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Instructional Objectives:

At the end of this lesson, the student should be able to:

0 define a slender column,

o give three reasons for its increasing importance and popularity,

o explain the behaviour of slender columns loaded concentrically,

- explain the behaviour of braced and unbraced single column or a part of
rigid frame, bent in single or double curvatures,

- roles and importance of additional moments due to P- A effect and
moments due to minimum eccentricities in slender columns,

o identify a column if sway or nonsway type,

- understand the additional moment method for the design of slender
columns,

o apply the equations or use the appropriate tables or charts of SP-16 for
the complete design of slender columns as recommended by IS 456.

11.27.1 Introduction

Slender and short are the two types of columns classified on the basis of
slenderness ratios as mentioned in sec.10.21.5 of Lesson 21. Columns having
both Iex/D and Ie,/b less than twelve are designated as short and otherwise, they
are slender, where Iex and Iey are the effective lengths with respect to major and
minor axes, respectively; and D and b are the depth and width of rectangular
columns, respectively. Short columns are frequently used in concrete structures,
the design of such columns has been explained in Lessons 22 to 26, loaded
concentrically or eccentrically about one or both axes. However, slender columns
are also becoming increasingly important and popular because of the following
reasons:

(i) the development of high strength materials (concrete and steel),

(ii) improved methods of dimensioning and designing with rational and
reliable design procedures,
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(iii) innovative structural concepts � specially, the architect�s expectations
for creative structures.

Accordingly, this lesson explains first, the behaviour of slender elastic
columns loaded concentrically. Thereafter, reinforced concrete slender columns
loaded concentrically or eccentrically about one or both axes are taken up. The
design of slender columns has been explained and illustrated with numerical
examples for easy understanding.

10.27.2 Concentrically Loaded Columns

It has been explained in Lessons 22 to 26 that short columns fail by
reaching the respective stresses indicating their maximum carrying capacities.
On the other hand, the slender or long columns may fail at a much lower value of
the load when sudden lateral displacement of the member takes place between
the ends. Thus, short columns undergo material failure, while long columns may
fail by buckling (geometric failure) at a critical load or Eu|er�s load, which is much
less in comparison to that of short columns having equal area of cross-section.
The buckling load is termed as Euler�s load as Euler in 1744 first obtained the
value of critical load for various support conditions. For more information, please
refer to Additamentum, �De Curvis e|asticis�, in the �Methodus inveiendi Lineas
Curvas maximi minimive proprietate gaudentes� Lausanne and Geneva, 1744.
An English translation of this work is given in Isis No.58, Vol.20, p.1, November
1933.

The general expression of the critical load PC, at which a member will fail
by buckling is as follows:

PC, = n2EI/(kI)2

where E is the Young�s modulus I is the moment of inertia about the axis of
bending, I is the unsupported length of the column and k is the coefficient whose
value depends on the degree of restraints at the supports. Expressing moment of
inertia I = A12, where A is the area of cross�section of the column and r is the
radius of gyration, the above equations can be written as,

PC, = n2EA /(kl/r)2
(10.62)

Thus, PC, of a particular column depends upon kl/r or slenderness ratio. It is worth
mentioning that kl is termed as effective length /6 of the column.
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Figures 10.27.1 and 2 show two elastic slender columns having hinge
supports at both ends and fixed supports against rotation at both ends,
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respectively. Figure 10.27.3 presents a column of real structure whose end
supports are not either hinged or fixed. It has supports partially restrained against
rotation by the top and bottom beams. Each of the three figures shows the
respective buckled shape, points of inflection Pls (points of zero moment), the
distance between the Pls and the value of k. All the three columns, having
supports at both ends, have the k values less than one or at most one. By
providing supports at both ends, one end of the column is prevented from
undergoing lateral movement or sidesway with respect to the other end.
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However, cantilever columns are entirely free at one end, as shown in
Fig.10.27.4. Figure 10.27.5 shows another type of column, rotationally fixed at
both ends but one end can move laterally with respect to the other. Like that of
Fig.10.27.3, a real column, not hinged, fixed or entirely free but restrained by top
and bottom beams, where sideway can also take place. Each of these three
figures, like those of Figs.10.27.1 to 3, presents the respective buckled shape,
points of inflection (Pls), if any, the distance between the Pls and the value of k.
All these columns have the respective kvalues greater than one or at least one.
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Figures 10.27.? and 8 present two reinforced concrete portal frames, a
typical reinforced concrete rigid frame. Columns of Fig.10.27.7 are prevented
from sidesway and those of Fig.10.27.8 are not prevented from sidesway,
respectively, when subjected to concentric loadings. The buckled configuration of
the frame, prevented from sidesway (Fig.10.27.7) is similar to that of Fig.10.27.3,
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except that the lower ends of the portal frame are hinged. One of the two points
of inflection (Pls) is at the lower end of the column, while the other PI is slightly
below the upper end of the column, depending on the degree of restraint. The
value of k for such a frame is thus less than 1. The critical load is, therefore,
slightly more than PC, of the hinge�hinge column of Fig.10.27.1. The buckled
configuration of the other portal frame of Fig.10.27.8, where sidesway is not
prevented, is similar to the column of Fig.10.27.4 when it is made upside down,
except that the upper end is not fixed but partially restrained by the supporting
beam. In this case, the value of k exceeds 2, depending on the degree of
restraint. One of the two Pls is at the bottom of the column. The critical load of

the column of Fig.10.27.8 is much less than that of the column of Fig.10.27.1.

Table 10.14: Critical loads in terms of Per of hinge�hinge column and effective
lengths I9 = kl of elastic and reinforced concrete columns with different boundary
conditions and for a constant unsupported length I

Support conditions Critical load Effective length Fig. No.
No. PC, /9 = kl
A Elastic sinle columns

sideswa 
     
     both ends � no sideswa
Partially restrained Between PC, I > kl > I/2 10.27 3
against rotation by top
and bottom cross-

beams, no sideswa
Fixed at one end and . 2 I, one PI is on
entirely free at other end imaginary
� sidesway not extension
revented

5. Rotationally fixed at both I, one PI is on 10.27.5
ends � sidesway not imaginary
. revented extension

Partially restrained Between zero l< kl < a 10.27.6
against rotation at both and slightly
ends � sidesway not less than PC, *
revented

B Reinforced concrete columns

sideswa 
     
     sideswa not revented



2. * The critical load is slightly less than P0, of hinge�hinge column
(Sl.No.1), when cross-beams are very rigid compared to columns, i.e.,
the case under Sl.No.6 approaches the case under Sl.No.1.

