Brief survey of garbage collection algorithms

David R. Chase
1987; reformatted October 2000

1 Introduction

In this paper (chapter) I describe several classes of garbage collection algo-
rithms, and provide a few examples (both real and hypothetical) of each.
This collection is by no means complete; Cohen [Coh81] presents an exhaus-
tive collection, but I am more interested in describing a few representative
collectors in detail and providing examples for a later paper (chapter) on
garbage collection and optimization. The collectors are also chosen for com-
parison and contrast; the various algorithms are quite different, but often
depend upon similar assumptions about program behavior for good perfor-
mance. Empirical studies support many of these assumptions.

2 Garbage Collection

The garbage collection problem: Given a finite memory and a program with-
out explicit instructions for “freeing” (making available for re-use) memory
that the program uses, discover portions of memory that are no longer ref-
erenced by the program and make them available for its re-use as necessary.
LISP is the most famous example of a language that requires garbage collec-
tion, but it is also used in Cedar [Rov85|, Simula [Arn72], Smalltalk [Kra83],
SETL, SNOBOL and almost all functional languagesl. Garbage collection
may appear in relational database systems, file systems [Bro85|, [RT78], and

!The exception to this rule is “string reduction”, in which values are not shared with
pointers. In this instance it is always possible to know when an object may be recycled.
When objects are shared by reference, however, allowing the programmer to specify when
objects may be recycled removes any guarantee of functional semantics.

multi-processor systems [GP81]. In this paper I will focus on garbage collec-
tion of storage in a program’s address space.

As a more abstract form of the problem (taken from Dijkstra et al [DLM™78]),
consider a directed graph with a fixed number of nodes. Each node has a
left out-edge and a right out-edge, though either one or both of these edges
may be missing. In this graph there is a fixed set of “root nodes.” A node
is “reachable” if it lies on a directed path from a root node; any node that
is not reachable is said to be a “garbage node.” The subgraph consisting of
the reachable nodes and their interconnections is called the “data structure.”
The data structure subgraph can be modified by the following operations:

1. Redirect an existing outgoing edge of a node towards an already reach-
able node.

2. Redirect an existing outgoing edge of a node towards a not yet reachable
node with no outgoing edges.

3. Add—where there is no outgoing edge—an edge pointing to an already
reachable node.

4. Add—where there is no outgoing edge—an edge pointing to a not yet
reachable node with no outgoing edges.

5. Remove an outgoing edge of a reachable node.

Operations 1, 2, and 5 may disconnect a node from the data structure,
causing it to become garbage. Operations 2 and 4 consume garbage nodes
by making them reachable. It is the task of the garbage collector to discover
garbage nodes and make them available to the process altering the graph—
the “mutator.” Garbage nodes discovered by the collector are known as
“free” nodes (to distinguish them from garbage nodes that the collector has
not discovered).

In classical garbage collection the graph is represented in such a way that
discovering the successors of a node is a primitive action, and the nodes may
be addressed without reference to the rest of the graph. Finding predecessor
nodes is not a primitive action; this is what makes garbage collection difficult.
In addition to finding unreachable nodes, garbage collectors are sometimes
given the responsibility of compacting storage to reduce fragmentation and
improve locality, and can be used to transform data structures into more

compact representations [Bak78, [BC79]. Garbage collection in file systems,
databases, and distributed systems can be much more difficult; the synchro-
nization implicit in the single process case disappears and cheap primitive
operations are often neither cheap nor “primitive”. Sometimes it is practi-
cal to place restrictions on the graphs that can be built in order to simplify
garbage collection. In the sections that are described below there will be
some examples of collection of restricted graphs.

2.1 Reference counted garbage collection

In a reference counting garbage collector, each node in the graph also contains
a count of the number of predecessors of that node. The five operations on
the graph are augmented to maintain these counts. Clearly, any non-root
node with a count of zero is not reachable and may be recycled.

Reference counting has been proposed for distributed systems [DR&1] be-
cause a node’s reference count summarizes (locally) global information about
the storage graph. In addition, reference counting garbage collection does not
need tight synchronization; reordering is allowed, provided that dereference
operations do not get moved ahead of reference operations. However, a naive
reference-counting garbage collector will not reclaim all garbage nodes, be-
cause cycles in garbage graphs will prevent the counts of nodes in the graph
from falling to zero. (Below are summaries of several non-naive reference
counting papers.) It is also necessary to set aside enough space in each node
to store a number as large as the number of nodes in the graph, or else the
count may overflow. Doing this typically increases the size of a node by 50%,
but not doing this requires code to check for overflow at each reference count
adjustment. Nodes with overflowed reference counts will never be collected,
but in practice the amount of storage lost in this way is not significant. Ref-
erence counting has a reputation for being very slow [Bak78, [BS83] when
compared to some of the other methods presented here, but it is still be-
ing studied because of its apparent suitability to concurrent and distributed
garbage collection.

2.2 Mark-and-sweep garbage collection

A (classical) mark-and-sweep garbage collector discovers garbage by inter-
rupting the mutator, searching from the roots to discover and “mark” all
reachable nodes, and then sweeping sequentially through the nodes to collect

all the unmarked (and hence unreachable) nodes. This method collects all
garbage and requires only an additional bit of storage per node for marking
purposes, but has cost per collection proportional to the size of the entire
graph and does not compact the graph. This algorithm is easy to understand,
but introduces several problems. After a collection, free and active blocks are
interspersed throughout the program’s address space. This external fragmen-
tation can increase paging in a virtual memory environment and complicate
allocation of objects. In the worst case, allocation will be impossible because
no free block of memory is large enough to satisfy a request for memory. If all
objects are the same size, however, external fragmentation is not a problem.
Naive marking algorithms present another problem; the simplest algorithms
are recursive, but little memory is available to hold a recursion stack when
garbage collection is required. Knuth describes several algorithms that have
been developed to traverse graphs when auxiliary memory is limited [Knu68|
p.417]. The cost of a garbage collection is a more serious problem; increasing
the size of the graph (amount of memory available) reduces the frequency of
garbage collection, but increases the cost of a sweep phase in proportion to
the amount of free memory. In large interactive or real time systems this is
completely unacceptable [REFERENCE!!].

2.3 Locality and compaction

In a computer with virtual memory both mark-and-sweep and reference-
counting garbage collection tend to exhibit poor locality of reference and may
run slowly because of excessive page faulting. This is so for mark and sweep
collection because it fills an address space with objects before performing a
collection; after a collection, objects are sparsely scattered throughout the
address space.

