the mt48lcm16a2.v 
Verilog file in the folder for the SdramSPInst ISE project I built in the last chapter. Then I 
reopen the project in ISE and select the Add Source... item from the pop-up menu.

Once the dialog for selecting the source file appears, I highlight the mt48lcm16a2.v file 
and click Open which should add the Verilog file to my previously pristine VHDL project.
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When adding the SDRAM model, I make sure to only associate the SDRAM Verilog file 
with simulation processes! That's because the SDRAM model contains stuff that's un-
synthesizable or, at least, very inefficient to synthesize. I don't want ISE trying to build 
the SDRAM inside the FPGA if I run the implementation tools. That would only lead to 
tears.

Now it's time to create a simulation test bench, so I do the whole New Source... thing.
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Then I add a VHDL test bench source file called SdramSPInstTb.

Next I associate the test bench with the SdramSPInst.vhd file containing the sum-of-
products module.
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Now the test bench appears at the top of the design hierarchy with the original 
SdramSPInst as a submodule.

Note that the SDRAM Verilog model is outside the test bench hierarchy, so my next task is
to integrate that into the mix by attaching it to the sum-of-products module within the 
SdramSPInstTb.vhd file. In effect, the test bench file emulates the XuLA board because it 
describes how an FPGA programmed with a sum-of-products function is connected to an 
external SDRAM. But to make this connection, I have to figure out the I/O definitions for 
the SDRAM from the Verilog source. Here is the pertinent portion of the mt48lc8m16a2.v 
file:

42   module mt48lc8m16a2 (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm);
43   
44       parameter addr_bits =      12;
45       parameter data_bits =      16;
46       parameter col_bits  =       9;
47       parameter mem_sizes = 2097151;
48   
49       inout     [data_bits - 1 : 0] Dq;
50       input     [addr_bits - 1 : 0] Addr;
51       input                 [1 : 0] Ba;
52       input                         Clk;
53       input                         Cke;
54       input                         Cs_n;
55       input                         Ras_n;
56       input                         Cas_n;
57       input                         We_n;
58       input                 [1 : 0] Dqm;

Using this information, I can go into the SdramSPInstTb.vhd file and add an equivalent 
VHDL component declaration that uses the same module name with the same I/O names,
in the same order, and with the same vector widths as follows:

60   component mt48lc8m16a2 
61   port(
62     Dq : inout std_logic_vector(15 downto 0);
63     Addr : in std_logic_vector(11 downto 0); 
64     Ba : in std_logic_vector(1 downto 0); 
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65     Clk : in std_logic; 
66     Cke : in std_logic;
67     Cs_n : in std_logic;
68     Ras_n : in std_logic;
69     Cas_n : in std_logic;
70     We_n : in std_logic;
71     Dqm : in std_logic_vector(1 downto 0)
72     );
73   end component;

Then I instantiate and connect the mt48lc8m16a2 module to the SdramSPInst module 
like so:

97   -- Instantiate the Unit Under Test (UUT)
98      uut: SdramSPInst PORT MAP (
99             fpgaClk_i => fpgaClk_i, -- 12 MHz XuLA clock.

100             sdClk_o => sdClk_o, -- 100 MHz clock from DCM.
101             sdClkFb_i => sdClkFb_i, -- 100 MHz clock fed back into FPGA.
102             sdRas_bo => sdRas_bo, -- Row-address strobe.
103             sdCas_bo => sdCas_bo, -- Column-address strobe.
104             sdWe_bo => sdWe_bo, -- Write-enable.
105             sdBs_o => sdBs_o, -- Bank-select.
106             sdAddr_o => sdAddr_o, -- 12-bit address bus.
107             sdData_io => sdData_io -- 16-bit data bus.
108           );
109      sdClkFb_i <= sdClk_o; -- Feedback 100 MHz clock to FPGA.
110           
111       -- Use the mt48lc8m16a2 declaration from above to instantiate
112       -- the SDRAM here and connect it to the UUT.
113       sdram: mt48lc8m16a2 port map(
114         Dq => sdData_io,  -- 16-bit data bus.
115         Addr => sdAddr_o,  -- 12-bit address bus.
116         Ba(0) => sdBs_o,  -- One bank-select pin.
117         Ba(1) => '0', -- The other is tied to GND on XuLA PCB.
118         Clk => sdClk_o,  -- 100 MHz clock.
119         Cke => '1',  -- Clock-enable tied high on XuLA PCB.
120         Cs_n => '0', -- Chip-enable tied low on XuLA PCB.
121         Ras_n => sdRas_bo, -- Row-address strobe.
122         Cas_n => sdCas_bo, -- Column-address strobe.
123         We_n => sdWe_bo, -- Write-enable.
124         Dqm(0) => '0', -- Data qualifier masks tied low ...
125         Dqm(1) => '0'  -- on the XuLA PCB.
126         );

Finally, I define the clock period to match the 12 MHz clock of the XuLA board:

93   constant fpgaClk_period : time := 83.3333 ns; -- 12 MHz XuLA clock.

Then I place the clock signal name into the process that generates the clock:

130   fpgaClk_process :process
131   begin
132     fpgaClk_i <= '0';
133     wait for fpgaClk_period/2;
134     fpgaClk_i <= '1';
135     wait for fpgaClk_period/2;
136   end process;
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After making these changes, I'm rewarded by seeing the inclusion of the Micron SDRAM 
as a submodule of the test bench:

Now it's time to run the simulation. I highlight the SdramSPInstTb test bench module in 
the Hierarchy pane and double-click the Simulate Behavioral Model process in the 
Processes pane. The ISim window will appear. I type 202 uS into the simulation run-
time field and click on the button to run the simulation. (The reason for the long 
simulation run-time is that the SDRAM has a 200uS initialization delay before it can 
perform any read/write operations.)

Looking at the simulation waveforms after the initialization period, you can see the five 
write operations as the sum-of-products circuit loads the SDRAM with data: 1 is written to
address 1, 4 to address 2, 7 to address 3, and so on as in the example from the previous 
chapter.
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After the writes, the data is read back from the SDRAM. Notice that 1 is read from 
address 1, 4 from address 2, and so on. It appears the SDRAM Verilog model is working 
correctly for the basic read and write functions.
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The final test of the SDRAM model is whether the computed sum-of-products value is 
correct. To check this, I highlight the uut instance in the Instance and Process Name 
pane and then look for the sum_r register in the Objects pane. There I see that 
the sum register contains the value of 135 at the end of the simulation. This matches the 
result I saw in the SDRAM example of the last chapter.

So to recap, here's what I did:

1. Found a file containing a Verilog model for some circuit.

2. Added the file to my project and associated it with simulation processes only.

3. Opened the Verilog file and found the I/O declarations for the model.

4. Created a component declaration in my VHDL code that has the same module 
name with the same I/O names, in the same order, and with the same vector 
widths.

5. Instantiated and connected the module wherever it was needed just as if it was 
another VHDL component.

The example I've just described was done for simulation purposes. Is there any difference
if I had wanted to include a Verilog module for actual implementation in my FPGA? Not 
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really, except in that case I would want to associate that module with both simulation and
implementation processes, rather than just simulation alone. Everything else would stay 
the same.
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