The critical load is zero when cross-beams are very much
flexible compared to columns, i.e., the case under S|.No.6 approaches
to hinge�hinge column of Sl.No.1, allowing sidesway. In that case, it
becomes unstable and hence, carries zero load.

Table 10.14 presents the critical load in terms of that of hinge�hinge
column Po, and effective lengths /6 (equal to the distance between two points of
inflection Pls = kl) of elastic and reinforced concrete columns for a constant value
of the unsupported length I.

The stress-strain curve of concrete, as shown in Fig.1.2.1 of Lesson 2,
reveals that the initial tangent modulus of concrete EC is much higher than E;
(tangent modulus at higher stress level). Taking this into account in Eq.10.62,
Fig.10.27.9 presents a plot of buckling load PC, versus kl/r. It is evident from the
plot that the critical load is reducing with increasing slenderness ratio. For very
short columns, the limiting factored concentric load estimated from Eq.10.39 of
Lesson 24 will be found to be less than the critical load, determined from
Eq.10.62. The column, therefore, will fail by direct crushing and not by buckling.
We can also find out the limiting value of kl/r when the crushing load and the
buckling load are the same. The (kl/r),,-,,, is shown in Fig.10.27.9. The limiting
value of kl/r also indicates that a column having kl/r more than (kl/r),,-,,, will fail by
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buckling, while columns having any value of kl/r less than (kl/r),,-,,, will fail by
crushing of concrete.

The following are the observations of the discussions about the
concentrically loaded columns:

1. As the slenderness ratio kl/r increases, the strength of concentrically
loaded column decreases.

2. The effective length of columns either in single members or parts of
rigid frames is between 0.5! and I, if the columns are prevented from sidesway by
bracing or otherwise. The actual value depends on the degree of end restraints.

3. The effective length of columns either in single members or parts of
rigid frames is always greater than one, if the columns are not prevented from
sidesway. The actual value depends on the degree of end restraints.

4. The critical load of braced frame against sidesway is always
significantly larger than that of the unbraced frame.
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10.27.3 Slender Columns under Axial Load and Uniaxial

Moment

(A) Columns bent in single curvature

Figure 10.27.10a shows a column bent in single curvature under axial load
P less than its critical load PC, with constant moment Pe. The deflection profile
marked by dotted line is due to the constant moment. However, there will be
additional moment of Py at a distance 2 from the origin (at the bottom of column)
which will deflect the column further, as shown by the solid line. The constant
moment Pe and additional moment Py are shown in Fig.10.27.10b. Thus, the
total moment becomes

M = Mo+Py = P(e+y)
(10.63)

The maximum moment is P(e + A) at the mid�height of the column. This, we can
write

Mme, = Mo+PA = P(e+ A)
(10.64)

This is known as P - A effect.
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Figure 10.27.11a shows another column whose bending is caused by a
transverse load H. The bending moment at a distance 2 from the origin (bottom
of the column) is Hz/2 causing deflection of the column marked by dotted line in
the figure. The axial load P, less than its critical load P0,, causes additional
moment resulting in further deflection, marked by solid line in the figure. This
additional deflection produces additional moment of Py at a section 2 from the
origin. The two bending moment diagrams are shown in Fig.10.27.11b. Here
again, the total moment is

M = Mo+Py = Hz/2+Py
(10.65)

The maximum moment at the mid�height of the column is

Mmax = Mo�maX+PA =
(10.66)

The total moment in Eqs.10.63 and 10.65 consists of the moment Mo that
acts in the presence of P and the additional moment caused by P (= Py). The
deflections y can be computed from ya, the deflections without the axial load
from the expression

Y = yo[1/{1 - (P/Pcr)}]
(10.67)

From Eq.10.64, we have

Mmax =  =
(10.68)

Equation 10.68 can be written as

MW 2 My 1 + 1//(P/P6,)
1&#39;(P/Pcr)

(10.69)

where V depends on the type of loading and generally varies between i 0.20.
Since P/PC, is always less than one, we can ignore 1,u(P/Pcr) term of Eq.10.69, to
have

Mme, = M,/{1 � (P/Pc,)}
(10.70)

where 1/{1 � (P/Pc,)} is the moment magnification factor. In both the cases above
(Figs.10.27.10 and 11), a direct addition of the maximum moment caused by
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transverse load or otherwise, to the maximum moment caused by P gives the
total maximum moment as that is the most unfavourable situation. However, this
is not the case for situation taken up in the following.

(B) Columns bent in double curvature

5.5
5:�

i

if

2  a
M l i E 2, A * 3
=,K1:&\ M fl?  �ax   ,3)H: �  , , ..

gr 3:: gjmv "" M��Wl§§

 Eli:-znder t&#39;>Er§Um�n (bi) �l!.*1,., «diagram {iii @345� diagram rid} Mg, 4% P�i,r {e}».MEe&#39;rn.ativ&#39;e
diagram   Py diagram

elf�-�lg. �if3..2?..t;2:: Slerndesr column under axial load and abend.ing, bent in double curvsttire

Figure 10.27.12a shows a column subjected to equal end moment of
opposite signs. From the moment diagrams Mo and Py (Figs.10.27.12b and c), it
is clear that though Mo moments are maximum at the ends, the Py moments are
maximum at some distance from the ends. The total moment can be either as

shown in d or in e of Fig.10.27.12. In case of Fig.10.27.12d, the maximum
moment remains at the ends and in Fig.10.27.12e, the maximum moment is at
some distance from the ends, where M, is comparatively smaller than M, max at
the ends. Accordingly, the total maximum moment is moderately higher than M,
max-

From the above, it is evident that the moment M, will be magnified most
strongly if the section of Mo max coincides with the section of maximum value of y,
as in the case of column bent in single curvature of Figs.10.27.10 and 11.
Similarly, if the two moments are unequal but of same sign as in Fig.10.27.10,
the moment M, will be magnified but not so much as in Fig.10.27.10. On the
other hand, if the unequal end moments are of opposite signs and cause bending
in double curvature, there will be little or no magnification of Mo moment.

This dependence of moment magnification on the relative magnitudes of
the two moments can be expressed by modifying the earlier Eq.10.70 as
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Mm = M0 C,,/{1�(P/Pc,)}
(10.71)

where cm = 0.6+0.4(M1/M2) 2 0.4
(10.72)

The moment M1 is smaller than M2 and M1/M2 is positive if the moments produce
single curvature and negative if they produce double curvature. It is further seen
from Eq.10.72 that Cm = 1, when M1 = M2 and in that case, Eq.10.71 becomes
the same as Eq.10.70.

