
The GNU Prolog System and its Implementation

Daniel Diaz
University of Paris 1
CRI, bureau C1407
90, rue de Tolbiac

75634 Paris Cedex 13, France
and INRIA-Rocquencourt

Daniel.Diaz@inria.fr

Philippe Codognet
University of Paris 6

LIP6, case 169
8, rue du Capitaine Scott

75015 Paris, France
and INRIA-Rocquencourt

Philippe.Codognet@lip6.fr

ABSTRACTWe describe in this paper the GNU-Prolog system, a freesystem consisting of a Prolog compiler and a constraintsolver on �nite domains. GNU-Prolog is based on a low-levelmini-assembly platform-independent language that makes itpossible for e�cient compilation time, and allows to producesmall stand alone executable �les as the result of the com-pilation process. Interestingly, the Prolog part is compliantto the ISO standard, and the constraint part includes sev-eral extensions, such as an e�cient handling of rei�ed con-straints. The overall system is e�cient and comparable inperformances with commercial systems, both for the Prologand constraint parts.
1. INTRODUCTIONGNU Prolog 1 is a free Prolog compiler supported by theGNU organization. It was released in April 1999 and morethan 2500 copies have been downloaded up to now from theINRIA ftp mirror site 2. It is built on previous systems de-veloped at INRIA, namely wamcc [4] for Prolog and clp(FD)[5] for constraint solving on �nite domains. However, thecompilation scheme has been completely redesigned and thesystem extended.The overall features of GNU Prolog can be summed up asfollows. The Prolog system includes oating point numbers,streams, dynamic code, etc, and is compliant to the ISO s-tandard for Prolog; it also integrates several extensions suchas global variables, de�nite clause grammars (DCG), a sock-ets interface, an operating system interface, and a total ofmore than 300 Prolog built-in predicates. The system alsoinclude a Prolog debugger and a low-level WAM debugger,a line editing facility under the interactive interpreter withcompletion on atoms. Last but not least, there is a power-1http://www.gnu.org/software/prolog2Statistics concerning the main GNU ftp site and other mir-ror sites are not available.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’2000 Como, Italy
Copyright ACM 0-89791-88-6/97/05 ..$5.00

ful bidirectional interface between Prolog and C. This fea-tures implicit Prolog $ C type conversion, transparent I/Oargument handling, non-deterministic C code, and ISO er-ror support. Concerning performances, compiled predicates(native-code) are as fast as wamcc on average and consultedpredicates (byte-code) are 5 times faster than wamcc. In theconstraint solving part, there is no need for explicit declara-tions of FD variables, which are completely integrated intothe Prolog environment, and fully compatible with Prologvariables and integers. GNU Prolog also includes an e�cientconstraint solver over Finite Domains (FD), similar to thatof the clp(FD), described in [5; 6]. The key feature of sucha solver is the use of a single (low-level) primitive to de�neall (high-level) FD constraints. There are many advantagesin this approach: constraints can be compiled, the solver isopen and extensible, and the performances are comparableto that of commercial solvers. The FD solver contains manyprede�ned constraints: arithmetic constraints, boolean con-straints, symbolic constraints, rei�ed constraints; there aremore than 50 FD built-in constraints/predicates, and sev-eral prede�ned labeling heuristics. Moreover new high-levelconstraints can be easily de�ned by the user and de�ned interms of simple primitives.The rest of this paper is organized as follows. Section 2 in-troduces the motivation for producing yet another Prologand CLP system and provides some background. Section3 describes the compilation scheme for Prolog and perfor-mance evaluation is detailed in Section 4. Then Section 5describe the extension to handle constraint solving over �-nite domains, and a short conclusion ends the paper.
2. MOTIVATION AND BACKGROUNDSince Pascal and the P-code in the 70's , and more recentlywith Java and the JVM in the 90's abstract machines havebeen highlighted as the backbone of the compilation pro-cess. For Prolog, the Warren Abstract Machine (WAM) [14;1] is a de facto standard and classical techniques consist ineither executing directly the WAM code with an emulatorwritten in C (original version of SICStus Prolog) or assem-bler (Quintus Prolog) or in directly compiling to native code(Prolog by BIM, latest version of SICStus Prolog, AquariusProlog). Another approach consists in translating Prolog toC. The idea is to compensate the lack of optimizations (re-quired for simplicity) by the absence of emulation overheadphases (fetching and decoding) since, �nally, the C compilerwould produce native code. The wamcc Prolog compiler wasbased on this approach, but with also the idea of translat-