Reference counting does not scatter objects throughout an address space
because it frees objects as soon as they become unreachable, but it still
suffers from poor locality of reference. The reference count field stored with
each object increases the object’s size, thus reducing the density of objects
in memory by some fraction. Each time a pointer to an object is created or
destroyed, the object’s reference count must be adjusted. Though it scatters
objects less, reference counting touches objects so often that it has poor
locality.

The locality of mark-and-sweep collection can be improved if the objects
in memory are periodically “compacted”; that is, if the objects are arranged

4

so that there is no free memory separating them. This is not so effective for
reference counted objects because the primary causes of non-locality, refer-
ences to update counts and the “fluffing” effect of the count fields, are not
affected by compaction. The locality of reference counting is improved some-
what with storage compacting algorithms that “linearize” lists by arranging
objects in the storage graph into some depth-first visit order; in this case,
pointers and their targets are usually moved much closer together, so count
adjustments are more frequently local. Of course, linearization also improves
the locality of mark-and-sweep collection. Empirical studies of LISP list
structure by Clark and Green [CGTT7] showed that on the average over 98
percent of list pointer cdrs point to the next cell after linearization along
cdr edges.

Locality is also improved by the use of special encodings that reduce the
size of objects. cdr-coding [BC79] permits the efficient use of only two bits
for the cdr field of a cons cell; this compression places more cells on a single
page and thus increases locality. When combined with a linearizing storage
compactor, cdr-coding is expected to cut memory consumption nearly in
half, both improving locality and reducing the rate of garbage collection?
Figure [Il shows an example of cdr-coding. In the example, the ‘C’ (for cons)
tag means that the two word cons cell contains a pointer to its car and
a pointer to its cdr. An ‘N’ (for next) tag means that the first word of
the cons cell contains a pointer to its car and the location of the cdr is
the immediately following word; the pointer is implicit. A tag of ‘E’ (end)
means that the cdr is the value (pointer to) NIL, while an ‘F’ (forwarding)
tag means that the first word (normally the car pointer) points instead to a
forwarded (relocated) cons cell. In the example, all three lists are equal to
the LISP list “(a b)".

Reference counting’s locality may be improved by separating counts from
objects. This increases locality by concentrating count adjustments into
a smaller section of memory. Transaction-based reference count systems
[DB76] can postpone count updating, allowing the count tables to be paged
out until the transactions are processed. Delayed collection, however, will
result in less efficient use of memory and less locality because of external
fragmentation.

2The effect on garbage collection frequency can be quite minor if the active graph fills
only a small part of available memory.

[C] é X[—F——IC] é X[]
[N] é [E] él

[
[F[" [E[| | €[| X[']

Figure 1: Examples of cdr-coding

2.4 Copy and compact garbage collection [Che70] [F'Y69]
[BakT78§]

Copy and compact garbage collection takes a different approach from reference-
counted or mark and sweep garbage collection. Reference counting and mark-
and-sweep work to generate or discover unused nodes, and attach them to
a free list; copy-and-compact collectors work to discover active nodes, and
copy them into “fresh” memory.

The garbage collector maintains two equally-sized areas of memory called
the fromspace and the tospace. Each of these spaces corresponds to a graph
in the abstract model. The fromspace contains only free nodes that will
be used in the next garbage collection; the tospace contains the free space,
reachable nodes, and garbage nodes. When the tospace runs out of nodes, the
roles of tospace and fromspace are reversed (this is called a flip) and all the
reachable nodes in the new fromspace are copied into the new tospace (the old
fromspace). When this process is complete all the nodes in the fromspace
are abandoned. The free nodes remaining in the tospace are arranged in
ascending order, so the nodes copied into it are compacted into one end of
the tospace and subsequent allocations are very quick.

Copy algorithms for early versions of copy-and-compact were either re-
cursive or based on the Deutsch-Schorr-Waite marking algorithm [E'Y69], but

6

Cheney [Che70] discovered an elegant and efficient copying algorithm that is
used today. Cheney’s method for copying uses pointers S, B, and T (“scan”,

fromspace tospace

[¢ Nal
| 2 N I S

forwarding pointer forwarded pointer S B T

unforwarded pointer

Figure 2: Cheney’s copying algorithm

“bottom” and “top”) into the tospace; B marks the bottom of the free area
(nodes below B are allocated and reachable), T marks the top of the free
area (nodes between B and T are free), and S divides the reachable nodes
into those whose out-edges point into the tospace (below S) and those whose
edges point into the fromspace (between S and B). At the start of a garbage
collection, the root nodes are copied into the tospace, and S points to the
beginning of the tospace. The collector then advances S until it is equal
to B, moving nodes into the tospace (and incrementing B) in the process.
Eventually (if the garbage collection is to succeed) S will reach B and all out-
edges will point into tospace. Each node must be large enough to contain
its forwarding pointer (overwriting the old contents), and an additional bit
is needed to indicate whether or not the node contains a forwarding pointer.

This method has two principal advantages; the cost of a garbage collection
is proportional to the amount of reachable memory, so that (unlike mark-and-
sweep) increasing the amount of memory to reduce the frequency of garbage
collection will not increase the cost of an individual garbage collection, and
memory is automatically compacted after each collection. A variation of this
algorithm uses an additional scan pointer to automatically linearize lists. The
second adbantage is that allocation (ignoring the amortized cost of garbage
collection) is very rapid because the free area is compact and may be managed
with a pointer to each of its bounds.

This algorithm has a few disadvantages; it guarantees that one-half of the
memory available will not be used, the copying process is somewhat slower
than the equivalent marking phase of a mark-and-sweep collector, and it
must be always be possible to tell whether or not a value is a pointer. These

7

problems are not necessarily serious. Virtual address space may be wasted
as long as the paging rates are not too high, and this algorithm makes cdr-
coding in LISP very attractive. Use of indirect pointers as “handles” or in an
“object table” simplifies the copying phase by removing forwarding, and also
permits garbage collection with imprecise information because no program
values need to be changed to reflect objects’ new locations after a collection.
This does, however, require an extra indirection for every object reference,
but the trade-off was considered acceptable in at least one system [BS83].

2.5 Serial real time compacting garbage collection [Bak78§]

Henry Baker’s garbage collector is based on the copy-and-compact alloca-
tor described above, but the garbage collector’s operation is interleaved with
program execution. This is done in such a way that it is never necessary to
indefinitely postpone the program’s execution to collect garbage. Further-
more (or in other words) the time to execute each primitive list operation
(coms, car, cdr, rplaca, rplacd, atom, eq) and its associated incremental
garbage collection is bounded by a small constant; thus the term “real-time.”