For the column of Fig.10.27.12a, the deflections caused by M, are
magnified when axial load P is applied. The deflection can be obtained from

Y = yo[1/{1-(P/4Pcr)}]
(10.73)
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(C) Portal frame laterally unbraced and braced

Here, the sidesway can occur only for the entire frame simultaneously. A
fixed portal frame, shown in Fig.10.27.13a, is under horizontal load H and
compression force P. The moments due to H and P and the total moment
diagrams are shown in Fig.10.27.13b, c and d, respectively. The deformations of
the frame due to H are shown in Fig.10.27.13a by dotted curves, while the solid
curves are the magnified deformations. It is observed that the maximum values
of positive and negative M, are at the ends of the column where the maximum
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values of positive and negative moments due to P also occur. Thus, the total
moment shall be at the ends as the two effects are fully additive.

r§ajlPr::i:ta§frs:rg1:e {gag  mnment gag Moment cm is: n

Fig. "E �.2?�.�l.4: Fixed portal franrae »» latetvaily braced

Figure 10.27.14a shows a fixed portal frame, laterally braced so that no
sidesway can occur. Figures 10.27.14b and c show the moments Mo and due to
P_ It is seen that the maximum values of the two different moments do not occur
at the same location. As a result, the magnification of the moment either may not
be true or shall be small.

(D) Columns with different slenderness ratios
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Figure 10.27.15 shows the interaction diagram of P and M at the mid-

height section of the column shown in Fig.10.27.10. Three loading paths OA, OB
and OC are also shown in the figure for three columns having the same cross-
sectional area and the eccentricity of loads but with different slenderness ratios.
The three columns are loaded with increasing P and M (at constant eccentricity)
up to failure. The loading path OA is linear indicating A = 0, i.e., for a very short
column. It should be noted that A should be theoretically zero only when either
the effective length or the eccentricity is zero. In a practical short column,
however, some lateral deflection shall be there, which, in turn will cause
additional moment not more than five per cent of the primary moment and may
be neglected. The loading path OA terminates at point A of the interaction
diagram, which shows the failure load Psc of the short column with moment M30 =
Psc e. The short column fails by crushing of concrete at the mid-height section.
This type of failure is designated as material failure, either a tension failure or a
compression failure depending on the location of the point A on the interaction
curve.

The load path OB is for a long column, where the deflection A caused by
increasing value of P is significant. Finally, the long column fails at load Pic and
moment M,c = P,c(e + A). The loading path OB further reveals that the secondary
moment P,cA is comparable to the primary moment Pic e. Moreover, the failure
load and the primary moment of the long column Pic and Pic e, respectively, are
less than those of the short column (PS0 and PS0 e, respectively), though both the
columns have the same cross�sectional areas and eccentricities but different

slenderness ratios. Here also, the mid-height section of the column undergoes
material failure, either a compression failure or a tension failure, depending on
the location of the point B on the interaction diagram.
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The loading path OC, on the other hand, is for a very long column when
the lateral deflection A is so high that the slope of the path dP/dM at C is zero.
The column is so slender that the failure is due to buckling (instability) at a
comparatively much low value of the load P0,, though this column has the same
cross�sectional area and the eccentricity of load as of the other two columns.
Such instability failure occurs for very slender columns, specially when they are
not braced.

The following points are summarised from the discussion made in
sec.10.27.3.

1. Additional deflections and moments are caused by the axial
compression force P in columns. The additional moments increase with the
increase of kl/r, when other parameters are equal.

2. Laterally braced compression members and bent in single curvature
have the same or nearby locations of the maxima of both Mo and Py. Thus, being
fully additive, they have large moment magnification.

3. Laterally braced compression members and bent in double curvature
have different locations of the maxima of both Mo and Py. As a result, the
moment magnification is either less or zero.

4. Members of frames not braced laterally, the maxima of Mo and Py
mostly occur at the ends of column and cause the maximum total moment at the
ends of columns only. Additional moments and additional deflections increase
with the increase of kl/r.

10.27.4 Effective Length of Columns

Annex E of IS 456 presents two figures (Figs.26 and 27) and a table
(Table 26) to estimate the effective length of columns in frame structures based
on a research paper, �Effective length of column in multistoreyed building� by
R.H. Wood in The Structural Engineer Journal, No.7, Vol.52, July 1974. Figure
26 is for columns in a frame with no sway, while Fig.27 is for columns in a frame
with sway. These two figures give the values of k (i.e., I9/I) from two parameters
,6�, and /2�, which are obtained from the following expression:

,3 = ZK,/ZK, +219,
(10.74)

where Kc and Kb are flexural stiffnesses of columns and beams, respectively. The
quantities ,3, and ,6�, at the top and bottom joints A and B, respectively, are
determined by summing up the K values of members framing into a joint at top
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and bottom, respectively. Thus ,3, and ,3, for the frame shown in Fig.10.27.16 are
as follows:

�l = (Kc + Kct)/(Kc + Kct + Kbt + Kb2)

(10.75)

�g = (Kc + Kcb)/(Kc + Kcb + Kb3 + Kb4)

(10.76)

However, assuming idealised conditions, the effective length in a given
plane may be assessed from Table 28 in Annex E of IS 456, for normal use.

10.27.5 Determination of Sway or No Sway Column

Clause E-2 of IS 456 recommends the stability index Q to determine if a
column is a no sway or sway type. The stability index Q is expressed as:

Q = Z P,,Au/Huh,
(10.77)

where Z Pu = sum of axial loads on all columns in the storey,
A = elastically computed first�order lateral deflection,ll

Hu = total lateral force acting within the storey, and
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h, = height of the storey.

The column may be taken as no sway type if the value of Q is S 0.4,
otherwise, the column is considered as sway type.

1027.6 Design of Slender Columns

The design of slender columns, in principle, is to be done following the
same procedure as those of short columns. However, it is essential to estimate
the total moment i.e., primary and secondary moments considering P-A effects.
These secondary moments and axial forces can be determined by second-order
rigorous structural analysis � particularly for unbraced frames. Further, the
problem becomes more involved and laborious as the principle of superposition
is not applicable in second-order analysis.

However, c|.39.7 of IS 456 recommends an alternative simplified method
of determining additional moments to avoid the laborious and involved second-
order analysis. The basic principle of additional moment method for estimating
the secondary moments is explained in the next section.