ing a WAM branching into a native code jump in order toreduce the overhead of calling a C function, see [4] for de-tails. There is however a serious drawback to this approach,which is the size of the C �le generated and the time takento compile such a big program by standard C compilers (e.g.GCC), especially in trying to optimize the code produced.The novelty of the GNU Prolog compilation scheme is totranslate a WAM �le into a mini-assembly (MA) �le. Thislanguage has been speci�cally designed for GNU Prolog.The idea of the MA is then to have a machine-independentintermediate language in which the WAM is translated. Thecorresponding MA code is mapped to the assembly languageof the target machine. In order to simplify the writing (i.e.porting) of such translators the instruction set of MA mustbe simple, in the spirit of the LLM3 abstract machine forLisp [3], as opposed to the complex instruction set of theBAM designed for Aquarius Prolog [13]. Actually, the MAlanguage is based on 10 instructions, mainly to handle thecontrol of Prolog and to call a C function.
3. PROLOG COMPILATION SCHEMEClassically the Prolog source �le gives rise to an object whichis linked to the GNU Prolog libraries to produce an exe-cutable. For that, the Prolog source is �rst compiled toobtain a WAM �le. The WAM �le is translated to a MA�le. The MA �le is then mapped to the assembly languageof the target machine which next give rise to an object �le.All object �les are linked together with the GNU Prolog li-braries to provide an executable. The compiler also takesinto account Finite Domain constraint de�nition �les. Ittranslates them to C and invoke the C compiler to obtainobject �les as explained later. Obviously all intermediatestages are hidden to the user who simply invokes the com-piler on his Prolog �le(s) (plus other �les: foreign C �le,FD �les,etc) and obtains an executable. However, it is alsopossible to stop the compiler at any given stage. This canbe useful, for instance, to see the WAM code produced. Fi-nally it is possible to give any kind of �le to the compilerwhich will insert it in the compilation chain at the stagecorresponding to its type.
3.1 From Prolog to the WAMThe pl2wam sub-compiler accepts a Prolog source and pro-duces a WAM �le. This compiler is fully written in GNUProlog and bootstrapped. It compiles each clause in sev-eral passes, as follows. First, the clause is simpli�ed: con-trol constructs like disjunctions, if-then or cut are rewritten(giving rise to auxiliary predicates if needed). Then, theclause is translated in a more practical internal format andvariables are classi�ed as permanent or temporary, perma-nent variables are assigned. Subsequently, the WAM codeassociated to the clause is generated. Finally, registers (tem-porary variables) are assigned and optimized. The code ofeach clause of a predicate is then grouped and the indexingcode is generated, see [2] for details.This compiler bene�ts from many (well-known) optimiza-tions: register optimization, uni�cation reordering, inlining,last subterm optimization, etc. Most of these optimizationscan be deactivated using command-line options. Deactivat-ing all options makes it possible to study the basic Prologto WAM compilation process.
3.2 From the WAM to the mini-assembly (MA)

