Module 10

Compression Members

Version 2 CE IIT, Kharagpur

Lesson 27

Slender Columns

Instructional Objectives:

At the end of this lesson, the student should be able to:

- define a slender column,
- give three reasons for its increasing importance and popularity,
- explain the behaviour of slender columns loaded concentrically,
- explain the behaviour of braced and unbraced single column or a part of rigid frame, bent in single or double curvatures,
- roles and importance of additional moments due to P - Δ effect and moments due to minimum eccentricities in slender columns,
- identify a column if sway or nonsway type,
- understand the additional moment method for the design of slender columns,
- apply the equations or use the appropriate tables or charts of SP-16 for the complete design of slender columns as recommended by IS 456.

11.27.1 Introduction

Slender and short are the two types of columns classified on the basis of slenderness ratios as mentioned in sec.10.21.5 of Lesson 21. Columns having both $l_{e x} / D$ and $l_{e y} / b$ less than twelve are designated as short and otherwise, they are slender, where $I_{e x}$ and $l_{e y}$ are the effective lengths with respect to major and minor axes, respectively; and D and b are the depth and width of rectangular columns, respectively. Short columns are frequently used in concrete structures, the design of such columns has been explained in Lessons 22 to 26, loaded concentrically or eccentrically about one or both axes. However, slender columns are also becoming increasingly important and popular because of the following reasons:
(i) the development of high strength materials (concrete and steel),
(ii) improved methods of dimensioning and designing with rational and reliable design procedures,
(iii) innovative structural concepts - specially, the architect's expectations for creative structures.

Accordingly, this lesson explains first, the behaviour of slender elastic columns loaded concentrically. Thereafter, reinforced concrete slender columns loaded concentrically or eccentrically about one or both axes are taken up. The design of slender columns has been explained and illustrated with numerical examples for easy understanding.

10.27.2 Concentrically Loaded Columns

It has been explained in Lessons 22 to 26 that short columns fail by reaching the respective stresses indicating their maximum carrying capacities. On the other hand, the slender or long columns may fail at a much lower value of the load when sudden lateral displacement of the member takes place between the ends. Thus, short columns undergo material failure, while long columns may fail by buckling (geometric failure) at a critical load or Euler's load, which is much less in comparison to that of short columns having equal area of cross-section. The buckling load is termed as Euler's load as Euler in 1744 first obtained the value of critical load for various support conditions. For more information, please refer to Additamentum, "De Curvis elasticis", in the "Methodus inveiendi Lineas Curvas maximi minimive proprietate gaudentes" Lausanne and Geneva, 1744. An English translation of this work is given in Isis No.58, Vol.20, p.1, November 1933.

The general expression of the critical load $P_{c r}$ at which a member will fail by buckling is as follows:

$$
P_{c r}=\pi^{2} E I /(k)^{2}
$$

where E is the Young's modulus I is the moment of inertia about the axis of bending, I is the unsupported length of the column and k is the coefficient whose value depends on the degree of restraints at the supports. Expressing moment of inertia $I=A r^{2}$, where A is the area of cross-section of the column and r is the radius of gyration, the above equations can be written as,

$$
\begin{equation*}
P_{c r}=\pi^{2} E A /(k l / r)^{2} \tag{10.62}
\end{equation*}
$$

Thus, $P_{c r}$ of a particular column depends upon $k l / r$ or slenderness ratio. It is worth mentioning that $k l$ is termed as effective length l_{e} of the column.

Fig. 10.27.1: Column - hinged at both ends, $(k=1)$

$4 P=4 P$
P.I. $=$ Point of Inflection

Fig. 10.27.2: Column - fixed at both ends, $(k=0.5)$

Fig.10.27.3: Column supported on cross-beams

$$
(0.5<k<1)
$$

Figures 10.27 .1 and 2 show two elastic slender columns having hinge supports at both ends and fixed supports against rotation at both ends,
respectively. Figure 10.27 .3 presents a column of real structure whose end supports are not either hinged or fixed. It has supports partially restrained against rotation by the top and bottom beams. Each of the three figures shows the respective buckled shape, points of inflection P/s (points of zero moment), the distance between the P/s and the value of k. All the three columns, having supports at both ends, have the k values less than one or at most one. By providing supports at both ends, one end of the column is prevented from undergoing lateral movement or sidesway with respect to the other end.

PL $=$ Point of Inflection
Fig. 10.27.4: Column - fixed at one end and free at other end, $(k=2)$

Fig. 10.27.5: Column rotationally fixed at both end, $(k=1)$

Fig.10.27.6: Column partially restrained at both ends

$$
(1<k<\infty)
$$

However, cantilever columns are entirely free at one end, as shown in Fig.10.27.4. Figure 10.27 .5 shows another type of column, rotationally fixed at both ends but one end can move laterally with respect to the other. Like that of Fig.10.27.3, a real column, not hinged, fixed or entirely free but restrained by top and bottom beams, where sideway can also take place. Each of these three figures, like those of Figs.10.27.1 to 3, presents the respective buckled shape, points of inflection (P/s), if any, the distance between the P/s and the value of k. All these columns have the respective k values greater than one or at least one.

Fig. 10.27.7: Braced portal frame ($k<1$)

Fig. 10.27.8. Unbraced portal frame ($k>2$)
Figures 10.27 .7 and 8 present two reinforced concrete portal frames, a typical reinforced concrete rigid frame. Columns of Fig.10.27.7 are prevented from sidesway and those of Fig.10.27.8 are not prevented from sidesway, respectively, when subjected to concentric loadings. The buckled configuration of the frame, prevented from sidesway (Fig.10.27.7) is similar to that of Fig.10.27.3,
except that the lower ends of the portal frame are hinged. One of the two points of inflection (P/s) is at the lower end of the column, while the other PI is slightly below the upper end of the column, depending on the degree of restraint. The value of k for such a frame is thus less than 1 . The critical load is, therefore, slightly more than $P_{c r}$ of the hinge-hinge column of Fig.10.27.1. The buckled configuration of the other portal frame of Fig.10.27.8, where sidesway is not prevented, is similar to the column of Fig.10.27.4 when it is made upside down, except that the upper end is not fixed but partially restrained by the supporting beam. In this case, the value of k exceeds 2, depending on the degree of restraint. One of the two P/s is at the bottom of the column. The critical load of the column of Fig.10.27.8 is much less than that of the column of Fig.10.27.1.

Table 10.14: Critical loads in terms of $P_{c r}$ of hinge-hinge column and effective lengths $I_{e}=k l$ of elastic and reinforced concrete columns with different boundary conditions and for a constant unsupported length /

$\begin{gathered} \text { SI. } \\ \text { No. } \end{gathered}$	Support conditions	$\begin{gathered} \text { Critical load } \\ P_{c r} \end{gathered}$	Effective length $l_{e}=k l$	Fig. No.
(A) Elastic single columns				
1.	Hinged at both ends, no sidesway	$P_{c r}$	I	10.27.1
2.	Fixed against rotation at both ends - no sidesway	$4 P_{\text {cr }}$	0.51	10.27.2
3.	Partially restrained against rotation by top and bottom crossbeams, no sidesway	Between $P_{c r}$ and $4 P_{c r}$	$l>k l>l / 2$	10.27.3
4.	Fixed at one end and entirely free at other end - sidesway not prevented	$0.25 P_{\text {cr }}$	$2 I$, one $P I$ is on imaginary extension	10.27.4
5.	Rotationally fixed at both ends - sidesway not prevented	$P_{c r}$	l, one $P l$ is on imaginary extension	10.27.5
6.	Partially restrained against rotation at both ends - sidesway not prevented	Between zero and slightly less than $P_{c r}{ }^{*}$	$l<k l<\alpha$	10.27 .6
(B) Reinforced concrete columns				
7.	Hinged portal frame - no sidesway	> $P_{c r}$	kl < l	10.27 .7
8.	Hinged portal frame sidesway not prevented	$\ll P_{c r}$	kl>2 I	10.27.8

Notes: 1. Buckled shapes are half sine wave between two points of inflection (Pls).
2. * The critical load is slightly less than $P_{c r}$ of hinge-hinge column (SI.No.1), when cross-beams are very rigid compared to columns, i.e., the case under SI.No. 6 approaches the case under SI.No.1.

The critical load is zero when cross-beams are very much flexible compared to columns, i.e., the case under SI.No. 6 approaches to hinge-hinge column of SI.No.1, allowing sidesway. In that case, it becomes unstable and hence, carries zero load.

Fig. 10.27.9: Effect of slenderness on strength

Table 10.14 presents the critical load in terms of that of hinge-hinge column $P_{c r}$ and effective lengths I_{e} (equal to the distance between two points of inflection P/s $=k$ I) of elastic and reinforced concrete columns for a constant value of the unsupported length l.