Since garbage collection occurs incrementally, both spaces will contain
active nodes. However, the primitive operations are modified to guarantee
that the program only sees nodes in tospace. The operations that need to
be changed to preserve this illusion are car and cdr; cons allocates nodes
in the tospace, thus satisfying the requirement. The result of rplaca (or
rplacd) is one its arguments; if those are in tospace, then so is the result.
atom and eq, of course, do not return pointers. The pointers returned by
car and cdr are checked to see that they are in the tospace; if they are not,
then the nodes in fromspace to which they point are moved into tospace and
their new addresses returned instead.

This alone is not enough to guarantee that garbage is collected, because an
arbitrary number of conses may take place without any intervening cars or
cdrs. Therefore, each time a cons is performed the scan pointer is advanced
by a few (say k) nodes. cons nodes are allocated from the other end of the
space to prevent the garbage collector from (uselessly) scanning nodes whose
edges already point into the tospace.

The parameter k£ determines a bound on what fraction of the tospace may
be reachable. Just after a flip (after the other space has filled up) the tospace
contains only the root nodes and one cons node (located at the low end of
tospace); the roots are necessary to discover all reachable nodes, and the cons

8

node is the one that caused the garbage collection (it cannot be located at
the high end of the tospace, because its children are not necessarily in the
tospace yet). After some number of cons operations, say M, this tospace
fills up. At this point no nodes in the tospace may contain pointers into
the fromspace, because the fromspace is about to be recycled. At each cons
operation k nodes were scanned, so a total of Mk nodes are guaranteed to
contain pointers into the tospace. That is, the old fromspace may contain at
most Mk reachable nodes if it is to be recycled. The spaces contain M + M K
nodes each (new cons nodes plus surviving nodes), so the fraction that may
be reachable is M /(M + MkE), or 1/(1+ k).

Baker also describes extensions to his algorithm that handle array-like
objects, a separate user stack, and that produce a linearized version of the
graph.

2.6 Lifetime-dependent garbage collection [LHS83]|

Lieberman and Hewitt describe a garbage collector based on Baker’s incre-
mental garbage collector. They introduce several modifications based on
the observed and believed behavior of LISP programs. The most important
property is that recently allocated objects have short lifetimes. The other
property is that most pointers are directed backward in time; that is, objects
point to older objects more often than they point to newer objects.

This (design for a) garbage collector is similar to Baker’s collector, but
the address space is divided into many allocation regions instead of just
two. At any time, one of these regions is “active”, corresponding to Baker’s
tospace region. Storage for new nodes is allocated out of the current active
region. Regions are reclaimed through a process of condemning and scaveng-
ing. Condemning a region is a “declaration of intent” to reuse that region;
this cannot occur until scavenging has evacuated all active nodes from the
region. To scavenge a condemned region, all other regions that might contain
pointers into it are scanned; when such a pointer is found, the pointer’s target
is evacuted from the condemned region to the active region and a forwarding
address is stored in the target’s old location.

So far, this doesn’t seem like a very good garbage collection technique; it
won’t be very fast if the entire graph must be scanned to reclaim one small
region, and it won’t be very effective if it can only collect garbage subgraphs
that lie entirely within a region (if a garbage path starts in region A, passes
into region B, and then on to region C, nodes on the path that lie in C

won’t be collected until A, B, and C have been collected in that order). By
exploiting properties of typical programs, however, Lieberman and Hewitt
produce a very effective garbage collector.

Most pointers are directed from young objects to older objects, and the
youngest objects are expected to be active for the shortest time. This col-
lector assigns generation and version numbers to the regions to keep track
of the ages of objects that they contain and the number of collections that
objects within them have survived. Pointers from old regions into younger
regions are treated specially. To refer to an object in a younger region, a
pointer must point indirectly through the younger region’s entry table. This
makes it easy to find all objects in the younger region referenced from older
regions, and makes it easy to relocate objects without updating pointers in
older regions. Since only a few pointers from old objects to young objects
are expected this should not consume too much space or time. To scavenge
a condemned region, it is only necessary to scan the entry table (for pointers
from older regions) and younger regions. This means that reclamation of a
young region is faster than reclamation of an old region, and (compared to
garbage collection in general) quite fast. This is good, because young regions
are expected to contain a higher proportion of garbage than old regions and
will be reclaimed often. The generation numbers may also be used to ar-
range collections in a more productive order; collecting younger regions first
should eliminate many pointers into older regions, allowing more productive
collection of those regions.

Collection of cyclic subgraphs spanning regions is still difficult. They are
collected in one of two ways; over time, regions may be combined as they
grow smaller, and the cycles will then be contained in one region and become
collectable. It is also possible to reclaim several regions at once, and this will
collect garbage cycles contained in those regions. This seems expensive, but
it is no worse than one flip of Baker’s collector, and should occur much
less frequently. Reclamation and inheritance of entry tables also presents a
problem; when a region is reclaimed, its entry table cannot be recycled, and it
is not possible to immediately detect unused pointers in the entry table—if it
were, the entry table would be unnecessary. As objects are relocated the entry
table’s pointers are changed to point to their new locations. Presumably the
new region will inherit the old region’s entry table and continue to use it.
Lieberman and Hewitt suggest that reclamation of entry tables is less critical
than reclamation of regions because the entry tables should be much smaller
than the regions.

10

Lieberman and Hewitt briefly describe several ways for recycling slots
in entries tables and entry tables themselves. Entry tables should be small
relative active memory, so they may be collected more sluggishly and at
somewhat higher cost.

Note that this method of partitioning memory up into regions may be
combined with other styles of garbage collection; storage in regions may be
reclaimed through the use of mark-and-sweep collection, for example. This
method also bears some resemblance to proposals for distributed garbage
collectors, in which each region corresponds to a single node’s memory and
the entry tables correspond to tables of off-node references. Although it
contains several loose ends, this is a very interesting paper.

2.7 Garbage collection in the Symbolics 3600 [Moo84]
[Moo85]

The garbage collector in the Symbolics 3600 is similar to both the Baker
incremental collector and the Liebermann-Hewitt lifetime-dependent garbage
collector. Objects are grouped according to their “age”, but other aspects
of the collector have been simplified to allow an affordable hardware assist.
The result appears to be an excellent compromise.