The second stage translates a WAM �le into a MA �le. Theidea of the MA language is to have a machine-independentintermediate language in which the WAM is translated. Thedesign of MA comes from the study of the C code producedby wamcc. Indeed, in the wamcc system, most WAM instruc-tions given rise to a call to a C function performing thetreatment. The only exception was obviously instructionsto manage the control of Prolog and some short instruction-s that were inlined. The MA language has been designedto avoid the use of the C stage and then o�ers instructionsto handle the Prolog control, to call a C function and totest/use its returned value. The MA �le is then mapped tothe assembly of the target machine (from which an objectis produced).In order to simplify the writing of translators of the MA toa given architecture (i.e. the mappers), the MA instructionset must be simple: it only contains 10 instructions that aredescribed now:pl jump pl label : give the control to the predicate whosecorresponding symbol is pl label . This instructioncorresponds to the WAM instruction execute.pl call pl label : give the control to the predicate whosecorresponding symbol is pl label after initializing thecontinuation register CP. This instruction correspondsto the WAM instruction call.pl ret: give the control to the address stored in the contin-uation pointer CP. This instruction corresponds to theWAM instruction proceed.pl fail: give the control to the address stored in the lastalternative (ALT cell of the last choice point). Thisinstruction corresponds to the WAM instruction fail.jump label : give the control to the symbol label . This in-struction is used when translating indexing WAM in-structions to perform local control transfer (e.g. try,retry or trust). This instruction has been distin-guished from pl jump (even if both can be implement-ed in a same manner) since, on some machines, localjumps can be optimized.c ret: C return. This instruction is used at then end of theinitialization function to give back the control to thecaller.move reg1 ,reg2 : copy the WAM X or Y register reg1 tothe register reg2 .call c fct name (arg ,...): call the C function fct namepassing the arguments arg ,... Each argument can bean integer, a oat (C double), a string, the address of alabel, the content of a memory location, the content orthe address of a WAM X or Y register. This instructionis used to translate most of the WAM instructions.fail ret: perform a Prolog fail (like pl fail) if the valuereturned by the previous C function call is 0. Thisinstruction is used after a C function call returning aboolean to indicate its issue (e.g. functions performinguni�cations).jump ret: branch the execution to the address returned bythe previous C function call. This instruction makes

it possible to use C functions to determine where totransfer the control. For instance, the WAM index-ing instruction switch on term is implemented via aC function which returns the address of the selectedcode.move ret target : copy the value returned by the previousC function call to target which can be either a mem-ory location or a WAM X or Y register.The MA declarations are presented now. The keyword localspeci�es a local symbol (only visible in the current object)while global allows other object to see that symbol.pl code local/global pl label : de�ne a Prolog predi-cate whose corresponding symbol is pl label . Forthe moment all predicates are global (i.e. visible byall other Prolog objects). But local will be used whenimplementing a module system.c code local/global/initializer label : de�ne a func-tion that can be called by a C function. The use ofinitializer ensures that this function will be execut-ed �rst, when the Prolog engine is started. Only onefunction can be declared as initializer.long local/global ident = value : allocate the spacefor a long variable whose name is ident and initial-izes it with the integer value . The initialization isoptional (i.e. the = value part can be omitted).long local/global ident (Size) : allocate the space foran array of Size longs whose name is ident .
3.3 From the mini-assembly to the assemblyThe next stage of the compilation process consists in map-ping the MA �le to the assembly of the target machine.Since MA is based on a reduced instruction set, the writingof such translators is simpli�ed. However, producing ma-chine instructions is not an easy task. The �rst translatorwas written with the help of a C �le produced by wamcc.Indeed, compiling this �le to assembly with gcc gave usa �rst solution for the translation (since the MA instruc-tions corresponds to a subset of that C code). We havethen generalized this by de�ning a C �le (independentlyfrom wamcc) whose compilation to assembly is a good start-ing point when porting GNU Prolog to a new architecture.Mappings from MA to target machines currently includeSunOS/Sparc, Solaris/Sparc, Linux/ix86, Linux/PowerPC,Win95-98-NT/ix86, new ports are under development.
3.4 From objects to the executableAt link-time all objects are linked together with the Pro-log libraries: Prolog built-in predicate library, FD built-inconstraint/predicate library and run-time library. This lastlibrary contains in particular functions implementing WAMinstructions. Linked objects come from: Prolog source, userC foreign code or FD constraint de�nition. This stage re-solves external symbols (e.g. a call to a predicate de�ned inanother module). Since a Prolog source gives rise to a clas-sical object, several objects can be grouped in a library (e.g.using ar under Unix). The Prolog and FD built-in librariesare created using this way. De�ning a library allows thelinker to only extract from it needed objects (i.e. containingreferenced functions/data). For this reason, the GNU Pro-log compiler can generate small executables by avoiding theinclusion of most unused built-in predicates.