The stress-strain curve of concrete, as shown in Fig.1.2.1 of Lesson 2, reveals that the initial tangent modulus of concrete E_{c} is much higher than E_{t} (tangent modulus at higher stress level). Taking this into account in Eq.10.62, Fig.10.27.9 presents a plot of buckling load $P_{c r}$ versus $k / / r$. It is evident from the plot that the critical load is reducing with increasing slenderness ratio. For very short columns, the limiting factored concentric load estimated from Eq. 10.39 of Lesson 24 will be found to be less than the critical load, determined from Eq.10.62. The column, therefore, will fail by direct crushing and not by buckling. We can also find out the limiting value of $k l / r$ when the crushing load and the buckling load are the same. The $(\mathrm{kl} / \mathrm{r})_{l i m}$ is shown in Fig.10.27.9. The limiting value of $k l / r$ also indicates that a column having $k I / r$ more than $(k l / r)_{l i m}$ will fail by
buckling, while columns having any value of $k l / r$ less than $(k / / r)_{l i m}$ will fail by crushing of concrete.

The following are the observations of the discussions about the concentrically loaded columns:

1. As the slenderness ratio $k l / r$ increases, the strength of concentrically loaded column decreases.
2. The effective length of columns either in single members or parts of rigid frames is between $0.5 /$ and l, if the columns are prevented from sidesway by bracing or otherwise. The actual value depends on the degree of end restraints.
3. The effective length of columns either in single members or parts of rigid frames is always greater than one, if the columns are not prevented from sidesway. The actual value depends on the degree of end restraints.
4. The critical load of braced frame against sidesway is always significantly larger than that of the unbraced frame.

Fg. $10.27 .10(a)$ Deflections
Fig. $10.27 .10(b)$: Moments
Fig. 10.27.10: Column bent in single curvature, $(\mathrm{H}=0)$

10.27.3 Slender Columns under Axial Load and Uniaxial Moment

(A) Columns bent in single curvature

Figure 10.27.10a shows a column bent in single curvature under axial load P less than its critical load $P_{c r}$ with constant moment $P e$. The deflection profile marked by dotted line is due to the constant moment. However, there will be additional moment of Py at a distance z from the origin (at the bottom of column) which will deflect the column further, as shown by the solid line. The constant moment $P e$ and additional moment $P y$ are shown in Fig.10.27.10b. Thus, the total moment becomes

$$
M=M_{o}+P y=P(e+y)
$$

(10.63)

The maximum moment is $P(e+\Delta)$ at the mid-height of the column. This, we can write

$$
M_{\max }=M_{o}+P \Delta=P(e+\Delta)
$$

(10.64)

This is known as P - Δ effect.

Fig. 10.27.11(a) Deflections
Fig. $10.27 .11(\mathrm{~b})$ Moments
Fig. 10.27.11. Column bent in single curvature, $(H=H)$

Figure 10.27.11a shows another column whose bending is caused by a transverse load H. The bending moment at a distance z from the origin (bottom of the column) is $\mathrm{Hz} / 2$ causing deflection of the column marked by dotted line in the figure. The axial load P, less than its critical load $P_{c r}$, causes additional moment resulting in further deflection, marked by solid line in the figure. This additional deflection produces additional moment of $P y$ at a section z from the origin. The two bending moment diagrams are shown in Fig.10.27.11b. Here again, the total moment is

$$
\begin{equation*}
M=M_{0}+P y=H z / 2+P y \tag{10.65}
\end{equation*}
$$

The maximum moment at the mid-height of the column is

$$
\begin{equation*}
M_{\max }=M_{0, \max }+P \Delta=H / / 4+P \Delta \tag{10.66}
\end{equation*}
$$

The total moment in Eqs.10.63 and 10.65 consists of the moment M_{o} that acts in the presence of P and the additional moment caused by $P(=P y)$. The deflections y can be computed from y_{o}, the deflections without the axial load from the expression

$$
\begin{equation*}
y=y_{0}\left[1 /\left\{1-\left(P / P_{c r}\right)\right\}\right] \tag{10.67}
\end{equation*}
$$

From Eq.10.64, we have

$$
\begin{equation*}
M_{\max }=M_{o}+P \Delta=M_{o}+P \Delta_{o}\left[1 /\left\{1-\left(P / P_{c r}\right)\right\}\right] \tag{10.68}
\end{equation*}
$$

Equation 10.68 can be written as

$$
\begin{equation*}
M_{\max }=M_{o} \frac{1+\psi\left(P / P_{c r}\right)}{1-\left(P / P_{c r}\right)} \tag{10.69}
\end{equation*}
$$

where ψ depends on the type of loading and generally varies between ± 0.20. Since $P / P_{\text {cr }}$ is always less than one, we can ignore $\psi\left(P / P_{\text {cr }}\right)$ term of Eq. 10.69, to have

$$
M_{\max }=M_{o}\left\{1-\left(P / P_{c r}\right)\right\}
$$

(10.70)
where $1 /\left\{1-\left(P / P_{c r}\right)\right\}$ is the moment magnification factor. In both the cases above (Figs.10.27.10 and 11), a direct addition of the maximum moment caused by
transverse load or otherwise, to the maximum moment caused by P gives the total maximum moment as that is the most unfavourable situation. However, this is not the case for situation taken up in the following.
(B) Columns bent in double curvature

(a)Slender column (b) Ms diagram
(c) Py diagram
(d) $\mathrm{M}_{\mathrm{a}}+\mathrm{Py}$ diagram
(e) Attenative M + Py diagram

Fig. 1027.12. Slender column under axial load and bending, bent in double curvature
Figure 10.27.12a shows a column subjected to equal end moment of opposite signs. From the moment diagrams M_{o} and Py (Figs.10.27.12b and c), it is clear that though M_{o} moments are maximum at the ends, the Py moments are maximum at some distance from the ends. The total moment can be either as shown in d or in e of Fig.10.27.12. In case of Fig.10.27.12d, the maximum moment remains at the ends and in Fig.10.27.12e, the maximum moment is at some distance from the ends, where M_{0} is comparatively smaller than $M_{o \text { max }}$ at the ends. Accordingly, the total maximum moment is moderately higher than M_{0} max.

From the above, it is evident that the moment M_{0} will be magnified most strongly if the section of $M_{o m a x}$ coincides with the section of maximum value of y, as in the case of column bent in single curvature of Figs.10.27.10 and 11. Similarly, if the two moments are unequal but of same sign as in Fig.10.27.10, the moment M_{o} will be magnified but not so much as in Fig.10.27.10. On the other hand, if the unequal end moments are of opposite signs and cause bending in double curvature, there will be little or no magnification of M_{0} moment.

This dependence of moment magnification on the relative magnitudes of the two moments can be expressed by modifying the earlier Eq.10.70 as

$$
M_{\max }=M_{o} C_{m} /\left\{1-\left(P / P_{c r}\right)\right\}
$$

(10.71)
where $C_{m}=0.6+0.4\left(M_{1} / M_{2}\right) \geq 0.4$
(10.72)

The moment M_{1} is smaller than M_{2} and M_{1} / M_{2} is positive if the moments produce single curvature and negative if they produce double curvature. It is further seen from Eq. 10.72 that $C_{m}=1$, when $M_{1}=M_{2}$ and in that case, Eq.10.71 becomes the same as Eq.10.70.

For the column of Fig.10.27.12a, the deflections caused by M_{0} are magnified when axial load P is applied. The deflection can be obtained from
$y=y_{o}\left[1 /\left\{1-\left(P / 4 P_{c r}\right)\right\}\right]$
(10.73)

Fig. 10.27.13. Fixed porial frame-laterally unbraced

(C) Portal frame laterally unbraced and braced

Here, the sidesway can occur only for the entire frame simultaneously. A fixed portal frame, shown in Fig.10.27.13a, is under horizontal load H and compression force P. The moments due to H and P and the total moment diagrams are shown in Fig.10.27.13b, c and d, respectively. The deformations of the frame due to H are shown in Fig.10.27.13a by dotted curves, while the solid curves are the magnified deformations. It is observed that the maximum values of positive and negative M_{o} are at the ends of the column where the maximum
values of positive and negative moments due to P also occur. Thus, the total moment shall be at the ends as the two effects are fully additive.

Fig. 10.27.14: Fixed portal frame - laterally braced
Figure 10.27.14a shows a fixed portal frame, laterally braced so that no sidesway can occur. Figures 10.27 .14 b and c show the moments M_{o} and due to P. It is seen that the maximum values of the two different moments do not occur at the same location. As a result, the magnification of the moment either may not be true or shall be small.
(D) Columns with different slenderness ratios

Fig. 10.27.15: Behaviour of slender column
Figure 10.27.15 shows the interaction diagram of P and M at the midheight section of the column shown in Fig.10.27.10. Three loading paths OA, OB and OC are also shown in the figure for three columns having the same crosssectional area and the eccentricity of loads but with different slenderness ratios. The three columns are loaded with increasing P and M (at constant eccentricity) up to failure. The loading path OA is linear indicating $\Delta=0$, i.e., for a very short column. It should be noted that Δ should be theoretically zero only when either the effective length or the eccentricity is zero. In a practical short column, however, some lateral deflection shall be there, which, in turn will cause additional moment not more than five per cent of the primary moment and may be neglected. The loading path OA terminates at point A of the interaction diagram, which shows the failure load $P_{s c}$ of the short column with moment $M_{s c}=$ $P_{s c}$ e. The short column fails by crushing of concrete at the mid-height section. This type of failure is designated as material failure, either a tension failure or a compression failure depending on the location of the point A on the interaction curve.