The collection algorithm is based on Baker’s incremental copy-and-compact
collector. During a collection (interleaved with normal program execution)
three spaces are used; oldspace, copyspace, and newspace. Instead of allocat-
ing memory from both ends of a tospace, objects evacuated from oldspace
are copied to copyspace, and objects created by the program are allocated
from newspace®. The copying algorithm is based on Cheney’s non-recursive
algorithm, but has been modified to be “approximately depth-first”. The
new algorithm maintains an additional scan pointer into the partially filled
page to which objects from oldspace will be copied. Before advancing the
normal scan pointer, the garbage collector examines objects on the last page
of copyspace for references to objects in oldspace. These objects will be
forwarded to the last (same) page in copyspace, leading to improved locality.

Tagged memory allows the hardware to distinguish pointers from other
values. This simplifies the garbage collector’s task because it need not use
type maps to trace through data structures and in fact allows it to completely

31 see no fundamental difference between these and Baker’s two spaces, but I will use
Moon’s terminology.

11

ignore object boundaries. This simplifies the code generated to run on the
3600 because it need not maintain object’s types for the garbage collector.
Memory is divided into fairly large quanta to allow the hardware to easily
determine the target space of a pointer; all objects in the same quantum are
in the same space (though a space may include many quanta).

Tagged memory also permits an important hardware assist; in the Baker
collector, car, cdr, and other object dissecting operations must check their
results to be sure that they do not return pointers to fromspace. Doing this
in software is too slow to be practical; even implementing this in microcode
will significantly degrade the machine’s performance. The solution used is
a hardware “barrier” on the memory bus. Whenever the barrier hardware
sees a pointer to oldspace in a word read from main memory it initiates a
transport trap, and software forwards the object and updates the pointer as
necessary (and retries the trapped instruction 2.

The garbage collector on the 3600 classifies objects according to their
expected lifetimes. Static objects are treated as permanent unless a garbage
collection is explicitly requested. Ephemeral objects are recently created, and
are expected to quickly become garbage. The garbage collector concentrates
its efforts on these objects. Dynamic objects are expected to have interme-
diate lifetime, and are collected less aggressively than ephemeral objects.

As seen above in the Lieberman-Hewitt paper, frequent collection of small
areas (the ephemeral objects, for example) is not practical unless it is possible
to avoid scanning all of memory for pointers into those areas. Their collector
maintains indirection tables for pointers from older areas; the 3600 uses a
simpler approach and maintains a bitmap called the GCPT (Garbage Col-
lector Page Tags) identifying pages in physical memory that might contain
pointers to ephemeral objects. To recycle an area full of ephemeral objects
the collector scans those pages for references and treats any found there as
root pointers. Again, this simpler scheme allows a hardware implementation.
The barrier hardware monitors all writes to main memory, setting a page’s
bit in the GCPT whenever the address of an ephemeral object is written
into it (again, this is determined by the quantum containing the address).
References to ephemeral objects from swapped-out pages are maintained by
software in a separate sparse table called the ESRT (Ephemeral Space Ref-
erence Table). To simplify the hardware implementing the GCPT, pages

4] am somewhat amused to see a LISP-oriented architecture turning the “Von Neumann
Bottleneck” to its own purposes.

12

remain in the GCPT unless the garbage collector discovers (in the course
of an ephemeral garbage collection) that there are no pointers to ephemeral
objects on that page. The cost of scanning a page that has been swapped
to disk is much higher, however, so before pages are swapped to disk they
are scanned for references to ephemeral objects. This is not terribly costly,
because a page need only be scanned if its GCPT bit is set. Moon’s paper
describes other situations in which pages need not be added to the ESRT.

The actual system is somewhat more complicated than this; ephemeral
objects are divided into levels so that “less ephemeral” objects (those that
survive a few collections) are collected less frequently. It seems as if synchro-
nization of garbage collection and access to memory should be very complex;
this is avoided by having very little synchronization, and occassionally scan-
ning a page several times searching for references.

The division of collectable objects into ephemeral and dynamic classes
significantly improves the performance of the system. In the two benchmarks
cited by Moon the collection of ephemeral objects cuts the elapsed time
approximately in half and reduces page faulting by factors of 7 and 50.

The 3600 also employs cdr-coding to compress the representation of lin-
ear lists. Given expected LISP list structure and approximately depth-first
copying, this should significantly reduce memory usage and improve locality.
This seems incompatible with the claim that tagged pointers allow the col-
lector to ignore object structure, but perhaps cons cells are treated specially.

I feel that these papers are an impressive argument for hardware assist in
a LISP implementation. Little extra hardware is required (Moon estimates
10% for 4 tag bits and 2 or 3% for the hardware barrier), but that which
is added obviates software maintenance of tag bits and keeps fundamental
operations (car, cdr and eq) simple.

2.8 Generation scavenging [Ung84]

David Ungar describes a garbage collector used in the Berkeley Smalltalk
that (to quote)

e limits pause times to a fraction of a second,
e requires no hardware support,

e meshes well with virtual memory, and

13

e uses less than 2% of the CPU time in one Smalltalk system. This is
less than a third the time of the next best algorithm.

Generation scavenging achieves this high performance by using the idea of
segregating objects into “generations” proposed by Lieberman and Hewitt,
but performs many small garbage collections instead of one large garbage
collection or continuously reclaiming storage. Continuous reclamation guar-
antees “real-time” performance (bounded response time), but imposes a large
constant overhead. Large garbage collections are too disruptive. The small
garbage collections are performed frequently, but are so fast that the response
is acceptable for interactive usé?.

Memory is divided into four areas: the NewSpace, PastSurvivorSpace, Fu-
tureSurvivorSpace, and OldSpace. NewSpace holds newly created objects.
PastSurviviorSpace contains objects that have survived previous scavenges.
FutureSurvivorSpace is empty during program execution. During scavenging
objects are copied from NewSpace and PastSurvivorSpace into FutureSur-
vivorSpace, and the two Survivor spaces are swapped. Objects that survive
a number of scavenge operations are “tenured” and moved into OldSpace,
where they become effectively permanent. Stores into OldSpace of references
to the NewSpace or SurvivorSpace cause the referencing objects to be placed
into the remembered set. Along with machine registers, the remembered set
is used as the root of a scavenging operation. During scavenging objects
are removed from the remembered set when they are discovered to no longer
point to one of the new object spaces. Typically sizes for the various spaces
are:

NewSpace 140 kilobytes of main memory
Survivor spaces 28 kilobytes each of main memory
Old space 940 kilobytes of demand paged memory

In the benchmarks given in the paper, scavenging operations occurred about
once every 16 seconds, and required an average of 160 milliseconds to com-
plete. The maximium pause was 330 milliseconds, the minimum 90 millisec-
onds. The Old space is collected once every 3 to 8 hours by a mark-and-sweep
collection that takes 5 minutes.