4. PROLOG PERFORMANCE EVALUATIONWe have tested the performances of GNU Prolog on a classi-cal set of Prolog benchmarks (see table below). Compilationtimings are rather good and we reached our initial goal s-ince GNU Prolog compiles 5-10 times faster than wamcc+gccwhile produced code is as fast as wamcc. The raw compila-tion speed is about 1000 lines per second on a Pentium 400Mhz machine, recalling than the declarative and high-levelaspect of Prolog makes it much more concise than C. Thesize of (stripped) objects is really small (less than 10 KBytesfor many benchmarks) and shows that this approach reallygenerates small code. The ability of GNU Prolog to producesmall executables is an important feature that makes it pos-sible to use them in many occasions (tools, web CGIs,...).We have compared GNU Prolog with one commercial sys-tem: SICStus prolog and two academic systems: XSB-Prologand SWI-Prolog. Table 1 presents execution times for thosesystems and the average speedup of GNU Prolog on a classi-cal set of benchmarks (the nand program could not be com-piled under XSB-Prolog). Timings are in seconds measuredon a Pentium II 400 Mhz under Linux. In the heavyweightcategory, GNU Prolog is 1.2 times faster than SICtus em-ulated. To be fair let us mention that SICStus Prolog cancompile to native code for some architectures (e.g. underSunOS/sparc but not yet under linux/ix86) and then it willbe 2.5 times faster than GNU Prolog on those platforms.However, in the academic league, GNU Prolog is around2.5 times faster than XSB-Prolog and more than 5 timesfaster than SWI-Prolog (without taking into account thetak benchmark). GNU Sicstus XSB SWIProlog Prolog Prolog PrologProgram 1.0.5 3.7.1 1.8.1 3.2.8boyer 0.332 0.324 0.889 1.424browse 0.430 0.424 0.837 1.274cal 0.030 0.074 0.146 0.328chat parser 0.080 0.092 0.254 0.252crypt 0.006 0.006 0.004 0.034ham 0.304 0.340 0.634 0.770meta qsort 0.006 0.004 0.014 0.034nand 0.018 0.018 ?.??? 0.072nrev 0.044 0.036 0.096 0.206poly 10 0.028 0.024 0.062 0.104queens (16) 0.238 0.416 0.802 2.374queens n (10) 1.148 1.262 0.002 4.288reducer 0.022 0.026 0.066 0.094sdda 0.002 0.002 0.002 0.034sendmore 0.026 0.046 0.088 0.182tak 0.038 0.072 0.164 30.510zebra 0.026 0.020 0.044 0.060GNU Prolog speedup 1.2 2.4 5.7Table 1: GNU Prolog versus other Prolog systems
5. CONSTRAINT SOLVINGConstraint Programming is a widely successful extension ofLogic Programming, which has proved to have a signi�cantimpact for a variety of industrial applications, see [9]. It isthus natural to include a constraint solving extension to anymodern Prolog-based system.