The load path OB is for a long column, where the deflection Δ caused by increasing value of P is significant. Finally, the long column fails at load $P_{l c}$ and moment $M_{l c}=P_{l c}(e+\Delta)$. The loading path OB further reveals that the secondary moment $P_{l c} \Delta$ is comparable to the primary moment $P_{l c} e$. Moreover, the failure load and the primary moment of the long column $P_{l c}$ and $P_{l c}$ e, respectively, are less than those of the short column ($P_{s c}$ and $P_{s c} e$, respectively), though both the columns have the same cross-sectional areas and eccentricities but different slenderness ratios. Here also, the mid-height section of the column undergoes material failure, either a compression failure or a tension failure, depending on the location of the point B on the interaction diagram.

The loading path OC, on the other hand, is for a very long column when the lateral deflection Δ is so high that the slope of the path $d P / d M$ at C is zero. The column is so slender that the failure is due to buckling (instability) at a comparatively much low value of the load $P_{c r}$, though this column has the same cross-sectional area and the eccentricity of load as of the other two columns. Such instability failure occurs for very slender columns, specially when they are not braced.

The following points are summarised from the discussion made in sec.10.27.3.

1. Additional deflections and moments are caused by the axial compression force P in columns. The additional moments increase with the increase of $k l / r$, when other parameters are equal.
2. Laterally braced compression members and bent in single curvature have the same or nearby locations of the maxima of both M_{o} and Py. Thus, being fully additive, they have large moment magnification.
3. Laterally braced compression members and bent in double curvature have different locations of the maxima of both M_{o} and Py. As a result, the moment magnification is either less or zero.
4. Members of frames not braced laterally, the maxima of M_{0} and $P y$ mostly occur at the ends of column and cause the maximum total moment at the ends of columns only. Additional moments and additional deflections increase with the increase of $k l / r$.

10.27.4 Effective Length of Columns

Annex E of IS 456 presents two figures (Figs. 26 and 27) and a table (Table 26) to estimate the effective length of columns in frame structures based on a research paper, "Effective length of column in multistoreyed building" by R.H. Wood in The Structural Engineer Journal, No.7, Vol.52, July 1974. Figure 26 is for columns in a frame with no sway, while Fig. 27 is for columns in a frame with sway. These two figures give the values of k (i.e., $\left.l_{\mathbb{l}} / l\right)$ from two parameters β_{1} and β_{2} which are obtained from the following expression:

$$
\begin{equation*}
\beta=\sum K_{c} / \sum K_{c}+\sum K_{b} \tag{10.74}
\end{equation*}
$$

where K_{c} and K_{b} are flexural stiffnesses of columns and beams, respectively. The quantities β_{1} and β_{2} at the top and bottom joints A and B , respectively, are determined by summing up the K values of members framing into a joint at top
and bottom, respectively. Thus β_{1} and β_{2} for the frame shown in Fig.10.27.16 are as follows:

Fig. 10.27.16: Stiffness of columns in Wood's chart $\beta_{1}=\left(K_{c}+K_{c t}\right) /\left(K_{c}+K_{c t}+K_{b 1}+K_{b 2}\right)$
$\beta_{2}=\left(K_{c}+K_{c b}\right) /\left(K_{c}+K_{c b}+K_{b 3}+K_{b 4}\right)$

However, assuming idealised conditions, the effective length in a given plane may be assessed from Table 28 in Annex E of IS 456, for normal use.

10.27.5 Determination of Sway or No Sway Column

Clause E-2 of IS 456 recommends the stability index Q to determine if a column is a no sway or sway type. The stability index Q is expressed as:
$Q=\sum P_{u} \Delta_{u} / H_{u} h_{z}$
(10.77)
where $\sum P_{u}=$ sum of axial loads on all columns in the storey,
$\Delta_{u} \quad=$ elastically computed first-order lateral deflection,
$H_{u} \quad=$ total lateral force acting within the storey, and
$h_{z} \quad=$ height of the storey.
The column may be taken as no sway type if the value of Q is ≤ 0.4, otherwise, the column is considered as sway type.

10.27.6 Design of Slender Columns

The design of slender columns, in principle, is to be done following the same procedure as those of short columns. However, it is essential to estimate the total moment i.e., primary and secondary moments considering $P-\Delta$ effects. These secondary moments and axial forces can be determined by second-order rigorous structural analysis - particularly for unbraced frames. Further, the problem becomes more involved and laborious as the principle of superposition is not applicable in second-order analysis.

However, cl.39.7 of IS 456 recommends an alternative simplified method of determining additional moments to avoid the laborious and involved secondorder analysis. The basic principle of additional moment method for estimating the secondary moments is explained in the next section.

10.27.7 Additional Moment Method

In this method, slender columns should be designed for biaxial eccentricities which include secondary moments (Py of Eq.10.63 and 10.65) about major and minor axes. We first consider braced columns which are bent symmetrically in single curvature and cause balanced failure i.e., $P_{u}=P_{u b}$.
(A) Braced columns bent symmetrically in single curvature and undergoing balanced failure

For braced columns bent symmetrically in single curvature, we have from Eqs.10.63 and 10.65,

$$
\begin{equation*}
M=M_{0}+P y=M_{0}+P e_{a}=M_{o}+M_{a} \tag{10.78}
\end{equation*}
$$

where P is the factored design load P_{u}, M are the total factored design moments $M_{u x}$ and $M_{u y}$ about the major and minor axes, respectively; M_{o} are the primary factored moments $M_{\text {oux }}$ and $M_{\text {ouy }}$ about the major and minor axes, respectively; M_{a} are the additional moments $M_{a x}$ and $M_{a y}$ about the major and minor axes, respectively and e_{a} are the additional eccentricities $e_{a x}$ and $e_{a y}$ along the minor and major axes, respectively. The quantities M_{0} and P of Eq. 10.78 are known and hence, it is required to determine the respective values of e_{a}, the additional eccentricities only.

Let us consider the columns of Figs.10.27.10 and 11 showing Δ as the maximum deflection at the mid-height section of the columns. The column of Fig.10.27.10, having a constant primary moment M_{o}, causes constant curvature ϕ, while the column of Fig.10.27.11, having a linearly varying primary moment with a maximum value of $M_{o m a x}$ at the mid-height section of the column, has a linearly varying curvature with the maximum curvature of $\phi_{\text {max }}$ at the mid-height section the column. The two maximum curvatures can be expressed in terms of their respective maximum deflection Δ as follows:

The constant curvature (Fig.10.27.10) $\phi_{\max }=8 \Delta l l_{e}^{2}$

The linearly varying curvature (Fig.10.27.11) $\phi_{\max }=12 \Delta / l_{e}^{2}$
where I_{e} are the respective effective lengths $k l$ of the columns. We, therefore, consider the maximum ϕ as the average value lying in between the two values of Eqs.10.79 and 80 as

$$
\phi_{\max }=10 \Delta l_{e}^{2}
$$

(10.81)

Accordingly, the maximum additional eccentricities ϵ_{a}, which are equal to the maximum deflections Δ, can be written as
$e_{a}=\Delta=\phi l_{e}^{2} / 10$
(10.82)

Fig. 10.27.17: Maximum curvature at mid-height section when $P_{a}=P_{\text {ba }}$
Assuming the column undergoes a balanced failure when $P_{u}=P_{u b}$, the maximum curvature at the mid-height section of the column, shown in Figs.10.27.17a and b , can be expressed as given below, assuming (i) the values of $\varepsilon_{c}=0.0035, \varepsilon_{s t}=0.002$ and $d^{\prime} / D=0.1$, and (ii) the additional moment capacities are about eighty per cent of the total moment.
$\phi=$ eighty per cent of $\{(0.0035+0.002) / 0.9 D\}$ (see Fig. 10.27.17c)
or $\quad \phi=1 / 200 D$
(10.83)

Substituting the value of ϕ in Eq. 10.82,

$$
\begin{equation*}
e_{a}=D\left(I_{e} / D\right)^{2} / 2000 \tag{10.84}
\end{equation*}
$$

Therefore, the additional moment M_{a} can be written as,

$$
\begin{equation*}
M_{a}=P y=P \Delta=P e_{a}=(P D / 2000)\left(I_{e} / D\right)^{2} \tag{10.85}
\end{equation*}
$$