5Several users of this system have verified this claim.

14

This algorithm does require that stores into old objects place a refer-
ence to the old object into the remembered set, but that is apparently the
only cooperation required by the program or the hardware. Support for this
checking is included in the architecture of SOAR [Pat83].

2.9 Collection of cyclic structures with reference counts
in Scheme [FWT79]

Friedman and Wise note that in SCHEME circular reference structures may
only be created in certain situations, and that this allows the use of reference
counts to reclaim these circular reference structures.

In SCHEME (a dialect of LISP), it is not possible for users to create
circularly linked storage in memory because there are no destructive rplaca
and rplacd operators. However, the implementation of recursive functions
implicitly creates circular structures in memory. Their interpreter represents
an environment (a map from names to objects) as a linked list of cons nodes.
The car of each node is the name and the cdr is the object. Function ob-
jects are represented with two cons nodes; the first contains a tag (funarg
or ffunarg) and a pointer to the second, which contains a pointer to the
definition of the function and the environment in which it is interpreted. To
implement (mutually) recursive functions, SCHEME provides an operator
labels that takes as input (implicitly) the environment and (explicitly) a
number of function names and definitions. Executing a labels construct ex-
tends the environment with bindings for the functions, but the environment
associated with each function is the extended environment, not the origi-
nal environment. This is the only way to create cyclic reference paths in
SCHEME. (car environment yields a binding, cdr binding yields a tagged
object, cdr object yields a closure, cdr closure yields the environment again.)
To identify the cyclic references, the closures created by labels are tagged
with ffunarg instead of funarg. This is illustrated by figure B, in which
‘G’ is the original environment and ‘E’ is its extension by a pair of mutually
recursive functions.

To allow garbage collection of these cycles with simple reference counting,
Friedman and Wise impose restrictions to guarantee that when the root of a
cycle is discarded, all members of the cycle are also discarded. To guarantee
that the cycle dies when the head dies it is necessary that at all times all
nodes in the cycle (except the head) are referenced only by other nodes in

15

Bfunarg

(function text) (function text) (function text)

Figure 3: Circular environments in Scheme

the cycle. This is true initially, because labels creates a circular structure
all at once; no part of the structure existed before executing labels, so it
cannot be shared. This property is maintained whenever non-head portions
of the cycle are used by copying the portions instead of referencing them.
Since the closures are the only parts of the cycle that may be referenced
individually, it is sufficient to check a closure’s tag before referencing it. If
the closure is part of a cycle, then the root of the closure and the root of the
function and environment pair must be copied. The environment points to
the head of the cycle, so no more copying is necessary and no non-head part
of the cycle is shared. Finally, cyclic edges must be treated specially during
storage reclamation because they will point to freed storage when they are
traversed. Again, the tags on the closures allow cyclic edges to be identified
and handled correctly.

2.10 Garbage collection in a combinator machine [SCN84]|

Stoye et. al. describe several novel methods used in SKIM II, a microcoded
processor for evaluation of functional languages. Their garbage collector
combines traditional garbage collection with one-bit (hardware-assisted) ref-

16

erence counting to reduce the overall cost of memory management. The
reference bit is stored with pointers to objects instead of with the objects.
This is possible because the bit has only two states, shared and not-shared.
Before a pointer is copied its bit (and the copied bit) are set to indicate shar-
ing; since there is only one copy of a pointer to an unshared object, it is not
necessary to search for other pointers in order to maintain their reference
counts. This has a very beneficial effect on locality of reference; conven-
tional reference counting must inspect and update objects in the heap, while
this method can inspect and update reference counts without any additional
memory references.

Storage is reclaimed whenever a pointer to an unshared object is dis-
carded; the storage to which it points is returned to a free list for reuse. Addi-
tional gains are realized by creating special-purpose versions of the primitive
instructions for each possible combination of shared and unshared arguments,
allowing direct reuse of memory with fewer references to the free list. The
results are spectacular—an average of 70 percent of the discarded cells are
immediately reclaimed through the use of reference counts.

2.11 Garbage collection in Interlisp [DB76]

In this paper Deutsch and Bobrow describe a garbage collector for Interlisp
based on reference counting. Their goal was to avoid long pauses caused
by conventional garbage collectors, while also avoiding the high overhead
associated with reference counting.

Reference counting is incremental; reclamation of storage is easily inter-
leaved with other computation®. However, reference counting incurs signif-
icant space and time costs. Each object must have an associated reference
field, and every time a pointer to that object is created or destroyed the refer-
ence count must be adjusted. This uses additional time and code space, and
can cause an otherwise unnecessary page fault if the object and its reference
count are not in a program’s working set.

Several modifications make reference counting practical. First, reference
count adjustments are treated as transactions and stored in a “file”. Ref-
erences from variables (activation records) are not counted, and reference
counts are not stored with the objects. Instead, reference counts are stored

6The time to free a reference-counted object is not bounded, because its destruction
may recursively free other objects, as noted by Baker [Bak78|]. This problem is solved (in
theory) by the use of a transaction file.

17

by means of hash links [Bob75]. Addresses of objects with no references
(except possibly from program variables) are stored in the zero count table
(ZCT); addresses and counts for objects with more than one reference are
stored in the multi-reference table (MRT); addresses of objects referenced by
variables are stored in the variable reference table (VRT). Any object ap-
pearing in neither the ZCT nor the MRT has an implicit reference count of
one. In a LISP system most objects are expected to have only one reference
[CGTT], so this is expected to save space and improve locality of reference.

As the program runs the tables become out of date, but a record of the
adjustments to (in-heap) reference counts is stored in the transaction file. In
this system, computation is briefly interrupted to collect unused storage. All
references appearing on the stack are entered into a new VRT. The MRT
and ZCT tables are paged in, and the adjustments in the transaction file
are processed. When the tables are up to date, all objects whose addresses
appear in the ZCT but not in the VRT may be reclaimed.

The various tables are also used to help the auxiliary garbage collec-
tor (based on Fenichel and Yochelson’s copy-and-compact collector) that re-
claims circular storage and compacts memory. The MRT is augmented with
a field to store forwarding pointers and multiple references from variables
(that otherwise would create entries in the VRT). By storing the forward-
ing pointers in the MRT, smaller objects may be allocated (which otherwise
must be large enough to hold a flag and a forwarding pointer). When an
object is copied its forwarding address is recorded only if its original address
appears in the MRT; if its address is not in the MRT, then there is only one
reference to the object and it can be updated when the object is copied. The
single-reference situation is expected to occur fairly often, so this shortcut is
probably a win.