10.27.7 Additional Moment Method

In this method, slender columns should be designed for biaxial
eccentricities which include secondary moments (Py of Eq.10.63 and 10.65)
about major and minor axes. We first consider braced columns which are bent
symmetrically in single curvature and cause balanced failure i.e., Pu = Pub.

(A) Braced columns bent symmetrically in single curvature and undergoing
balanced failure

For braced columns bent symmetrically in single curvature, we have from
Eqs.10.63 and 10.65,

M = Mo+Py = Mo+Pea = M,,+M,

(10.78)

where P is the factored design load Pu, M are the total factored design moments
Mux and Muy about the major and minor axes, respectively; M, are the primary
factored moments Moux and Mouy about the major and minor axes, respectively;
Ma are the additional moments Max and May about the major and minor axes,
respectively and ea are the additional eccentricities eax and ea, along the minor
and major axes, respectively. The quantities Mo and P of Eq.10.78 are known
and hence, it is required to determine the respective values of ea, the additional
eccentricities only.
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Let us consider the columns of Figs.10.27.10 and 11 showing A as the
maximum deflection at the mid�height section of the columns. The column of
Fig.10.27.10, having a constant primary moment Mo, causes constant curvature
(is, while the column of Fig.10.27.11, having a linearly varying primary moment
with a maximum value of Mo max at the mid�height section of the column, has a
linearly varying curvature with the maximum curvature of ¢max at the mid�height
section the column. The two maximum curvatures can be expressed in terms of
their respective maximum deflection A as follows:

The constant curvature (Fig.10.27.10) (15max = 8A/lf
(10.79)

The linearly varying curvature (Fig.10.27.11) ¢m = 12A/If
(10.80)

where /6 are the respective effective lengths kl of the columns. We, therefore,
consider the maximum ¢ as the average value lying in between the two values of
Eqs.10.79 and 80 as

¢m : 10A/if
(10.81)

Accordingly, the maximum additional eccentricities ea, which are equal to
the maximum deflections A, can be written as

ea = A = ¢z§ /10

(10.82)
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Assuming the column undergoes a balanced failure when Pu = Pub, the
maximum curvature at the mid�height section of the column, shown in
Figs.10.27.17a and b, can be expressed as given below, assuming (i) the values
of ac = 0.0035, 5,, = 0.002 and d�/D = 0.1, and (ii) the additional moment

capacities are about eighty per cent of the total moment.

¢ = eighty per cent of {(0.0035 + 0.002)/0.9D} (see Fig.10.27.17c)

or ¢ = 1/200D

(10.83)

Substituting the value of ¢ in Eq.10.82,

ea = D(Ie/D)2/2000
(10.84)

Therefore, the additional moment Ma can be written as,
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Ma = Py = PA = Pea = (PD/2000) (Ia/D)2

Thus, the additional moments Max and May about the major and minor axes,
respectively, are:

Max = (PUD/2000) (lax/D)2
(10.86)

Ma, = (Pub/2000) (Ia,/b)2
(10.87)

where Pu = axial load on the member,

effective length in respect of the major axis,IGX

lay = effective length in respect of the minor axis,

D = depth of the cross�section at right angles to the major axis, and

b = width of the member.

Clause 39.7.1 of IS 456 recommends the expressions of Eqs.10.86 and 87 for
estimating the additional moments Max and May for the design. These two
expressions of the additional moments are derived considering the columns to be
braced and bent symmetrically undergoing balanced failure. Therefore, proper
modifications are necessary for different situations like braced columns with
unequal end moments with the same or different signs, unbraced columns and
columns causing compression failure i.e., when Pu > Pub.

(B) Braced columns subjected to unequal primary moments at the two
ends

For braced columns without any transverse loads occurring in the height,
the primary maximum moment (Mo max of Eq.10.64), with which the additional
moments of Eqs.10.86 and 87 are to be added, is to be taken as:

Momax =  M1 +  M2

(10.88)

(10.89)

where M2 is the larger end moment and M1 is the smaller end moment, assumed
to be negative, if the column is bent in double curvature.
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To eliminate the possibility of total moment Mu max becoming less than M2
for columns bent in double curvature (see Fig.10.27.12) with M1 and M2 having
opposite signs, another condition has been imposed as

Mu max 2 M2
(10.90)

The above recommendations are given in notes of c|.39.7.1 of IS 456.

(C) Unbraced columns

Unbraced frames undergo considerable deflection due to P-A effect. The
additional moments determined from Eqs.10.86 and 87 are to be added with the
maximum primary moment Mo max at the ends of the column. Accordingly, we
have

Momax = M2 &#39;5&#39; Ma
(10.91)

The above recommendation is given in the notes of c|.39.7.1 of IS 456.

(D) Columns undergoing compression failure (Pu > Pub)

It has been mentioned in part A of this section that the expressions of
additional moments given by Eqs.10.86 and 10.87 are for columns undergoing
balanced failure (Fig.10.27.17). However, when the column causes compression
failure, the e/D ratio is much less than that of balanced failure at relatively high
axial loads. The entire section may be under compression causing much less
curvatures. Accordingly, additional moments of Eqs.10.86 and 10.87 are to be
modified by multiplying with the reduction factor k as given below:

For Pu > Pubx: kax = (Puz� Pu)/(Puz� Pubx)
(10.92)

Pu >  kay = (Puz� Pu)!(Puz�
(10.93)

with a condition that kax and key should be 3 1
(10.94)

where Pu = axial load on compression member

Pu, is given in Eq.10.59 of Lesson 26 and is,

Puz =  fckAc+   ...
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P,,,,X, Puby = axial loads with respect to major and minor axes,
respectively, corresponding to the condition of maximum compressive strain of
0.0035 in concrete and tensile strain of 0.002 in outermost layer of tension steel.

It is seen from Eqs.10.92 and 10.93 that the values of k (kax and key) vary
linearly from zero (when Pu = Puz) to one (when Pu = Pub). Since Eqs.10.92 and
10.93 are not applicable for Pu < Pub, another condition has been imposed as
given in Eq.10.94.

The above recommendations are given in cl.39.7.1.1 of IS 456.

The following discussion is very important for the design of slender
columns.