Thus, the additional moments $M_{a x}$ and $M_{a y}$ about the major and minor axes, respectively, are:
$M_{a x}=\left(P_{u} D / 2000\right)\left(l_{e x} / D\right)^{2}$
(10.86)
$M_{a y}=\left(P_{u} b / 2000\right)\left(l_{e y} / b\right)^{2}$
where $P_{u}=$ axial load on the member,
$l_{\text {ex }}=$ effective length in respect of the major axis,
$l_{\text {ey }}=$ effective length in respect of the minor axis,
$D=$ depth of the cross-section at right angles to the major axis, and
$b=$ width of the member.
Clause 39.7.1 of IS 456 recommends the expressions of Eqs.10.86 and 87 for estimating the additional moments $M_{a x}$ and $M_{a y}$ for the design. These two expressions of the additional moments are derived considering the columns to be braced and bent symmetrically undergoing balanced failure. Therefore, proper modifications are necessary for different situations like braced columns with unequal end moments with the same or different signs, unbraced columns and columns causing compression failure i.e., when $P_{u}>P_{u b}$.
(B) Braced columns subjected to unequal primary moments at the two ends

For braced columns without any transverse loads occurring in the height, the primary maximum moment ($M_{o \text { max }}$ of Eq.10.64), with which the additional moments of Eqs. 10.86 and 87 are to be added, is to be taken as:
$M_{\text {omax }}=0.4 M_{1}+0.6 M_{2}$
(10.88)
and further $M_{\text {omax }} \geq 0.4 M_{2}$
(10.89)
where M_{2} is the larger end moment and M_{1} is the smaller end moment, assumed to be negative, if the column is bent in double curvature.