A concurrent variation of this algorithm is also described. A co-processor
maintains the ZCT and MRT as transactions occur. To collect garbage, a
snapshot of the stack is delivered to the co-processor, which removes variable
references from a copy of the ZCT. All addresses remaining in this copied
table after processing the stack are unreachable, and may be recycled.

This paper is interesting because it views reference count adjustments as
transactions and because it uses hash links to store reference count infor-
mation. It is also a very good illustration of the way a garbage collector
may be tailored to a program’s expected behavior and adapted to deal with
real-world problems (such as paging).

18

2.12 Garbage collection in Cedar Mesa [Rov85]

This garbage collector is similar to Deutsch and Bobrow’s Interlisp garbage
collector described above, though it has been modified in several important
ways. The multi-reference table is not used; instead, reference counts are
stored in objects and updated immediately. References from the stack (acti-
vation records) are still uncounted to save time. The implementation of the
variable reference table (now called the “found on stack table”, or FOSTable)
has been refined to save time and table space, at the expense of allowing some
retention of inaccessible objects. The auxiliary copying collector has been re-
placed with a trace-and-sweep collector.

Each collectable object has a header, which contains information about
the object’s type, size, reference count, and four flags “maybeOnStack”,
“rcOverflowed”, “onZCT”, and “finalizationEnabled”. The type field allows
runtime type-checking and provides an index into a table of type descriptors.
Included in a type descriptor is a map locating all collectable pointers (REFS)
within an object of that type. Objects, not pointers, are tagged. Reference
counts are adjusted as pointers are created and destroyed; if a count falls to
zero then the object’s address is placed in the ZCT. An object’s maybeOn-
Stack flag is set whenever (1) the collector is active and (2) an assignment
decrements its reference count. This allows concurrent garbage collection
and program execution. When a reference count overflows rcOverflowed is
set. Whenever an object is placed in the ZCT onZCT is set to prevent the
object from being entered in the table a second time.

Garbage collection is triggered by a number of events; the ZCT may
become too large, or the amount of virtual memory available may become
too small, or (more usually) the amount of memory allocated since the last
collection will exceed some threshold. In any case, to reclaim memory the
garbage collector takes a “snapshot” of the stack to build the FOSTable.
The computing process resumes, and the collector (concurrently) frees any
objects that appear in the ZCT, do not appear in the FOSTable, and have
maybeOnStack false.

The Found On Stack Table is implemented as a hash table. To speed
up membership tests, each entry in the table contains the logical OR of all
REFs hashing to that table address. This is fast, but conservative, since
it may incorrectly indicate that a REF appears on the stack. A different
hash function is used at each garbage collection to reduce increased retention
(constipation!). When building the FOSTable, any value on the stack that

19

might be a pointer (i.e, contains a valid heap address) is treated as a pointer;
again, thorough garbage collection is sacrificed for speed.

The Zero Count Table is implemented as a queue of blocks. Objects are
added to the table at the write pointer; the collector scans the table from
the read pointer. Each address scanned by the collector is either freed (if it
satisfies the conditions given above) or moved to the end of the ZCT. When
the collector finishes with a block, it places the block at the end of the queue.
A garbage collection finishes when the read pointer catches up to the write
pointer.

The maybeOnStack flag permits concurrent reclamation and mutation.
Without it, the following incorrect reclamation (taken from Rovner [Rov85])
can occur: at the start of a collection, X has one reference from the accessible
object Y and another from the inaccessible object Z, giving a count of 2. No
references to X are on the stack at the beginning of collection, so it is not in
the FOSTable. The program moves the reference to X from Y to the stack
and NILs out Y’s reference (decrementing X’s reference count). The collector
discovers that Z is inaccessible and decrements X’s count to zero, placing X
in the ZCT and subsequently (incorrectly) reclaiming it. The conditions for
setting the maybeOnStack flag prevent this; if the collector is active and an
assignment (NILing out Y’s reference to X) decrements an object’s reference
count, then its maybeOnStack flag is set and it will not be collected. The
object is also placed in the ZCT when this occurs so that the collector can
find and reset all objects whose maybeOnStack flags are set. The flag may
also be reset if the object’s reference count is incremented.

The trace-and-sweep collector is straightforward and conventional,and
will not be described here.

This paper is interesting to me because it describes an instance of reference-
counting in the “real world”, and because it illustrates many interesting tricks
and compromises used to get acceptable performance. One important as-
pect of memory management in the Cedar environment is mentioned only in
passing; assistance to the collector from the programmer. This also occurs
in other systems, but it is more important in Cedar because the primary
garbage collector is unable to reclaim cyclic structures. The programmer can
assist the garbage collector by replacing pointer values with NIL when they
are no longer needed; this can be used to break cycles and reduce the size of
the FOSTable, increasing the yield of a given garbage collection. This is not
a common activity, but in certain situations it is very important.

20

2.13 Collection of cyclic structures with reference counts
in a combinator machine [Bro85]

Combinator graph reduction [Tur79] generates a large amount of garbage in
very predictable ways. Only a few primitives can copy nodes in a graph, and
only one can create a cyclic reference where none existed before. Brownbridge
proposes a reference-counting technique that also reclaims circular structures
by taking advantage of properties of combinator graph reduction.

Pointers are tagged with a bit to determine if they are cyclic (“weak”)
or acyclic (“strong”), and each object maintains one reference count for the
number of weak in-pointers and one for the number of strong in-pointers.
Normally (in the absence of cycles) reference counting garbage collection
occurs in the usual way. Whenever a node’s strong reference count falls to
zero all of its children are deferenced and its storage is reclaimed. When
there are cycles (when the weak reference count is not zero), the algorithm
is more complicated, as will be described below.

Strong and weak pointers are defined by two rules:

1. The strong pointers together with the objects in use form a directed
acyclic graph in which every object is reachable from a distinguished
root object.

2. Pointers which are not strong are weak.

Notice that a given graph may have more than one assignment of strength
to its edges that is consistent with the above rules. Cyclic reference counting
works because the creation of weak pointers is easily detected in a combina-
tor machine, and there is an algorithm that correctly collects garbage and
maintains a valid pointer strength assignment. The two reference counts are
called WRefC' (weak reference count) and SRefC (strong reference count).