GNU Prolog compiles �nite domain constraints in the sameway as its predecessor clp(FD), described in [5; 6]. It isbased on the so-called \RISC approach" which consists intranslating at compile-time all complex user-constraints (e.g.disequations, linear equations or inequations) into simple,primitive constraints (the FD constraint system) at a lowerlevel which really embeds the propagation mechanism forconstraint solving.
5.1 The FD Constraint SystemThe FD constraint system is a general purpose constraintframework for solving discrete constraint satisfaction prob-lems (CSPs). It has been originally proposed by Pascal VanHentenryck in a concurrent constraint setting [12], an e�-cient implementation in the clp(FD) system is described in[5; 6]. FD is based on a single primitive constraint by whichcomplex constraints are de�ned, so for example constraintssuch as X = Y or X � 2Y are de�ned by FD constraints,instead of being built into the theory. Each constraint isthought of as a set of propagation rules describing how thedomain of each variable is related to the domain of othervariables, i.e. rules for describing node and arc consistencypropagation (see for instance [10] for more details on CSPsand consistency algorithms).A constraint is a formula of the form X in r where X isa variable and r is a range. A range in FD is a (non emp-ty) �nite set of natural numbers. Intuitively, a constraintX in r enforces X to belong to the range denoted by r.Such a range can be not only a constant range (e.g. 1::10)but also an indexical range when it contains one or more ofthe following:� dom(Y), that represents the current domain of Y ;� min(Y), the minimal value of the current domain ofY ;� max(Y), the maximal value of the current domain ofY .When an X in r constraint uses an indexical depending onanother variable Y it becomes store-sensitive and must bechecked each time the domain of Y is updated. This is howconsistency checking and domain reduction is achieved.Complex constraints such as linear equation or inequations,as well as symbolic constraints can be de�ned in terms of theFD constraint system, see [6]. For instance, the constraintX � Y , is translated as follows:X�Y � X in 0..max(Y) ^ Y in min(X)..1Observe that this translation has also an operational avor,and speci�es, for a given n-ary constraint, how a variabledomain has to be updated in terms of the other variable.For example, in the FD constraint X in 0..max(Y), when-ever the largest value of the domain of Y changes (that is,decreases), the domain of X gets reduced. If instead the do-main of Y changes but its largest value remains the same,then the domain of X does not change. One can thereforeconsider those primitive X in r constraints as a low-levellanguage in which the propagation scheme has to be ex-pressed. Indeed, one can express in the constraint de�nition(that is, the translation of a high-level user constraint intoa set of primitive constraints) the propagation scheme cho-sen to solve the constraint, such as forward-checking, full orpartial look-ahead, depending on the use of dom or min/maxindexical terms.

5.2 Finite Domain constraints in GNU PrologIn GNU Prolog we have designed a speci�c language to de-�ne FD constraints in a exible and powerful way. Indeed,the basic X in r primivite does not o�er a way to de�nerei�ed constraints (except via a C user function) and doesnot allow the user to control the propagation triggers. Theneed of symbolic constraints like element/3 also enhancedthe need of handling list of variables at the primitive lev-el. Due to restricted space in this paper we simply presentexamples of constraint de�nitions with this language.Let us de�ne a constraint X + C = Y (X and Y are FDvariables, C is an integer):x_plus_c_eq_y(fdv X,int C,fdv Y){start X in min(Y) - C .. max(Y) - C/* X = Y - C */start Y in min(X) + C .. max(X) + C/* Y = X + C */}The head de�nes, in a C-like syntax, the name of the con-straint (x plus c eq y) and for each argument its type (fdv,int) and its name. The keyword start activates an X in rprimitive. The �rst states that the bounds of X must be be-tween min(Y)� C and max(Y)� C. Similarly, the secondindicates how to update Y from X.Let us consider a more complex example and de�ne so-calledrei�ed constraints by using the facility o�ered by the lan-guage to delay the activation of an X in r constraint. Thefollowing example illustrates how to de�ne X = C , Bwhere X is an FD variable, C an integer and B a booleanvariable (i.e. an FD variable whose domain is 0::1) whichcaptures the truth value of the constraint X = C. The def-inition below waits until either the truth of X = C or thevalue of B is known:truth_x_eq_c(fdv X,int C,fdv B){wait_switchcase max(B)==0 /* case : B = 0 */start X in ~{ C } /* X != C */case min(B)==1 /* case : B = 1 */start X in { C } /* X = C */case min(X)>C || max(X)<C/* case : X != C */start B in { 0 } /* B = 0 */case min(X)==C && max(X)==C/* case : X = C */start B in { 1 } /* B = 1 */}The constraint de�nition language is compiled to C by thefd2c sub-compiler. Each constraint gives rise to a C functionreturning a boolean depending on the issue of the additionof the constraint to the store. The link between Prolog anda constraint is done by a speci�c Prolog predicate fd tell/1which is in fact compiled to a call to the corresponding Cfunction. For instance, to de�ne the previous constraint onewould declare a predicate 'x=c <=> b'/3 as follows :'x=c <=> b'(X,C,B) :- fd_tell(truth_x_eq_c(X,C,B)).