To eliminate the possibility of total moment $M_{u \text { max }}$ becoming less than M_{2} for columns bent in double curvature (see Fig.10.27.12) with M_{1} and M_{2} having opposite signs, another condition has been imposed as

```
Mumax }\geq\mp@subsup{M}{2}{

The above recommendations are given in notes of cl.39.7.1 of IS 456 .

\section*{(C) Unbraced columns}

Unbraced frames undergo considerable deflection due to \(P-\Delta\) effect. The additional moments determined from Eqs. 10.86 and 87 are to be added with the maximum primary moment \(M_{0 \text { max }}\) at the ends of the column. Accordingly, we have
\(M_{o \text { max }}=M_{2}+M_{a}\)
(10.91)

The above recommendation is given in the notes of cl.39.7.1 of IS 456 .
(D) Columns undergoing compression failure ( \(P_{u}>P_{u b}\) )

It has been mentioned in part A of this section that the expressions of additional moments given by Eqs. 10.86 and 10.87 are for columns undergoing balanced failure (Fig.10.27.17). However, when the column causes compression failure, the e/D ratio is much less than that of balanced failure at relatively high axial loads. The entire section may be under compression causing much less curvatures. Accordingly, additional moments of Eqs. 10.86 and 10.87 are to be modified by multiplying with the reduction factor \(k\) as given below:
(i) For \(P_{u}>P_{u b x:} k_{a x}=\left(P_{u z}-P_{u}\right) /\left(P_{u z}-P_{u b x}\right)\)
(ii) For \(P_{u}>P_{u b y}\) : \(k_{a y}=\left(P_{u z}-P_{u}\right) /\left(P_{u z}-P_{u b y}\right)\)
with a condition that \(k_{a x}\) and \(k_{a y}\) should be \(\leq 1\)
where \(P_{u}=\) axial load on compression member
\(P_{u z}\) is given in Eq. 10.59 of Lesson 26 and is,
\[
\begin{equation*}
P_{u z}=0.45 f_{c k} A_{c}+0.75 f_{y} A_{s t} \tag{10.59}
\end{equation*}
\]
\(P_{u b x}, P_{u b y}=\) axial loads with respect to major and minor axes, respectively, corresponding to the condition of maximum compressive strain of 0.0035 in concrete and tensile strain of 0.002 in outermost layer of tension steel.

It is seen from Eqs. 10.92 and 10.93 that the values of \(k\left(k_{a x}\right.\) and \(\left.k_{a y}\right)\) vary linearly from zero (when \(P_{u}=P_{u z}\) ) to one (when \(P_{u}=P_{u b}\) ). Since Eqs.10.92 and 10.93 are not applicable for \(P_{u}<P_{u b}\), another condition has been imposed as given in Eq.10.94.

The above recommendations are given in cl.39.7.1.1 of IS 456.
The following discussion is very important for the design of slender columns.

Additional moment method is one of the methods of designing slender columns as discussed in A to D of this section. This method is recommended in cl. 39.7 of IS 456 also. The basic concept here is to enhance the primary moments by adding the respective additional moments estimated in a simple way avoiding laborious and involved calculations of second-order structural analysis. However, these primary moments under eccentric loadings should not be less than the moments corresponding to the respective minimum eccentricity, as stipulated in the code. Hence, the primary moments in such cases are to be replaced by the minimum eccentricity moments. Moreover, all slender columns, including those under axial concentric loadings, are also to be designed for biaxial bending, where the primary moments are zero. In such cases, the total moment consisting of the additional moment multiplied with the modification factor, if any, in each direction should be equal to or greater than the respective moments under minimum eccentricity conditions. As mentioned earlier, the minimum eccentricity consideration is given in cl.25.4 of IS 456.

\subsection*{10.27.8 Illustrative Example}

The following illustrative example is taken up to explain the design of slender columns. The example has been solved in step by step using (i) the equations of Lessons 21 to 27 and (ii) employing design charts and tables of SP16 , to compare the results.


Fig. 10.27.18: Problem 1

\section*{Problem 1:}

Determine the reinforcement required for a braced column against sidesway with the following data: size of the column \(=350 \times 450 \mathrm{~mm}\) (Fig.10.27.18); concrete and steel grades \(=\) M 30 and Fe 415 , respectively; effective lengths \(I_{\text {ex }}\) and \(I_{e y}=7.0\) and 6.0 m , respectively; unsupported length \(I=8\) m ; factored load \(P_{u}=1700 \mathrm{kN}\); factored moments in the direction of larger dimension \(=70 \mathrm{kNm}\) at top and 30 kNm at bottom; factored moments in the direction of shorter dimension \(=60 \mathrm{kNm}\) at top and 30 kNm at bottom. The column is bent in double curvature. Reinforcement will be distributed equally on four sides.

\section*{Solution 1:}

\section*{Step 1: Checking of slenderness ratios}
\[
\begin{aligned}
& I_{e x} / D=7000 / 450=15.56>12, \\
& I_{e y} / b=6000 / 350=17.14>12 .
\end{aligned}
\]

Hence, the column is slender with respect to both the axes.
Step 2: Minimum eccentricities and moments due to minimum eccentricities (Eq.10.3 of Lesson21)
\[
\begin{aligned}
& e_{x \min }=1 / 500+D / 30=8000 / 500+450 / 30=31.0>20 \mathrm{~mm} \\
& e_{y \text { min }}=1 / 500+b / 30=8000 / 500+350 / 30=27.67>20 \mathrm{~mm}
\end{aligned}
\]
\[
\begin{aligned}
& M_{o x}(\text { Min. ecc. })=P_{u}\left(e_{x \min }\right)=(1700)(31)\left(10^{-3}\right)=52.7 \mathrm{kNm} \\
& M_{o y}(\text { Min. ecc. })=P_{u}\left(e_{y \text { min }}\right)=(1700)(27.67)\left(10^{-3}\right)=47.04 \mathrm{kNm}
\end{aligned}
\]

\section*{Step 3: Additional eccentricities and additional moments}

\section*{Method 1: Using Eq. 10.84}
\[
\begin{aligned}
& e_{a x}=D\left(l_{x x} / D\right)^{2} / 2000=(450)(7000 / 450)^{2} / 2000=54.44 \mathrm{~mm} \\
& e_{a y}=b\left(l_{x} / b\right)^{2} / 2000=(350)(6000 / 350)^{2} / 2000=51.43 \mathrm{~mm} \\
& M_{a x}=P_{u}\left(e_{a x}\right)=(1700)(54.44)\left(10^{-3}\right)=92.548 \mathrm{kNm} \\
& M_{a y}=P_{u}\left(e_{a y}\right)=(1700)(51.43)\left(10^{-3}\right)=87.43 \mathrm{kNm}
\end{aligned}
\]

\section*{Method 2: Table I of SP-16}

For \(l_{e x} / D=15.56\), Table \(I\) of SP-16 gives:
\(e_{a x} / D=0.1214\), which gives \(e_{a x}=(0.1214)(450)=54.63 \mathrm{~mm}\)
For \(l_{\text {ey }} / D=17.14\), Table I of SP-16 gives:
\(e_{a y} / b=0.14738\), which gives \(e_{a y}=(0.14738)(350)=51.583 \mathrm{~mm}\)
It is seen that values obtained from Table I of SP-16 are comparable with those obtained by Eq. 10.84 in Method 1.

\section*{Step 4: Primary moments and primary eccentricities (Eqs.10.88 and 89)}
\(M_{\text {ox }}=0.6 M_{2}-0.4 M_{1}=0.6(70)-0.4(30)=30 \mathrm{kNm}\), which should be \(\geq\) \(0.4 \mathrm{M}_{2}(=28 \mathrm{kNm})\). Hence, o.k.
\(M_{\text {oy }}=0.6 M_{2}-0.4 M_{1}=0.6(60)-0.4(30)=24 \mathrm{kNm}\), which should be \(\geq\) \(0.4 \mathrm{M}_{2}(=24 \mathrm{kNm})\). Hence, o.k.

Primary eccentricities:
\[
\begin{aligned}
& e_{x}=M_{o x} / P_{u}=(30 / 1700)\left(10^{3}\right)=17.65 \mathrm{~mm} \\
& e_{y}=M_{o y} / P_{u}=(24 / 1700)\left(10^{3}\right)=14.12 \mathrm{~mm}
\end{aligned}
\]

Since, both primary eccentricities are less than the respective minimum eccentricities (see Step 2), the primary moments are revised to those of Step 2. So, \(M_{o x}=52.7 \mathrm{kNm}\) and \(M_{o y}=47.04 \mathrm{kNm}\).

\section*{Step 5: Modification factors}

To determine the actual modification factors, the percentage of longitudinal reinforcement should be known. So, either the percentage of longitudinal reinforcement may be assumed or the modification factor may be assumed which should be verified subsequently. So, we assume the modification factors of 0.55 in both directions.

\section*{Step 6: Total factored moments}
\[
\begin{aligned}
M_{u x} & =M_{o x}+(\text { Modification factor })\left(M_{a x}\right)=52.7+(0.55)(92.548) \\
& =52.7+50.9=103.6 \mathrm{kNm} \\
M_{u y} & =M_{o y}+\left(\text { Modification factor) }\left(M_{a y}\right)=47.04+(0.55)(87.43)\right. \\
& =47.04+48.09=95.13 \mathrm{kNm}
\end{aligned}
\]

\section*{Step 7: Trial section (Eq. 10.61 of Lesson 26)}