Combinator graph reduction creates weak pointers only through appli-
cation of the Y combinator or by copying an existing weak pointer. The
primitive graph operations are NEW, COPY, and DELETE, described be-
low. Note that not all graphs generated by these operations obey rules 1 and
2, but that any combinator graph representing a functional program will.

NEW (R) Create a strong pointer from R to some free object U, setting
SRefC(U) =1 and WRefC(U) = 0.

21

COPY (R, (S,T),c) Create a pointer from R to T. If ‘¢’ is true then as-
sume that (R,T) will be cyclic and add one to WRefC(T') and mark
(R,T) as weak; otherwise, add one to SRefC(T') and mark (R, T) as
strong. Correct operation depends upon supplying the correct value of
‘c’, according to rules 1 and 2. For a combinator graph reducer, ‘¢’ is
true when applying Y or when (S, T) is a weak pointer.

DELETE((R,S)) There are several cases for deletion:

1. The pointer (R, S) is weak.
Decrement WrefC'(S).
By rule 1, S is still reachable by strong pointers.

2. The pointer (R, S) is strong and WRefC(S) = 0.

Decrement SRefC(S). If it is then zero, DELETE all outgoing
edges from S and make S available for reuse.

3. The pointer (R, S) is strong, WRefC(S) > 0, SRefC'(S) > 1.
Decrement SRefC(S).

4. The pointer (R, S) is strong, WRefC'(S) > 0, SRefC(S) = 1.
The last strong pointer to S disappears. Recursively search ob-
jects pointed to by S, attempting to find an external pointer and
adjusting strength of pointers to obey rules 1 and 2.

(a) Set SRefC(S) = 0 and remove (R, S).

(b) Convert weak pointers to S into strong pointers (there is a
trick that makes this a simple operation) and swap WRefC
and SRefC.

(¢) For T in CHILDREN(S), SUICIDE(S, (S, T)).

(d) If SrefC(S) is zero, DELETE all outgoing edges from S and
make S available for reuse.

The SUICIDE operation recursively visits nodes in the subgraph, reas-
signing strength to edges to obey rules one and two. If (after this reas-
signment) S has a strong in-edge, then S is still reachable from the root.
Otherwise, S is freed and edges to its children deleted.

SUICIDE (start, (R, S))
if (R,S) is strong then
if S = start then make (R,S) weak
else if SRefC(S) > 1 then make (R,S) weak
else for T € CHILDREN(S) do SUICIDE(start,(S,T))

22

Strength and weakness of pointers is determined by comparing a bit stored
in the pointer with a bit stored in the pointee. If they agree, then the pointer
is strong; otherwise, the pointer is weak. This is the “trick” that makes
converting weak pointers to strong pointers a simple operation; the strength
of all pointers to an object is inverted by complementing the bit in the object.

One drawback to this algorithm is that one must always know whether
or not an added edge creates a cycle. This is no problem on the combina-
tor machines for which Brownbridge intends his collector. It may also be
practical for LISP, because creation of cyclic structure only occurs with the
execution of RPLACA or RPLACD; perhaps these operations are used rarely
enough that checking for creation of cycles will not be too expensive.

3 Measurements of storage allocating behav-
ior
The garbage collection algorithms described above either exploit or require

certain behavior from their client programs. Of these, the most important
are:

1. Recently allocated objects usually have short lifetimes.
2. Most objects are referenced by only one pointer.

3. LISP lists are frequently linear in structure.

4. Many LISP cdrs contain the value NIL.

5. Cycles are relatively rare in garbage graphs.

6. Object sizes are not uniformly distributed.

These assumptions are supported both by empirical studies and by the
improved performance of garbage collectors that exploit them.

In particular, Clark’s work [Cla79, [CG77, BC79| explores the locality of
list structure in LISP. He finds that most lists have linear structure in the cdr
direction, and that cdr linearization persists for some time. In the programs
that Clark examines, rplaca and rplacd occur more than half as often as
cons but usually replace an object pointer with one to NIL or a pointer to
NIL with a pointer to an object.

23

Work by Batson and Brundage [BB77] and by Nielsen [Nie77] supports
the assumption that objects’ sizes are not uniformly distributed. In a study
of memory allocator performance in computer simulation, Nielsen found that
the best algorithms maintained a separate free list for each object size re-
quested; that is, if a program requests a particular amount of memory once,
it is likely to request it again. Batson and Brundage performed a study of
“segment lifetimes” for Algol 60 programs, and found that segments usually
had very short lifetimes, and were typically quite small. They present cumu-
lative distributions for segment sizes that show abrupt jumps; that is, a few
segment sizes occur very frequently.

4 Conclusions

Though this compilation includes only a small sample of the many garbage
collectors in existence, it demonstrates several things. Garbage collectors
rarely solve (efficiently) the general problem; most depend upon well-known
properties of garbage generation and program behavior. Others impose re-
strictions on program behavior to guarantee correct and efficient perfor-
mance. Many variables affect the cost of garbage collection. The use of
virtual memory increases the importance of locality of reference many-fold,
while it eases the hard constraint on address space imposed by its absence.
Hardware and microcode assists to the garbage collector permit algorithms
that would be prohibitively expensive if implemented by software, but are of
little use when unavailable. They also make bad (and good) design decisions
permanent. Different languages make different demands on garbage collec-
tors, either because of hard rules or because of popular programming styles.
Garbage collection even varies significantly from program to program. Given
this, it is clear that there is no “best garbage collection algorithm” for all
problems.

Other factors not mentioned above also affect the quality of garbage col-
lection. Various optimizations may reduce the amount of garbage, especially
short-lived garbage, that a program generates. This is clearly demonstrated
by combinator compilation techniques for the G-machine [Kie85]; by avoiding
the construction of application trees, many of the objects that would be re-
claimed by (for example) one-bit reference counting in Stoye’s collector above
are never allocated. Many LISP compilers perform some analysis to avoid

24

heap allocation of activation records [Ste77, BGS82JZ, reducing the number
of short-lived objects. However, the LISP compiler for the Symbolics 3600
performs these optimizations [Moo85] and still reaps a substantial benefit
from its special treatment of newly created objects.