Additional moment method is one of the methods of designing slender
columns as discussed in A to D of this section. This method is recommended in

cl.39.7 of IS 456 also. The basic concept here is to enhance the primary
moments by adding the respective additional moments estimated in a simple way
avoiding laborious and involved calculations of second-order structural analysis.
However, these primary moments under eccentric loadings should not be less
than the moments corresponding to the respective minimum eccentricity, as
stipulated in the code. Hence, the primary moments in such cases are to be
replaced by the minimum eccentricity moments. Moreover, all slender columns,
including those under axial concentric loadings, are also to be designed for
biaxial bending, where the primary moments are zero. In such cases, the total
moment consisting of the additional moment multiplied with the modification
factor, if any, in each direction should be equal to or greater than the respective
moments under minimum eccentricity conditions. As mentioned earlier, the
minimum eccentricity consideration is given in cl.25.4 of IS 456.

10.27.8 illustrative Example

The following illustrative example is taken up to explain the design of
slender columns. The example has been solved in step by step using (i) the
equations of Lessons 21 to 27 and (ii) employing design charts and tables of SP-
16, to compare the results.
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Problem 1:

Determine the reinforcement required for a braced column against
sidesway with the following data: size of the column = 350 x 450 mm
(Fig.10.27.18); concrete and steel grades = M 30 and Fe 415, respectively;
effective lengths Iex and I6, = 7.0 and 6.0 m, respectively; unsupported length I = 8
m; factored load Pu = 1700 kN; factored moments in the direction of larger
dimension = 70 kNm at top and 30 kNm at bottom; factored moments in the
direction of shorter dimension = 60 kNm at top and 30 kNm at bottom. The
column is bent in double curvature. Reinforcement will be distributed equally on
four sides.

Solution 1:

Step 1: Checking of slenderness ratios

Iex/D = 7000/450 = 15.56 > 12,

Iey/b = 6000/350 = 17.14 > 12.

Hence, the column is slender with respect to both the axes.

Step 2: Minimum eccentricities and moments due to minimum
eccentricities (Eq.10.3 of Lesson21)

ex,,,,-,, = I/500 + D/30 = 8000/500+ 450/30 = 31.0 > 20 mm

eymin = I/500 + b/30 = 8000/500 +350/30 = 27.67 > 20 mm
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Max (Min. ecc.) = Pu(6xmin) = (1700) (31) (103) = 52.7 kNm

Mgy (Min. ecc.) = P,,(ey,,,,-,,) = (1700) (27.67) (103) = 47.04 kNm

Step 3: Additional eccentricities and additional moments

Method 1: Using Eq. 10.84

eax = D(lex/D)2/2000 = (450) (7000/450)3/2000 = 54.44 mm

ea, = b(Iex/b)2/2000 = (350) (6000/350)3/2000 = 51.43 mm

5 
     
     II Pu(eax) = (1700) (54.44) (103) = 92.548 kNm

May = Pu(eay) = (1700) (51.43) (103) = 37.43 kNm

Method 2: Table I of SP-16

For Iex/D = 15.56, Table I of SP-16 gives:

eax/D = 0.1214, which gives eax= (0.1214) (450) = 54.63 mm

For Ie,/D = 17.14, Table I of SP-16 gives:

ea,/b = 0.14738, which gives eay= (0.14738) (350) = 51.583 mm

It is seen that values obtained from Table I of SP-16 are comparable with
those obtained by Eq. 10.84 in Method 1.

Step 4: Primary moments and primary eccentricities (Eqs.10.88 and 89)

Max = 0.6M2�0.4M1 = 0.6(70)�0.4(30) = 30 kNm, which should be 2
0.4 M2 (= 23 kNm). Hence, o.k.

May = 0.6M2 � 0.4M1 = 0.6(60) � 0.4(30) = 24 kNm, which should be 2
0.4 M2 (= 24 kNm). Hence, o.k.

Primary eccentricities:

ex = Max/Pu = (30/1700) (103) = 17.65 mm

ey = Mo,/Pu = (24/1700) (103) = 14.12 mm
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Since, both primary eccentricities are less than the respective minimum
eccentricities (see Step 2), the primary moments are revised to those of Step 2.
So, M0,, = 52.7 kNm and Mo, = 47.04 kNm.

Step 5: Modification factors

To determine the actual modification factors, the percentage of
longitudinal reinforcement should be known. So, either the percentage of
longitudinal reinforcement may be assumed or the modification factor may be
assumed which should be verified subsequently. So, we assume the modification
factors of 0.55 in both directions.

Step 6: Total factored moments

= 52.7 + 50.9 = 103.6 kNm

Mu, = M0,, + (Modification factor) (May) = 47.04 + (0.55) (87.43)

= 47.04 + 48.09 = 95.13 kNm

Step 7: Trial section (Eq.10.61 of Lesson 26)

The trial section is determined from the design of uniaxial bending with Pu
= 1700 kN and M, = 1.15 (M; +Mfy)�2. So, we have M, = (1.15){(103.6)2 +
(95.13)2}"2 = 161.75 kNm. With these values of P, (= 1700 kN) and M, (= 161.75
kNm), we use chart of SP-16 for the d�/D = 0.134. We assume the diameters of
longitudinal bar as 25 mm, diameter of lateral tie = 8 mm and cover = 40 mm, to
get d� = 40 + 8 + 12.5 = 60.5 mm. Accordingly, d�/D = 60.5/450 = 0.134 and
d�/b = 60.5/350 = 0.173. We have:

P,/fck bD = 1700(103)/(30)(350)(450) = 0.3598

M,/fck bD2 = 161.75(106)/(30)(350)(450)(450) = 0.076

We have to interpolate the values of p/fck for d�/D = 0.134 obtained from
Charts 44 (for d�/D = 0.1) and 45 (d�/D = 0.15). The values of p/fck are 0.05
and 0.06 from Charts 44 and 45, respectively. The corresponding values of p are
1.5 and 1.8 per cent, respectively. The interpolated value of p for d&#39;/ D = 0.134
is 1.704 per cent, which gives Ase = (1.704)(350)(450)/100 = 2683.8 mm2. We
use 4-25 + 4-20 (1963 + 1256 = 3219 mm&#39;�), to have p provided = 2.044 per cent
giving p/fck = 0.068.

Step 8: Calculation of balanced loads Pb
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The values of PM and Pby are determined using Table 60 of SP-16. For
this purpose, two parameters k1 and kg are to be determined first from the table.
We have p/fck = 0.068, d�/D = 0.134 and d�/b = 0.173. From Table 60, k1 =
0.19952 and kg = 0.243 (interpolated for d&#39;/ D = 0.134) for Pbx. So, we have:
Pbx/fckbD = k1 + kg (p/fog) = 0.19952 + 0.243(0.068) = 0.216044, which gives PM =
0.216044(30)(350)(450)(10&#39;3) = 1020.81 kN.