The trial section is determined from the design of uniaxial bending with \(P_{u}\) \(=1700 \mathrm{kN}\) and \(M_{u}=1.15\left(M_{u x}^{2}+M_{u y}^{2}\right)^{1 / 2}\). So, we have \(M_{u}=(1.15)\left\{(103.6)^{2}+\right.\) \(\left.(95.13)^{2}\right\}^{1 / 2}=161.75 \mathrm{kNm}\). With these values of \(P_{u}(=1700 \mathrm{kN})\) and \(M_{u}(=161.75\) kNm ), we use chart of SP-16 for the \(d^{\prime} / D=0.134\). We assume the diameters of longitudinal bar as 25 mm , diameter of lateral tie \(=8 \mathrm{~mm}\) and cover \(=40 \mathrm{~mm}\), to get \(d^{\prime}=40+8+12.5=60.5 \mathrm{~mm}\). Accordingly, \(d^{\prime} / D=60.5 / 450=0.134\) and \(d^{\prime} / b=60.5 / 350=0.173\). We have:
\[
\begin{aligned}
& P_{\psi} / f_{c k} b D=1700\left(10^{3}\right) /(30)(350)(450)=0.3598 \\
& M_{\psi} / f_{c k} b D^{2}=161.75\left(10^{6}\right) /(30)(350)(450)(450)=0.076
\end{aligned}
\]

We have to interpolate the values of \(p / f_{c k}\) for \(d^{\prime} / D=0.134\) obtained from Charts 44 (for \(d^{\prime} / D=0.1\) ) and 45 ( \(d^{\prime} / D=0.15\) ). The values of \(p / f_{c k}\) are 0.05 and 0.06 from Charts 44 and 45, respectively. The corresponding values of \(p\) are 1.5 and 1.8 per cent, respectively. The interpolated value of \(p\) for \(d^{\prime} / D=0.134\) is 1.704 per cent, which gives \(A_{s c}=(1.704)(350)(450) / 100=2683.8 \mathrm{~mm}^{2}\). We use \(4-25+4-20\left(1963+1256=3219 \mathrm{~mm}^{2}\right)\), to have \(p\) provided \(=2.044\) per cent giving \(p / f_{c k}=0.068\).

\section*{Step 8: Calculation of balanced loads \(P_{b}\)}

The values of \(P_{b x}\) and \(P_{b y}\) are determined using Table 60 of SP-16. For this purpose, two parameters \(k_{1}\) and \(k_{2}\) are to be determined first from the table. We have \(p / f_{c k}=0.068, d^{\prime} / D=0.134\) and \(d^{\prime} / b=0.173\). From Table \(60, k_{1}=\) 0.19952 and \(k_{2}=0.243\) (interpolated for \(d^{\prime} / D=0.134\) ) for \(P_{b x}\). So, we have: \(P_{b x} / f_{c k} b D=k_{1}+k_{2}\left(p / f_{c k}\right)=0.19952+0.243(0.068)=0.216044\), which gives \(P_{b x}=\) \(0.216044(30)(350)(450)\left(10^{-3}\right)=1020.81 \mathrm{kN}\).

Similarly, for \(P_{b y}: d^{\prime} / b=0.173, p / f_{c k}=0.068\). From Table 60 of SP-16, \(k_{1}\) \(=0.19048\) and \(k_{2}=0.1225\) (interpolated for \(d^{\prime} / b=0.173\) ). This gives \(P_{b y} / f_{c k} b D=\) \(0.19048+0.1225(0.068)=0.19881\), which gives \(P_{b y}=\) \((0.19881)(30)(350)(450)\left(10^{-3}\right)=939.38 \mathrm{kN}\).

Since, the values of \(P_{b x}\) and \(P_{b y}\) are less than \(P_{u}\), the modification factors are to be used.

\section*{Step 9: Determination of \(P_{u z}\)}

\section*{Method 1: From Eq. 10.59 of Lesson 26}
\[
\begin{aligned}
P_{u z} & =0.45 f_{c k} A_{g}+\left(0.75 f_{y}-0.45 f_{c k}\right) A_{s c} \\
& =0.45(30)(350)(450)+\{0.75(415)-0.45(30)\}(3219)=3084.71 \mathrm{kN}
\end{aligned}
\]

\section*{Method 2: Using Chart 63 of SP-16}

We get \(P_{u z} / A_{g}=19.4 \mathrm{~N} / \mathrm{mm}^{2}\) from Chart 63 of SP-16 using \(p=2.044\) per cent. Therefore, \(P_{u z}=(19.4)(350)(450)\left(10^{-3}\right)=3055.5 \mathrm{kN}\), which is in good agreement with that of Method 1.

\section*{Step 10: Determination of modification factors}

\section*{Method 1: From Eqs.10.92 and 10.93}
\[
\begin{equation*}
k_{a x}=\left(P_{u z}-P_{u}\right) /\left(P_{u z}-P_{u b x}\right) \tag{10.92}
\end{equation*}
\]
or \(\quad k_{a x}=(3084.71-1700) /(3084.71-1020.81)=0.671\) and
\(k_{a y}=\left(P_{u z}-P_{u}\right) /\left(P_{u z}-P_{u b y}\right)\)
or \(\quad k_{a y}=(3084.71-1700) /(3084.71-939.39)=0.645\)
The values of the two modification factors are different from the assumed value of 0.55 in Step 5 . However, the moments are changed and the section is checked for safety.

\section*{Method 2: From Chart 65 of SP-16}

From Chart 65 of SP-16, for the two parameters, \(P_{b x} / P_{u z}=\) \(1020.81 / 3084.71=0.331\) and \(P_{J} / P_{u z}=1700 / 3084.71=0.551\), we get \(k_{a x}=0.66\). Similarly, for the two parameters, \(P_{b y} / P_{u z}=939.38 / 3084.71=0.3045\) and \(P_{u} / P_{u z}=\) 0.551 , we have \(k_{a y}=0.65\). Values of \(k_{a x}\) and \(k_{a y}\) are comparable with those of Method 1.

\section*{Step 11: Total moments incorporating modification factors}
\[
\begin{aligned}
M_{u x} & =M_{o x}(\text { from Step } 4)+\left(k_{a x}\right) M_{a x}(\text { from Step 3) } \\
& =52.7+0.671(92.548)=114.8 \mathrm{kNm} \\
M_{u y} & =M_{o y}\left(\text { from Step 4) }+k_{a y}\left(M_{a y}\right)(\text { from Step 3) }\right. \\
& =47.04+(0.645)(87.43)=103.43 \mathrm{kNm} .
\end{aligned}
\]

\section*{Step 12: Uniaxial moment capacities}

The two uniaxial moment capacities \(M_{u x 1}\) and \(M_{u y 1}\) are determined as stated: (i) For \(M_{u x 1}\), by interpolating the values obtained from Charts 44 and 45 , knowing the values of \(P_{\nu} / f_{c k} b D=0.3598\) (see Step 7), \(p / f_{c k}=0.068\) (see Step 7), \(d^{\prime} / D=0.134\) (see Step 7), (ii) for \(M_{u y 1}\), by interpolating the values obtained from Charts 45 and 46 , knowing the same values of \(P_{\psi} / f_{c k} b D\) and \(p / f_{c k}\) as those of (i) and \(d^{\prime} / D=0.173\) (see Step 7). The results are given below:
(i) \(M_{u x 1} / f_{c k} b D^{2}=0.0882\) (interpolated between 0.095 and 0.085 )
(ii) \(M_{u y 1} / f_{c k} b b^{2}=0.0827\) (interpolated between 0.085 and 0.08 )

So, we have, \(M_{u x 1}=187.54 \mathrm{kNm}\) and \(M_{u y 1}=136.76 \mathrm{kNm}\).

\section*{Step 13: Value of \(\alpha_{n}\)}

\section*{Method 1: From Eq. 10.60 of Lesson 26}

We have \(P_{\psi} / P_{u z}=1700 / 3084.71=0.5511\). From Eq. 10.60 of Lesson 26, we have \(\alpha_{n}=0.67+1.67\left(P_{\psi} / P_{u z}\right)=1.59\).

Method 2: Interpolating the values between \(\left(P_{\psi} / P_{u z}\right)=0.2\) and 0.6
The interpolated value of \(\alpha_{n}=1.0+(0.5511-0.2) / 0.6=1.5852\). Both the values are comparable. We use \(\alpha_{n}=1.5852\).

\section*{Step 14: Checking of column for safety}

\section*{Method 1: From Eq. 10.58 of Lesson 26}

We have in Lesson 26:
\[
\begin{equation*}
\left(M_{u x} / M_{u x 1}\right)^{\alpha_{n}}+\left(M_{u y} / M_{u y 1}\right)^{\alpha_{n}} \leq 1 \tag{10.58}
\end{equation*}
\]

Here, putting the values of \(M_{u x}, M_{u x 1}, M_{u y}, M_{u y 1}\) and \(\alpha_{n}\), we get: \((114.8 / 187.54)^{1.5452}+(103.43 / 136.76)^{1.5852}=0.4593+0.6422=1.1015\). Hence, the section or the reinforcement has to be revised.

\section*{Method 2: Chart 64 of SP-16}

The point having the values of \(\left(M_{u x}\left(M_{u x 1}\right)=114.8 / 187.54=0.612\right.\) and \(\left(M_{u j} / M_{u y 1}\right)=103.43 / 136.76=0.756\) gives the value of \(P_{\nu} / P_{z}\) more than 0.7. The value of \(P_{u} / P_{u z}\) here is 0.5511 (see Step 13). So, the section needs revision.

We revise from Step 7 by providing \(8-25 \mathrm{~mm}\) diameter bars ( \(=3927 \mathrm{~mm}^{2}\), \(\mathrm{p}=2.493\) per cent and \(p / f_{c k}=0.0831\) ) as the longitudinal reinforcement keeping the values of \(b\) and \(D\) unchanged. The revised section is checked furnishing the repeated calculations from Step 8 onwards. The letter R is used before the number of step to indicate this step as revised one.

\section*{Step R8: Calculation of balanced loads \(\boldsymbol{P}_{\boldsymbol{b}}\)}

Table 60 of SP-16 gives \(k_{1}=0.19952\), and \(k_{2}=0.243\). We have \(p / f_{c k}=\) 0.0831 now. So, \(P_{b x}=\{0.19952+(0.243)(0.0831)\}(30)(350)(450)\left(10^{-3}\right)=\) 1038.145 kN . Similarly, \(k_{1}=0.19048, k_{2}=0.1225\) and \(p / f_{c k}=0.0831\) give \(P_{b y}=\) \(\{0.19048+(0.1225)(0.0831)\}(30)(350)(450)\left(10^{-3}\right)=948.12 \mathrm{kN}\).

The values of \(P_{b x}\) and \(P_{b y}\) are less than \(P_{u}(=1700 \mathrm{kN})\). So, modification factors are to be incorporated.

\section*{Step R9: Determination of \(P_{u z}\) (Eq. 10.59 of Lesson 26)}
\[
P_{u z}=0.45(30)(350)(450)+\{0.75(415)-0.45(30)\}(3927)=3295.514 \mathrm{kN} .
\]

Step R10: Determination of modification factors (Eqs.10.92 and 10.93)
\[
\begin{aligned}
& k_{a x}=(3295.514-1700) /(3295.514-1038.145)=0.707 \\
& k_{a y}=(3295.514-1700) /(3295.514-948.12)=0.68
\end{aligned}
\]

Step R11: Total moments incorporating modification factors
\[
\begin{aligned}
& M_{u x}=52.70+0.707(92.548)=118.13 \mathrm{kNm} \\
& M_{u y}=47.04+0.68(87.43)=106.49 \mathrm{kNm}
\end{aligned}