The C source �le obtained from an FD de�nition �le is sub-mitted to the C compiler to obtain an object which is thenincluded by the linker.
5.3 Benchmarking FD constraintsThe performances of the FD constraint solver of GNU Pro-log is the same as clp(FD) [6], that is, equivalent to theIlog Solver commercial C++ system from ILOG and on av-erage twice as fast as CHIP, a commercial constraint logicprogramming system from Cosytec, on a similar subset ofconstraints.In this section we compare the FD constraint solver withthe one of SICStus Prolog. As the syntax and the set ofprede�ned constraints is not the same in both systems weuse some examples provided with SICStus. Since we areinterested here in comparing the raw performance of theimplementation of the solvers (and the not their expressivepower) we selected benchmarks with a similar formulationin both systems for which we can expect both solvers toperform the same computations. Table 2 presents executiontimes for both solvers and the speedup for GNU Prolog. Onaverage GNU Prolog is around 4 times faster than SICStusProlog. GNU Sicstus SpeedupProlog PrologProgram 1.0.5 3.7.1crypta 0.008 0.012 1.5eq10 0.006 0.020 3.3eq20 0.010 0.030 3.0donald 0.210 0.820 3.9alpha 0.450 2.880 6.4alpha ff 0.010 0.030 3.0queens 16 0.050 0.270 5.4cars all 0.015 0.060 4.0Table 2: GNU Prolog FD solver versus SICStus FD solver
6. CONCLUSIONGNU Prolog is a free Prolog compiler with constraint solv-ing over �nite domains. The Prolog part of GNU Prologconforms to the ISO standard for Prolog with also manyextensions very useful in practice (global variables, OS in-terface, sockets,etc). The �nite domain constraint part ofGNU Prolog contains all classical arithmetic and symbol-ic constraints, and integrates also an e�cient treatment ofrei�ed constraint and boolean constraints. GNU Prolog pro-duces native binaries and the executable �les produced arestand alone. The size of those executable �les can be quitesmall since GNU Prolog can avoid to link the code of mostunused built-in predicates. The performances of GNU Pro-log are close to commercial systems, both in the Prolog andthe Constraint parts.
7. REFERENCES[1] H. A��t-Kaci. Warren's Abstract Machine, A TutorialReconstruction. Logic Programming Series, MIT Press,1991.

[2] M. Carlsson. Design and Implementation of an Or-Parallel Prolog Engine. PhD dissertation, SICS, Swe-den, 1990.[3] J. Chailloux. La machine LLM3. Technical Report RT-055, INRIA, 1985.[4] P. Codognet and D. Diaz. wamcc: Compiling Prolog toC. In 12th International Conference on Logic Program-ming, Tokyo, Japan, MIT Press, 1995.[5] P. Codognet and D. Diaz. A Minimal Extension of theWAM for clp(FD). In Proc. ICLP'93, 10th Internation-al Conference on Logic Programming. Budapest, Hun-gary, MIT Press, 1993.[6] P. Codognet and D. Diaz. Compiling Constraint inclp(FD). Journal of Logic Programming, Vol. 27, No.3, June 1996.[7] Information technology - Programming languages -Prolog - Part 1: General Core. ISO/IEC 13211-1, 1995.[8] J. Ja�ar and J-L. Lassez. Constraint Logic Program-ming. In Principles Of Programming Languages, Mu-nich, Germany, January 1987.[9] V. Saraswat, P. Van Hentenryck, P. Codognet et al.Constraint Programming. ACM Computing Surveys,vol. 28, no. 4, Dec. 1996.[10] E. Tsang. Foundations of Constraint Satisfaction. Aca-demic Press, 1993.[11] P. Van Hentenryck. Constraint Satisfaction in LogicProgramming. Logic Programming Series, The MITPress, 1989.[12] P. Van Hentenryck, V. Saraswat and Y. Deville. Con-straint processing in cc(FD). In Constraint Program-ming : Basics and Trends, A. Podelski (Ed.), LNCS910, Springer Verlag 1995. First version: Research Re-port, Brown University, Jan. 1992.[13] P. Van Roy and A. Despain. High-Performance Log-ic Programming with the Aquarius Prolog Compiler.IEEE Computer, pp 54-67, 1992.[14] D. H. D. Warren. An Abstract Prolog Instruction Set.Technical Report 309, SRI International, Oct. 1983.