Similarly, for Pby: d�/b = 0.173, p/fck = 0.068. From Table 60 of SP-16, k1
= 0.19048 and kg = 0.1225 (interpolated for d�/b = 0.173). This gives Pb,/fckbD =
0.19048 + 0.1225(0.068) = 0.19881, which gives Pby =
(0.19881)(30)(350)(450)(10&#39;3) = 939.38 kN.

Since, the values of Pm and Pby are less than Pu, the modification factors
are to be used.

Step 9: Determination of Pu,

Method 1: From Eq.10.59 of Lesson 26

Puz = 0.45 fck Ag + (0.75 fy� 0.45 fck) Asc

= 0.45(30)(350)(450) +{0.75(415)�0.45(30)}(3219) = 3084.71 kN

Method 2: Using Chart 63 of SP-16

We get Pug/Ag = 19.4 N/mm2 from Chart 63 of SP-16 using p = 2.044 per
cent. Therefore, Pu, = (19.4)(350)(450)(10&#39;3) = 3055.5 kN, which is in good
agreement with that of Method 1.

Step 10: Determination of modification factors

Method 1: From Eqs.10.92 and 10.93

kax = (Puz�Pu)/(Puz�Pubx)  (10-92)

or kax = (3084.71 -1700)/(3084.71 � 1020.81) = 0.671 and

key = (Pug � Pu)/(Pug � Puby)  (10.93)

or kay = (3084.71 -1700)/(3084.71 -939.39) = 0.645

The values of the two modification factors are different from the assumed

value of 0.55 in Step 5. However, the moments are changed and the section is
checked for safety.
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Method 2: From Chart 65 of SP-16

From Chart 65 of SP-16, for the two parameters, Pbx/Pu, =
1020.81/3084.71 = 0.331 and P,/Pu, = 1700/3084.71 = 0.551, we get kax = 0.66.
Similarly, for the two parameters, Pb,/Pu = 939.38/3084.71 = 0.3045 and P,/Pu =
0.551, we have kay = 0.65. Values of kax and key are comparable with those of
Method 1.

Step 11: Total moments incorporating modification factors

Mux = M0,, (from Step 4) + (kax) Max (from Step 3)

= 52.7 + 0.671 (92.548) = 114.8 kNm

Muy = Moy (from Step 4) + kay (May) (from Step 3)

= 47.04+ (0.645)(87.43) = 103.43 kNm.

Step 12: Uniaxial moment capacities

The two uniaxial moment capacities Muxt and Muy1 are determined as
stated: (i) For Mm, by interpolating the values obtained from Charts 44 and 45,
knowing the values of P,/fckbD = 0.3598 (see Step 7), p/fck = 0.068 (see Step 7),
d&#39;/ D = 0.134 (see Step 7), (ii) for Muy1, by interpolating the values obtained from
Charts 45 and 46, knowing the same values of P,/fckbD and p/fck as those of (i)
and d&#39;/ D = 0.173 (see Step 7). The results are given below:

(i) Mm/r,kbD2 = 0.0882 (interpolated between 0.095 and 0.085)

(ii) Muyi/fckbbz = 0.0827 (interpolated between 0.085 and 0.08)

So, we have, Maxi = 187.54 kNm and Muy1 = 136.76 kNm.

Step 13: Value of an

Method 1: From Eq.10.60 of Lesson 26

We have P,/Pu, = 1700/3084.71 = 0.5511. From Eq.10.60 of Lesson 26,
we have a,, = 0.67 + 1.67 (P,/Puz) = 1.59.

Method 2: Interpolating the values between (Pg/Puz) = 0.2 and 0.6

The interpolated value of an = 1.0 + (0.5511 � 0.2)/0.6 = 1.5852. Both the

values are comparable. We use an = 1.5852.
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Step 14: Checking of column for safety

Method 1: From Eq.10.58 of Lesson 26

We have in Lesson 26:

(Mm/Mm)�"+(Muy/Muy1)"" S1  (10.58)

Here, Putting the values of Mux, Mm, Muy, MW1 and or�, we get:
(114.8/187.54)�-5452 + (103.43/136.76)�-5852 = 0.4593 + 0.6422 = 1.1015. Hence,
the section or the reinforcement has to be revised.

Method 2: Chart 64 of SP-16

The point having the values of (Mux/Mm) = 114.8/187.54 = 0.612 and
(Mu,/M,,y1) = 103.43/136.76 = 0.756 gives the value of P,/P, more than 0.7. The
value of P,/Pu, here is 0.5511 (see Step 13). So, the section needs revision.

We revise from Step 7 by providing 8-25 mm diameter bars (= 3927 mm2,
p = 2.493 per cent and p/fck = 0.0831) as the longitudinal reinforcement keeping
the values of b and D unchanged. The revised section is checked furnishing the
repeated calculations from Step 8 onwards. The letter R is used before the
number of step to indicate this step as revised one.

Step R8: Calculation of balanced loads Pb

Table 60 of SP-16 gives k1 = 0.19952, and kg = 0.243. We have p/fck
0.0831 now. So, Pbx = {0.19952 + (0.243)(0.0831)} (30)(350)(450)(10&#39;3)
1038.145 kN. Similarly, k1 = 0.19048, K2 = 0.1225 and p/fck = 0.0831 give Pby
{0.19048 + (0.1225)(0.0831)} (30)(350)(450)(10&#39;3) = 948.12 kN.

The values of PM and Pby are less than Pu (= 1700 kN). So, modification
factors are to be incorporated.

Step R9: Determination of Pu, (Eq. 10.59 of Lesson 26)

Puz = 0.45(30)(350)(450) + {0.75(415) � 0.45(30)}(3927) = 3295.514 kN.

Step R10: Determination of modification factors (Eqs.10.92 and 10.93)

kax = (3295.514 � 1700)/(3295.514 � 1038.145) = 0.707

Kay = (3295.514 � 1700)/(3295.514 � 948.12) = 0.68

Step R11: Total moments incorporating modification factors
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Mux 52.70 + 0.707(92.548) = 118.13 kNm

Muy = 47.04 + 0.68(87.43) = 106.49 kNm

Step R12: Uniaxial moment capacities

Using Charts 44 and 45 for Mm and Charts 45 and 46 for MW1, we get (i)
the coefficient 0.1032 (interpolating 0.11 and 0.10) and (ii) the coefficient 0.0954
(interpolating 0.1 and 0.09) for Mm and MW1, respectively.