\]

\section*{Step R12: Uniaxial moment capacities}

Using Charts 44 and 45 for \(M_{u x 1}\) and Charts 45 and 46 for \(M_{u y 1}\), we get (i) the coefficient 0.1032 (interpolating 0.11 and 0.10 ) and (ii) the coefficient 0.0954 (interpolating 0.1 and 0.09 ) for \(M_{u x 1}\) and \(M_{u y 1}\), respectively.
\[
\begin{aligned}
& M_{u x 1}=(0.1032)(30)(350)(450)(450)\left(10^{-6}\right)=219.429 \mathrm{kNm} \\
& M_{u y 1}=(0.0954)(30)(450)(350)(350)\left(10^{-6}\right)=157.77 \mathrm{kNm}
\end{aligned}
\]

Step R13: Value of \(\alpha_{n}\) (Eq. 10.60 of Lesson 26)
\[
P_{u} / P_{u z}=1700 / 3295.514=0.5158 \text { which gives }
\]
\[
\alpha_{n}=1+(0.5158-0.2) / 0.6=1.5263
\]

\section*{Step R14: Checking of column for safety (Eq.10.58 of Lesson 26)}
\((118.13 / 219.424)^{1.5263}+(106.49 / 157.77)^{1.5263}=0.3886+0.5488=\) \(0.9374<1.0\)

Hence, the revised reinforcement is safe. The section is shown in Fig.10.27.18.

\subsection*{10.27.9 Practice Questions and Problems with Answers}
Q.1: Define a slender column. Give three reasons for its increasing importance and popularity.
A.1: See sec. 10.27.1.
Q.2: Explain the behaviour of a slender column subjected to concentric loading. Explain Euler's load.
A.2: See sec.10.27.3.
Q.3: Choose the correct answer.
(A) As the slenderness ratio increases, the strength of concentrically loaded column:
(i) increases
(ii) decreases
(B) For braced columns, the effective length is between
(i) \(I\) and \(2 I\) (ii) \(0.5 /\) and \(2 I\) (iii) \(0.5 /\) and \(I\)
(C) The critical load of a braced frame is
(i) always larger than that of an unbraced column
(ii) always smaller than that of an unbraced column
(iii) sometimes larger and sometimes smaller than that of an unbraced column
A.3: A. (ii),
B. (iii),
C. (i)
Q.4: Explain the behaviour of slender columns under axial load and uniaxial bending, bent in single curvature.
A.4: Part (A) of sec. 10.27.3.
Q.5: Explain the behaviour of slender columns under axial load and uniaxial bending, bent in double curvature.
A.5: Part (B) of sec. 10.27.3.
Q.6: Explain the behaviour of columns in portal frame both braced and unbraced.
A.6: Part (C) of sec. 10.27.3.


Fig. 10.27.19:0.7
Q.7: Check the column of Fig.10.27.19, if subjected to an axial factored load of \(P_{u}=1500 \mathrm{kN}\) only when the unsupported length of the column \(=I=8.0 \mathrm{~m}\), \(l_{e x}=l_{e y}=6.0 \mathrm{~m}, D=400 \mathrm{~mm}, b=300 \mathrm{~mm}\), using concrete of M 20 and steel grade in Fe 415.

\section*{A.7: Solution:}

\section*{Step 1: Slenderness ratios}
\[
\begin{aligned}
& L_{e x} / D=6000 / 400=15>12 \\
& L_{e y} / b=6000 / 300=20>12
\end{aligned}
\]

The column is slender about both the axes.
Step 2: Minimum eccentricities and moments due to minimum eccentricities (Eq.10.3 of Lesson 21)
\[
\begin{aligned}
& e_{x \min }=1 / 500+D / 30=8000 / 500+400 / 30=29.33 \mathrm{~mm}>20 \mathrm{~mm} \\
& e_{y \text { min }}=8000 / 500+300 / 30=26 \mathrm{~mm}>20 \mathrm{~mm} \\
& M_{x} \text { due to min. ecc. }=P_{u}\left(e_{x \min }\right)=1500(29.33)=43.995 \mathrm{kNm} \\
& M_{y} \text { due to min. ecc. }=P_{u}\left(e_{y \min }\right)=1500(26.0)=39.0 \mathrm{kNm}
\end{aligned}
\]

\section*{Step 3: Primary moments}

Since the column is concentrically loaded, the primary moments are zero. Therefore, the additional moments must be greater than the respective moments due to minimum eccentricity.

\section*{Step 4: Additional eccentricities and moments (Eq.10.84)}
mm)
\[
\begin{equation*}
e_{a x}=D\left(l_{e x} / D\right)^{2} / 2000=400(6000 / 400)^{2} / 2000=45 \mathrm{~mm}>e_{x \min }(=29.23 \tag{min}
\end{equation*}
\]
\[
e_{a y}=b\left(l_{e y} / b\right)^{2} / 2000=300(6000 / 300)^{2} / 2000=60 \mathrm{~mm}>e_{y \min }(=26
\]

\section*{Step 5: Calculation of balance loads \(P_{b x}\) and \(P_{b y}\)}

Given \(A_{s c}=3927 \mathrm{~mm}^{2}\) ( 8 bars of 25 mm diameter give \(p=3.2725\) per cent. So, \(p / f_{c k}=0.1636\). Using 8 mm diameter lateral tie, \(d^{\prime}=40+8+12.5=\)
60.5 mm giving \(d^{\prime} / D=60.5 / 400=0.15125 \cong 0.15\) and \(d^{\prime} / b=60.5 / 300=0.2017\) \(\cong 0.20\).

From Table 60 of SP-16, we get \(k_{1}=0.196\) and \(k_{2}=0.061\). Thus, we have:
\[
P_{b x}=\{0.196+(0.061)(0.1636)\}(20)(300)(400)\left(10^{-3}\right)=494.35 \mathrm{kN}
\]

Similarly, for \(P_{\text {by }}: k_{1}=0.184\) and \(k_{2}=-0.011\), we get
\[
P_{b y}=\{0.184-(0.011)(0.1636)\}(20)(300)(400)\left(10^{-3}\right)=437.281 \mathrm{kN}
\]

Since, \(P_{b x}\) and \(P_{b y}\) are less than \(P_{u}(=1500 \mathrm{kN})\), modification factors are to be incorporated.

\section*{Step 6: Determination of \(P_{u z}(E q .10 .59\) of Lesson 26)}
\[
P_{u z}=0.45(20)(300)(400)+\{0.75(415)-0.45(20)\}(3927)\left(10^{-3}\right)=2266.94
\]
kN

\section*{Step 7: Determination of modification factors}
\[
\begin{aligned}
& k_{a x}=(2266.94-1500) /(2266.94-494.35)=0.433 \text { and } \\
& k_{a y}=(2266.94-1500) /(2266.94-437.281)=0.419
\end{aligned}
\]

\section*{Step 8: Additional moments and total moments}
\[
\begin{aligned}
& M_{a x}=1500(0.433)(45)=29.2275 \mathrm{kNm} \\
& M_{a y}=1500(0.419)(60)=37.71 \mathrm{kNm}
\end{aligned}
\]

Since, primary moments are zero as the column is concentrically loaded, the total moment shall consist of the additional moments. But, as both the additional moments are less than the respective moment due to minimum eccentricity, the revised additional moments are: \(M_{a x}=43.995 \mathrm{kNm}\) and \(M_{a y}=\) 39.0 kNm , which are the total moments also.

Thus, we have:
\(M_{u x}=43.995 \mathrm{kNm}, M_{u y}=39.0 \mathrm{kNm}\) and \(P_{u}=1500 \mathrm{kN}\).

\section*{Step 9: Uniaxial moment capacities}

We have, \(P_{\psi} / f_{c k} b D=\{1500 /(20)(300)(400)\}(1000)=0.625, p / f_{c k}=0.1636\) and \(d^{\prime} / D=0.15\) for \(M_{u x 1} ;\) and \(d^{\prime} / b=0.2\) for \(M_{u y 1}\). The coefficients are 0.11 (from Chart 45) and 0.1 (from Chart 46) for \(M_{u \times 1}\) and \(M_{u y 1}\), respectively. So, we get,
\[
\begin{aligned}
& M_{u x 1}=0.11(20)(300)(400)(400)\left(10^{-6}\right)=225.28 \mathrm{kNm}, \text { and } \\
& M_{u y 1}=0.1(20)(300)(300)(400)\left(10^{-6}\right)=72.0 \mathrm{kNm}
\end{aligned}
\]

Step 10: Value of \(\alpha_{n}\) (Eq. 10.60 of Lesson 26)
Here, \(P_{U} / P_{u z}=1500 / 2266.94=0.6617\). So, we get
\[
\alpha_{n}=1.0+(0.4617 / 0.6)=1.7695
\]

Step 11: Checking the column for safety (Eq. 10.58 of Lesson 26)
\[
\left(M_{u x} / M_{u x 1}\right)^{\alpha_{n}}+\left(M_{u y} / M_{u y 1}\right)^{\alpha_{n}} \leq 1
\]

Here, \((43.995 / 225.28)^{1.7695}+(39.0 / 72.0)^{1.7695}=0.0556+0.3379=\) \(0.3935<1\)

Hence, the column is safe to carry \(P_{u}=1500 \mathrm{kN}\).

\subsection*{11.27.10 References}
1. Reinforced Concrete Limit State Design, \(6^{\text {th }}\) Edition, by Ashok K. Jain, Nem Chand \& Bros, Roorkee, 2002.
2. Limit State Design of Reinforced Concrete, \(2^{\text {nd }}\) Edition, by P.C.Varghese, Prentice-Hall of India Pvt. Ltd., New Delhi, 2002.
3. Advanced Reinforced Concrete Design, by P.C.Varghese, Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.
4. Reinforced Concrete Design, \(2^{\text {nd }}\) Edition, by S.Unnikrishna Pillai and Devdas Menon, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2003.
5. Limit State Design of Reinforced Concrete Structures, by P.Dayaratnam, Oxford \& I.B.H. Publishing Company Pvt. Ltd., New Delhi, 2004.
6. Reinforced Concrete Design, \(1^{\text {st }}\) Revised Edition, by S.N.Sinha, Tata McGraw-Hill Publishing Company. New Delhi, 1990.
7. Reinforced Concrete, \(6^{\text {th }}\) Edition, by S.K.Mallick and A.P.Gupta, Oxford \& IBH Publishing Co. Pvt. Ltd. New Delhi, 1996.
8. Behaviour, Analysis \& Design of Reinforced Concrete Structural Elements, by I.C.Syal and R.K.Ummat, A.H.Wheeler \& Co. Ltd., Allahabad, 1989.
9. Reinforced Concrete Structures, \(3^{\text {rd }}\) Edition, by I.C.Syal and A.K.Goel, A.H.Wheeler \& Co. Ltd., Allahabad, 1992.
10.Textbook of R.C.C, by G.S.Birdie and J.S.Birdie, Wiley Eastern Limited, New Delhi, 1993.
11. Design of Concrete Structures, \(13^{\text {th }}\) Edition, by Arthur H. Nilson, David Darwin and Charles W. Dolan, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2004.