Programmers can also help or hinder a garbage collector. Object refer-
ences can be explicitly removed by replacing them with pointers to NIL. In
a reference counted system this may break a cycle; in a more general system
this is still useful if the last reference to an object is explicitly removed be-
fore a garbage collection. Programmers may affect garbage collection in other
ways. Bob Shaw [Sha86] has noticed that objects seem to “stratify”, with
lifetimes apparently corresponding to lifetimes of modules. If this hypoth-
esis is true and a collector is designed to take advantage of this additional
property of programs, then programming in a modular style should lead to
more effective garbage collection. Programmers will then use that style for
efficiency purposes, causing objects to become even more stratified. This
illustrates the possiblity for self-fulfilling prophecies in garbage collector de-
sign, and points out the potential influence of changing programming styles
(in addition to the influence of changing hardware, languages, collection al-
gorithms, and compilers).

References

[Arn72] S. Arnborg. Storage administration in a virtual memory SIMULA
system. BIT, 12:125-141, 1972.

[Bak78] Henry G. Baker, Jr. List processing in real time on a serial com-
puter. Communications of the ACM, 21(4):280-294, April 1978.

[BB77] A. P. Batson and R. E. Brundage. Segment sizes and lifetimes in
ALGOL 60 programs. Communications of the ACM, 20(1):36-44,
January 1977.

[BC79] Daniel G. Bobrow and Douglas W. Clark. Compact encodings
of list structure. ACM Transactions on Programming Languages
and Systems, 1(2):266-286, October 1979.

"and many many others.

25

(BGSS2]

[Bob75]

[Bro85]

[BS83)

[CGT7)

[Che70]

[Cla79]

[Coh81]

[DB76]

[DLM*78]

[DRS1]

Rodney A. Brooks, Richard P. Gabriel, and Guy L. Steele Jr.
An optimizing compiler for lexically scoped LISP. In SIGPLAN
Symposium on Compiler Construction, pages 261-275, 1982.

D. G. Bobrow. A note on hash linking. Communications of the
ACM, 18(7):413-415, July 1975.

D. R. Brownbridge. Cyclic reference counting for combinator
machines. In Functional Programming Languages and Computer
Architecture, pages 273—-288, 1985.

Stoney Ballard and Stephen Shirron. The design and implemen-
tation of VAX/Smalltalk-80. In Glenn Krasner, editor, Smalltalk-
80: Bits of History, Words of Advice, pages 127-150. Addison-
Wesley, 1983.

D. W. Clark and C. C. Green. An empirical study of list structure
in LISP. Communications of the ACM, 20(2):78-87, February
1977.

C. J. Cheney. A nonrecursive list compacting algorithm. Com-
munications of the ACM, 13(11):677-678, November 1970.

Douglas W. Clark. Measurements of dynamic list structure use
in Lisp. IEEE Transactions on Software Engineering, 5(1):51-59,
January 1979.

Jacques Cohen. Garbage collection of linked data structures.
Computing Surveys, 13(3):341-367, September 1981.

L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremen-
tal, automatic garbage collector. Communications of the ACM,
19(9):522-526, September 1976.

Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Communications of the ACM, 21(11):966-975,
November 1978.

John Darlington and Mike Reeve. Alice: A multi-processor reduc-
tion machine for the parallel evaluation of applicative languages.

26

[FWT9]

[FY69]

[GP81]

[Kie85)

[Knu68]

[Kra83)

[LHS3]

[Moo84]

[Moo85]

[Nie77]

In Functional Programming Languages and Computer Architec-
ture, pages 65-75, 1981.

D. P. Friedman and D.S. Wise. Reference counting can manage
the circular invironments[sic| of mutual recursion. Information
Processing Letters, 8(1):41-44, 1979.

Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-
collector for virtual-memory computer systems. Communications
of the ACM, 12(11):611-612, November 1969.

Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in an
expression-oriented multiprocessor system. ACM Transactions on
Programming Languages and Systems, 3(1):49-59, January 1981.

Richard Kieburtz. The G Machine: A fast, graph-reduction eval-
uator. In Functional Programming Languages and Computer Ar-
chitecture, pages 400-413. Springer-Verlag, 1985.

Donald E. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, 1968.

Glenn Krasner, editor. Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley, 1983.

Henry Lieberman and Carl Hewitt. A real-time garbage collector
based on the lifetimes of objects. Communications of the ACM,
26(6):419-429, June 1983.

David Moon. Garbage collection in a large Lisp system. In SIG-
PLAN Symposium on LISP and Functional Programming, pages
235-246, 1984.

David A. Moon. Architecture of the Symbolics 3600. In Interna-
tional Symposium on Computer Architecture, pages 76-83, 1985.

Norman R. Nielsen. Dynamic memory allocation in com-
puter simulation. Communications of the ACM, 20(11):864-873,
November 1977.

27

[Pat83)]

[Rov85]

[RT78]

[SCN84]|

[Sha86]
[SteT7]

[Tur79]

[Ung84]

David A. Patterson. Smalltalk on a risc: Architectural investi-
gations. Technical Report CS292R, Computer Science Division,
University of California, Berkeley, April 1983.

Paul Rovner. On adding garbage collection and runtime types to
a strongly-typed, statically checked, concurrent language. Tech-
nical Report CSL-84-7, Xerox Palo Alto Research Center, 1985.

D. M. Ritchie and K. Thompson. The UNIX time-sharing system.
Bell System Technical Journal, 57(6):1905-1929, 1978.

W. R. Stoye, T. J. W. Clarke, and A. C. Norman. Some practical
methods for rapid combinator reduction. In SIGPLAN Sympo-
sium on LISP and Functional Programming, pages 159-166, 1984.

Bob Shaw. conversation at Stanford University, April 1986.

Guy Lewis Steele Jr. Compiler optimization based on view-
ing LAMBDA as RENAME plus GOTO. Master’s thesis, Mas-
sachusetts Institute of Technology, 1977.

David Turner. A new implementation technique for applicative
languages. Software, Practice and Fxperience, 9, 1979.

David Ungar. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. In Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 157-167,
1984.

28

	Introduction
	Garbage Collection
	Reference counted garbage collection
	Mark-and-sweep garbage collection
	Locality and compaction
	Copy and compact garbage collection ChNLCA FYLGCVMCS BaLPRTSC
	Serial real time compacting garbage collection BaLPRTSC
	Lifetime-dependent garbage collection LHRTGCBLO
	Garbage collection in the Symbolics 3600 MoonGCLLS MoAS3600
	Generation scavenging UGS
	Collection of cyclic structures with reference counts in Scheme FrWRCCMCE
	Garbage collection in a combinator machine StoyeSPMRCR
	Garbage collection in Interlisp DBEIAGC
	Garbage collection in Cedar Mesa RoCedarGC
	Collection of cyclic structures with reference counts in a combinator machine BroCRC

	Measurements of storage allocating behavior
	Conclusions