Mm = (0.1032)(30)(350)(450)(450)(10&#39;6) = 219.429 kNm

Muyt = (0.0954)(30)(450)(350)(350)(10&#39;6) = 157.77 kNm

Step R13: Value of an (Eq.10.60 of Lesson 26)

Pu/PUZ - 1700/3295.514 = 0.5158 which gives

or = 1+(0.5158�0.2)/0.6 = 1.526371

Step R14: Checking of column for safety (Eq.10.58 of Lesson 26)

0.3886 + 0.5488 =(118.13/219.424)�-5263 + (106.49/157.77)"5263
o.9374< 1.0

Hence, the revised reinforcement is safe. The section is shown in
Fig.10.27.18.

10.27.9 ractice Questions and Problems with Answers

Q.1: Define a slender column. Give three reasons for its increasing importance
and popularity.

A.1: See sec. 10.27.1.

Q.2: Explain the behaviour of a slender column subjected to concentric loading.
Explain Eu|er�s load.

A.2: See sec.10.27.3.

Q.3: Choose the correct answer.

(A) As the slenderness ratio increases, the strength of concentrically
loaded column:

(i) increases (ii) decreases
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(B) For braced columns, the effective length is between

(i) land 2/ (ii) 0.5! and 2/ (iii) 0.5! and I

(C) The critical load of a braced frame is

(i) always larger than that of an unbraced column

(ii) always smaller than that of an unbraced column

(iii) sometimes larger and sometimes smaller than that of an unbraced
column

A.3: A. (ii), B. (iii), C. (i)

Q.4: Explain the behaviour of slender columns under axial load and uniaxial
bending, bent in single curvature.

A.4: Part (A) of sec. 10.27.3.

Q.5: Explain the behaviour of slender columns under axial load and uniaxial
bending, bent in double curvature.

A.5: Part (B) of sec. 10.27.3.

Q.6: Explain the behaviour of columns in portal frame both braced and
unbraced.

A.6: Part (C) of sec. 10.27.3.
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Q.7: Check the column of Fig.10.27.19, if subjected to an axial factored load of
Pu = 1500 kN only when the unsupported length of the column = I= 8.0 m,
Iex = Iey = 6.0 m, D = 400 mm, b = 300 mm, using concrete of M 20 and
steel grade in Fe 415.

A.7: Solution:

Step 1: Slenderness ratios

Le,/D = 6000/400 = 15 >12

Ley/b = 6000/300 = 20 >12

The column is slender about both the axes.

Step 2: Minimum eccentricities and moments due to minimum
eccentricities (Eq.10.3 of Lesson 21)

ex ,,,,-,, = V500 + D/30 = 8000/500 + 400/30 = 29.33 mm > 20 mm

e,,,,,,-,, = 8000/500 + 300/30 = 26 mm > 20 mm

Step 3: Primary moments

Since the column is concentrically loaded, the primary moments are zero.
Therefore, the additional moments must be greater than the respective moments
due to minimum eccentricity.

Step 4: Additional eccentricities and moments (Eq.10.84)

eax = D(IeX/D)2/2000 = 400(6000/400)2/2000 = 45 mm > em,-,, (= 29.23
mm)

ea, = b(Ie,/b)2/2000 = 300(6000/300)2/2000 = 60 mm > e,,,,,-n (= 26
mm)

Step 5: Calculation of balance loads Pb, and Pb,

Given Asc = 3927 mm2 (8 bars of 25 mm diameter give p = 3.2725 per
cent. So, p/fck = 0.1636. Using 8 mm diameter lateral tie, d� = 40 + 8 + 12.5 =
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60.5 mm giving d�/D = 60.5/400 = 0.15125 5 0.15 and d�/b = 60.5/300 = 0.2017
5 0.20.

From Table 60 of SP-16, we get k1 = 0.196 and kg = 0.061. Thus, we
have:

PM = {0.196 + (0.061 )(0.1 636)}(20)(300)(400)(1 03) = 494.35 kN

Similarly, for Pby: k1 = 0.184 and kg = -0.011, we get

Pby = {0.184 � (0.011)(0.1636)}(20)(300)(400)(10&#39;3) = 437.281 kN

Since, PM and Pby are less than Pu (= 1500 kN), modification factors are to
be incorporated.

Step 6: Determination of Puz (Eq.10.59 of Lesson 26)

Puz = 0.45(20)(300)(400) +{0.75(415)-0.45(20)}(3927)(10�3) = 2266.94
kN

Step 7: Determination of modification factors

Kax = (2266.94 -1500)/(2266.94 � 494.35) = 0.433 and

key = (2266.94 � 1500)/(2266.94 � 437.281) = 0.419

Step 8: Additional moments and total moments

Max 15oo(o.433)(45) = 29.2275 kNm

May = 1500(0.419)(60) = 37.71 kNm

Since, primary moments are zero as the column is concentrically loaded,
the total moment shall consist of the additional moments. But, as both the
additional moments are less than the respective moment due to minimum
eccentricity, the revised additional moments are: Max = 43.995 kNm and May =
39.0 kNm, which are the total moments also.

Thus, we have:

Mux = 43.995 kNm, Muy = 39.0 kNm and Pu = 1500 kN.

Step 9: Uniaxial moment capacities
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We have, P,/fck bD = {1500/(20)(300)(400)}(1000) = 0.625, p/fc = 0.1636
and d�/D = 0.15 for Mm; and d�/b = 0.2 for Mm. The coefficients are 0.11 (from
Chart 45) and 0.1 (from Chart 46) for Mm and Mu , respectively. So, we get,

Mux, = 0.11(20)(300)(400)(400)(10&#39;6) = 225.28 kNm, and

MW, = 0.1(20)(300)(300)(400)(10&#39;6) = 72.0 kNm

Step 10: Value of an (Eq.10.60 of Lesson 26)

Here, P,/Pu, = 1500/2266.94 = 0.6617. So, we get

an = 1.0 + (0.4617/0.6) = 1.7695

Step 11: Checking the column for safety (Eq.10.58 of Lesson 26)

(Mm/Mm)� +(Muy /Muy1)�" S1

Here, (43.995/225.23)�-7695 + (39.0/72.0)�-7695 = 0.0556 + 0.3379 =
0.3935 < 1

Hence, the column is safe to carry Pu = 1500 kN.
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11.27.11 Test 27 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes

Answer all questions.
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TQ.1: Determine the primary, additional and total moments of the column shown
in Fig.10.27.20 for the three different cases:

(i) When the column is braced against sidesway and is bent in single
curvature.