12. Concrete Technology, by A.M.Neville and J.J.Brooks, ELBS with Longman, 1994.
13. Properties of Concrete, \(4^{\text {th }}\) Edition, \(1^{\text {st }}\) Indian reprint, by A.M.Neville, Longman, 2000.
14. Reinforced Concrete Designer's Handbook, \(10^{\text {th }}\) Edition, by C.E.Reynolds and J.C.Steedman, E \& FN SPON, London, 1997.
15. Indian Standard Plain and Reinforced Concrete - Code of Practice ( \(4^{\text {th }}\) Revision), IS 456: 2000, BIS, New Delhi.
16. Design Aids for Reinforced Concrete to IS: 456 - 1978, BIS, New Reinforced Concrete Limit State Design, \(5^{\text {th }}\) Edition, by Ashok K. Jain, Nem Chand \& Bros, Roorkee, 1999.

\subsection*{11.27.11 Test 27 with Solutions}

Maximum Marks \(=50, \quad\) Maximum Time \(=30\) minutes
Answer all questions.


Fig. 10.27.20: TQ. 1

TQ.1: Determine the primary, additional and total moments of the column shown in Fig.10.27.20 for the three different cases:
(i) When the column is braced against sidesway and is bent in single curvature.
(ii) When the column is braced against sidesway and is bent in double curvature.
(iii) When the column is unbraced.

Use the following data: \(P_{u}=2000 \mathrm{kN}\), concrete grade \(=\mathrm{M} 20\), steel grade \(=\) Fe 415 , unsupported length \(I=8.0 \mathrm{~m}, l_{\text {ex }}=7.0 \mathrm{~m}, I_{e y}=6.0 \mathrm{~m}, A_{s c}=6381 \mathrm{~mm}^{2}\) (12-25 mm diameter bars), lateral tie \(=8 \mathrm{~mm}\) diameter @ \(250 \mathrm{~mm} \mathrm{c} / \mathrm{c}, d^{\prime}=60.5\) \(\mathrm{mm}, D=500 \mathrm{~mm}\) and \(b=400 \mathrm{~mm}\). The factored moments are: 70 kNm at top and 40 kNm at bottom in the direction of larger dimension and 60 kNm at top and 30 kNm at bottom in the direction of shorter dimension.

\section*{A.TQ.1: Solution}

The following are the common steps for all three cases.

\section*{Step 1: Slenderness ratios}
\[
l_{e x} / D=7000 / 500=14>12 \text { and } l_{\text {ey }} / b=6000 / 400=15>12
\]

The column is slender about both axes.
Step 2: Minimum eccentricities and moments due to minimum eccentricities (Eq.10.3 of Lesson 21)
\[
\begin{aligned}
& e_{x \min }=I / 500+D / 30=8000 / 500+500 / 30=32.67 \mathrm{~mm}>20 \mathrm{~mm}, \text { and } \\
& e_{y \min }=I / 500+b / 30=8000 / 500+400 / 30=29.34 \mathrm{~mm}>20 \mathrm{~mm} \\
& M_{x}(\text { min. ecc. })=2000(32.67)\left(10^{-3}\right)=65.34 \mathrm{kNm}, \text { and } \\
& M_{y}(\text { min. ecc. })=2000(29.34)\left(10^{-3}\right)=58.68 \mathrm{kNm}
\end{aligned}
\]

Step 3: Additional eccentricities and moments due to additional eccentricities (Eq.10.84)
mm)
\[
e_{a x}=D\left(l_{e x} / D\right)^{2} / 2000=500(7000 / 500)^{2} / 2000=49 \mathrm{~mm}>e_{x \min }(=32.67
\]
mm)
\[
e_{a y}=b\left(l_{e y} / b\right)^{2} / 2000=400(6000 / 400)^{2} / 2000=45 \mathrm{~mm}>e_{y \min }(=29.34
\]
\[
M_{a x}=P_{u}\left(e_{a x}\right)=(2000)(49)\left(10^{-3}\right)=98 \mathrm{kNm}, \text { and }
\]
\[
M_{a y}=P_{u}\left(e_{a y}\right)=(2000)(45)\left(10^{-3}\right)=90 \mathrm{kNm}
\]

\section*{Step 4: Calculation of balanced loads}

Using \(d^{\prime} / D=0.121\) and \(p / f_{c k}=3.1905 / 20=0.159525\) in Table 60 of SP16 , we have \(k_{1}=0.20238\) and \(k_{2}=0.2755\) (by linear interpolation). This gives
\[
P_{b x}=\{0.20238+0.2755(0.159525)\}(20)(400)(500)\left(10^{-3}\right)=983.32 \mathrm{kN}
\]

Similarly, \(d^{\prime} / b=0.15125\) and \(p / f_{c k}=0.159525\) in Table 60 of SP-16 gives \(k_{1}=0.1957\) and \(k_{2}=0.198625\) (by linear interpolation). So, we get
\[
P_{b y}=\{0.1957+0.198625(0.159525)\}(20)(400)(500)\left(10^{-3}\right)=909.54 \mathrm{kN}
\]

Both \(P_{b x}\) and \(P_{b y}\) are smaller than \(P_{u}(=2000 \mathrm{kN})\). Hence, modification factors are to be incorporated.

\section*{Step 5: Calculation of \(P_{u z}\) (Eq. 10.59 of Lesson 26)}
\[
\begin{aligned}
P_{u z} & =0.45 f_{c k} A_{g}+\left(0.75 f_{y}-0.45 f_{c k}\right) A_{s c} \\
& =0.45(20)(400)(500)+\{0.75(415)-0.45(20)\}(6381)=3728.66 \mathrm{kN}
\end{aligned}
\]

Step 6: Modification factors and revised additional moments (Eqs.10.92 and 10.93)
\[
\begin{aligned}
& k_{a x}=(3728.66-2000) /(3728.66-983.32)=0.6297, \text { and } \\
& k_{a y}=(3728.66-2000) /(3728.66-909.54)=0.6132
\end{aligned}
\]

The revised additional moments are:
\[
\begin{aligned}
& M_{a x}=98(0.6297)=61.71 \mathrm{kNm}, \text { and } \\
& M_{a y}=90(0.6132)=55.19 \mathrm{kNm}
\end{aligned}
\]

Now, the different cases are explained.

\section*{Case (i): Braced column in single curvature}

Primary moments \(=0.4 M_{1}+0.6 M_{2}\), but should be equal to or greater than \(0.4 M_{2}\) and moment due to minimum eccentricities. So, we get,
\(M_{o x}=\) largest of \(58 \mathrm{kNm}, 28 \mathrm{kNm}\) and \(65.34 \mathrm{kNm}=65.34 \mathrm{kNm}\)
\(M_{o y}=\) largest of \(48 \mathrm{kNm}, 24 \mathrm{kNm}\) and \(58.68 \mathrm{kNm}=58.68 \mathrm{kNm}\)
Additional moments are \(M_{a x}=61.71 \mathrm{kNm}\) and \(M_{a y}=55.19 \mathrm{kNm}\) (incorporating the respective modification factors).

Total moments \(=M_{u x}=M_{o x}+M_{a x}=65.34+61.71=127.05 \mathrm{kNm}>\) 65.34 kNm (moment due to minimum eccentricity), and
\(M_{u y}=M_{o y}+M_{a y}=58.68+55.19=113.87 \mathrm{kNm}>58.68 \mathrm{kNm}\) (moment due to minimum eccentricity).

\section*{Case (ii): Braced column in double curvature}

Primary moments \(=-0.4 M_{1}+0.6 M_{2}\), but should be equal to or greater than \(0.4 M_{2}\) and the moment due to minimum eccentricity. So, we get,
\(M_{\text {ox }}=\) largest of \(26 \mathrm{kNm}, 28 \mathrm{kNm}\) and \(65.34 \mathrm{kNm}=65.34 \mathrm{kNm}\)
\(M_{\text {oy }}=\) largest of \(24 \mathrm{kNm}, 24 \mathrm{kNm}\) and \(58.68 \mathrm{kNm}=58.68 \mathrm{kNm}\)
Additional moments are \(M_{a x}=61.71 \mathrm{kNm}\) and \(M_{a y}=55.19 \mathrm{kNm}\)
Final moments \(=M_{u x}=M_{o x}+M_{a x}=65.34+61.71=127.05 \mathrm{kNm}>\) 65.34 kNm (moment due to minimum eccentricity), and
\(M_{u y}=58.68+55.19=113.87 \mathrm{kNm}>58.68 \mathrm{kNm}\) (moment due to minimum eccentricity).

\section*{Case (iii): Unbraced column}

Primary moments \(=M_{2}\) and should be greater than or equal to moment due to minimum eccentricity.
\(M_{o x}=70 \mathrm{kNm}>65.34 \mathrm{kNm}\) (moment due to minimum eccentricity), and
\(M_{o y}=60 \mathrm{kNm}>58.68 \mathrm{kNm}\) (moment due to minimum eccentricity).
Additional moments are \(M_{a x}=61.71 \mathrm{kNm}\) and \(M_{\mathrm{ay}}=55.19 \mathrm{kNm}\)
Final moments \(=M_{u x}=M_{o x}+M_{a x}=70.0+61.71=131.71 \mathrm{kNm}>\) 65.34 kNm (moment due to minimum eccentricity), and
\(M_{u y}=M_{o y}+M_{a x}=60.0+55.19=115.19 \mathrm{kNm}>58.68 \mathrm{kNm}\) (moment due to minimum eccentricity).

\subsection*{10.27.12 Summary of this Lesson}

This lesson mentions the reasons of increasing importance and popularity of slender columns and explains the behaviour of slender columns loaded concentrically or eccentrically. The role of minimum eccentricity that cannot be avoided in any practical column is explained for slender columns. The moments due to minimum eccentricities in both directions should be taken into account for a slender column loaded concentrically as it should be designed under biaxial bending. On the other hand, the given primary moments are also to be checked so that they are equal to or greater than the respective moments due to minimum eccentricity for all slender columns.

Both braced and unbraced columns, bent in single or double curvatures, are explained. The importance of modification factors of the additional moments due to \(P-\Delta\) effect is explained. Effective lengths and important parameter to determine the slenderness ratios are illustrated for different types of support conditions either in single column or when the column is a part of rigid frames. Additional moment method, a simple method for the design of slender columns, is explained, which is recommended in IS 456. Numerical problems in illustrative example, practice problem and test questions will help in understanding and applying the method for the design of slender columns, as stipulated in IS 456. Direct computations from the given equations as well as use of design charts and tables of SP-16 are illustrated for the design.```