(ii) When the column is braced against sidesway and is bent in double
curvature.

(iii) When the column is unbraced.

Use the following data: Pu = 2000 kN, concrete grade = M 20, steel grade
= Fe 415, unsupported length /= 8.0 m, /ex = 7.0 m, I. = 6.0 m, Ase = 6381 mm2
(12-25 mm diameter bars), lateral tie = 8 mm diameter @ 250 mm c/c, d� = 60.5
mm, D = 500 mm and b = 400 mm. The factored moments are: 70 kNm at top
and 40 kNm at bottom in the direction of larger dimension and 60 kNm at top and
30 kNm at bottom in the direction of shorter dimension.

A.TQ.1: Solution

The following are the common steps for all three cases.

Step 1: Slenderness ratios

Iex/D = 7000/500 = 14 > 12 and Ie,/b = 6000/400 = 15 > 12

The column is slender about both axes.

Step 2: Minimum eccentricities and moments due to minimum
eccentricities (Eq.10.3 of Lesson 21)

ex ,,,,-,, I/500 + D/30 = 8000/500 + 500/30 = 32.67 mm > 20 mm, and

eymin = I/500 + b/30 = 8000/500 + 400/30 = 29.34 mm > 20 mm

MX (min. ecc.) = 2000(32.67)(10&#39;3) = 65.34 kNm, and

My (min. ecc.) = 2000(29.34)(10�3) = 58.68 kNm

Step 3: Additional eccentricities and moments due to additional
eccentricities (Eq.10.84)

eax = D(IeX/D)2/2000 = 500(7000/500)2/2000 = 49 mm > exmm (= 32.67
mm)
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ea, = b(Ie,/b)2/2000 = 400(6000/400)2/2000 = 45 mm > 9ymin(= 29.34
mm)

Max P,,(eaX) = (2ooo)(49)(1o&#39;3) = 93 kNm, and

May Pu(eay) = (2ooo)(45)(1o&#39;3) = 90 kNm

Step 4: Calculation of balanced loads

Using d�/D = 0.121 and p/fck = 3.1905/20 = 0.159525 in Table 60 of SP-
16, we have k1 = 0.20238 and kg = 0.2755 (by linear interpolation). This gives

Pbx = {o.2o233 + o.2755(o.159525)}(2o)(4oo)(5oo)(10&#39;3) = 933.32 kN

Similarly, d�/b = 0.15125 and p/fc = 0.159525 in Table 60 of SP-16 gives
k1 = 0.1957 and kg = 0.198625 (by linear interpolation). So, we get

Pby = {0.1957 + 0.198625(0.159525)}(20)(400)(500)(10&#39;3) = 909.54 kN

Both Pm and Pby are smaller than Pu (= 2000 kN). Hence, modification
factors are to be incorporated.

Step 5: Calculation of Puz (Eq.10.59 of Lesson 26)

Puz =  fck  +    fck) Asc

= 0.45(20)(400)(500) + {0.75(415) �0.45(20)}(6381) = 3728.66 kN

Step 6: Modification factors and revised additional moments (Eqs.10.92
and 10.93)

Kax = (3728.66 � 2000)/(3728.66 � 983.32) = 0.6297, and

kay = (3728.66 � 2000)/(3728.66 � 909.54) = 0.6132

The revised additional moments are:

Max = 98(0.6297) = 61.71 kNm, and

Ma, = 90(0.6132) = 55.19 kNm

Now, the different cases are explained.

Case (i): Braced column in single curvature
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Primary moments = 0.4 M. + 0.6 Mg, but should be equal to or greater
than 0.4 Mg and moment due to minimum eccentricities. So, we get,

Max largest of 58 kNm, 28 kNm and 65.34 kNm = 65.34 kNm

May = largest of 48 kNm, 24 kNm and 58.68 kNm = 58.68 kNm

Additional moments are Max = 61.71 kNm and May = 55.19 kNm
(incorporating the respective modification factors).

Total moments = Max = Max+ Max = 65.34 + 61.71 = 127.05 kNm >
65.34 kNm (moment due to minimum eccentricity). and

due to minimum eccentricity).

Case (ii): Braced column in double curvature

Primary moments = � 0.4 M. + 0.6 Mg, but should be equal to or greater
than 0.4M2 and the moment due to minimum eccentricity. So, we get,

Max largest of 26 kNm, 28 kNm and 65.34 kNm = 65.34 kNm

May = largest of 24 kNm, 24 kNm and 58.68 kNm = 58.68 kNm

Additional moments are Max = 61.71 kNm and May = 55.19 kNm

65.34 kNm (moment due to minimum eccentricity). and

Muy = 58.68 + 55.19 = 113.87 kNm > 58.68 kNm (moment due to
minimum eccentricity).

Case (iii): Unbraced column

Primary moments = M2 and should be greater than or equal to moment
due to minimum eccentricity.

Max = 70 kNm > 65.34 kNm (moment due to minimum eccentricity). and

May = 60 kNm > 58.68 kNm (moment due to minimum eccentricity).

Additional moments are Max = 61 .71 kNm and May = 55.19 kNm

65.34 kNm (moment due to minimum eccentricity). and
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due to minimum eccentricity).

10.27.12 Summary of this Lesson

This lesson mentions the reasons of increasing importance and popularity
of slender columns and explains the behaviour of slender columns loaded
concentrically or eccentrically. The role of minimum eccentricity that cannot be
avoided in any practical column is explained for slender columns. The moments
due to minimum eccentricities in both directions should be taken into account for

a slender column loaded concentrically as it should be designed under biaxial
bending. On the other hand, the given primary moments are also to be checked
so that they are equal to or greater than the respective moments due to minimum
eccentricity for all slender columns.

Both braced and unbraced columns, bent in single or double curvatures,
are explained. The importance of modification factors of the additional moments
due to P-A effect is explained. Effective lengths and important parameter to
determine the slenderness ratios are illustrated for different types of support
conditions either in single column or when the column is a part of rigid frames.
Additional moment method, a simple method for the design of slender columns,
is explained, which is recommended in IS 456. Numerical problems in illustrative
example, practice problem and test questions will help in understanding and
applying the method for the design of slender columns, as stipulated in IS 456.
Direct computations from the given equations as well as use of design charts and
tables of SP-16 are illustrated for the design.
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