Module

Flanged I
Beams - Theory
and Numerical
Problems
Version 2 CE IIT, Kharagpur
Lesson
11
Flanged I3eams -
Numerical Problems
Version 2 CE IIT, Kharagpur
Instructional Objectives:
At the end of this lesson, the student should be able to:
o identify the two types of numerical problems - analysis and design types, apply the formulations to analyse the capacity of a flanged beam, determine the limiting moment of resistance quickly with the help of tables of SP-16.

5.11.1 Introduction

Lesson 10 illustrates the governing equations of flanged beams. It is now necessary to apply them for the solution of numerical problems. Two types of numerical problems are possible: (i) Analysis and (ii) Design types. This lesson explains the application of the theory of flanged beams for the analysis type of problems. Moreover, use of tables of SP-16 has been illustrated to determine the limiting moment of resistance of sections quickly for the three grades of steel. Besides mentioning the different steps of the solution, numerical examples are also taken up to explain their step-by-step solutions.

5.11.2 Analysis Type of Problems

The dimensions of the beam bf, bw, Df, d, D, grades of concrete and steel
and the amount of steel A5; are given. It is required to determine the moment of resistance of the beam.

Step 1: To determine the depth of the neutral axis $\mathrm{X"}^{\prime \prime}$
The depth of the neutral axis is determined from the equation of equilibrium $C=T$. However, the expression of C depends on the location of neutral axis, $D f / d$ and $D f / X u$ parameters. Therefore, it is required to assume first
that the $x u$ is in the flange. If this is not the case, the next step is to assume $x u$ in
the web and the computed value of $x u$ will indicate if the beam is underreinforced, balanced or over-reinforced.

Version 2 CE IIT, Kharagpur
Other steps:
iGi'u-en.I'assL.IrneI:l data: l:I..|:l,, EI., t1,If.l',.i|1.u_8:_gra.I:les of eonorete 8: steel

```
Check if 1,, -'-'= D., assuming x_ -=5: D,
it lr
Ilyres. I:letenTIIne G. T 8: l'I."|,, if h -f D
from Equations of Lessons 4. 5 E; 3 ml C Eu: lfixéh ' assuming
as rectangular beam with tI=|::." '
tease i]
1f
-[ease Ii]-. balanoed ' { ease Iii]. under-relnforoed {ease iv}. over-relnforoed
Ifxu=':u||u-: ; Ilxflxu... ifx.=*x.m
1r
1' ..
; ease ii .=..~,. if D.iD~==r.`l.2. {case -i bl. -I we > 0.2. Egg" ffajg "i
use Eqs. 5.5.3 3. 'r for use Eqs.5.8.9.1G 9 H W
r'_:_'T3,r.,i|u__ 3:11for;-.-'.,C.T em, _
ir
```

|[case iil b]|, if D,i'x, 1* $^{*} 0.43$,
use Eqs. 5.15.1E,1T \&1B
for ;-.r.. C, T 3: l'I."|,
\{ ease Iii a]. if D..":t,, <=CI. 43.
use Eqs.12,13 3; 14 for
C. T 3. M,

Fig. 5.11.1: Steps of solution ofanalysis type of problems
After knowing if the section is under-reinforced, balanced or overreinforced, the respective parameter $D ; / d$ or $D ; / X u$ is computed for the underreinforced, balanced or over-reinforced beam. The respective expressions of C, Tand Mu, as established in Lesson 10, are then employed to determine their values. Figure 5.11.1 illustrates the steps to be followed.

Version 2 CE IIT, Kharagpur
5.11.3 Numerical Problems (Analysis Type)

```
1000 _|
ll ' 'I all -
X_:9IS-fig-4
J-t.,. ,,=21|E3
_ _1: _ _ _ _ _ _ _ as
350
4-2E:T
    : ' -
Hath {.1 196.5. mm 1, EU
' J.
```

300
1" *i
Fig. 5.11.2: Example 1, case \{I\}

Ex.1: Determine the moment of resistance of the T-beam of Fig. 5.11.2. Given data: $\mathrm{bf}=1000 \mathrm{~mm}$, $\mathrm{Df}=100 \mathrm{~mm}$, $\mathrm{bw}=300 \mathrm{~mm}$, cover $=50 \mathrm{~mm}$, $\mathrm{d}=450$ mm and As, $=1963 \mathrm{~mm} 2$ (4-25 T). Use M 20 and Fe 415.

Step 1: To determine the depth of the neutral axis $X^{\prime \prime}$
Assuming $x u$ in the flange and equating total compressive and tensile
forces from the expressions of C and T (Eq. 3.16 of Lesson 5) as the T-beam can be treated as rectangular beam of width bf and effective depth d, we get:

```
X _ \(0.87 \mathrm{f}, \mathrm{A} ., \quad-0.87\) (415)(1963)
" 0.36 bf f,, \(0.36(1000)(20)\)
\(=98.44 \mathrm{~mm}<100 \mathrm{~mm}\)
```

So, the assumption of $x u$ in the flange is correct.
xffmax for the balanced rectangular beam $=0.48 \mathrm{~d}=0.48(450)=216$
mm .
It is under-reinforced since $x u<x u g m a x$.
Step 2: To determine C, T and Mu
From Eqs. 3.9 (using $b=b f$) and 3.14 of Lesson 4 for C and Tand Eq.
3.23 of Lesson 5 for Mu , we have:

Version 2 CE IIT, Kharagpur
$\mathrm{c}=0.36 \mathrm{bf} \mathrm{X}$.$) fck$
$=0.36(1000)(93.44)(20)=703.77 \mathrm{kN}$
$\mathrm{T}=0.37 \mathrm{r}, \mathrm{A}$, ,
(3.14)
$=0.37(415)(1963)=703.74 \mathrm{kN}$

A
fly) (323)
$M=0.87 f$ AS, $d(1-$
y fckbfd
u
i $\}=290,06 \mathrm{~W} .$.
$=0.874151963450$ l-
() () () \{ (20) (1000) (450)
This problem belongs to the case (i) and is explained in sec. 5.10.4.1 of Lesson 10.

1030 J
"I

```
----- NE;--------------- 3:34 100
350
.$- 4-2-ET + 3-1E3T
$6 [= 3065 rrirn"} l
...fl...
```

Fig. 5.11.3: Example 2, case [ii 111]
Ex.2: Determine Ast,/im and Mu,/im of the flanged beam of Fig. 5.11.3. Given data are: $b f=1000 \mathrm{~mm}$, $\mathrm{Df}=100 \mathrm{~mm}$, $\mathrm{bw}=300 \mathrm{~mm}$, cover $=50 \mathrm{~mm}$ and d
$=450 \mathrm{~mm}$. Use M 20 and Fe 415.
Step 1: To determine Df/d ratio
For the limiting case $X u=X f f m a x=0.48(450)=216 \mathrm{~mm}>\mathrm{Df}$. The

ratio Df/d is computed.

Version 2 CE HT, Kharagpur
$D, / d=100 / 450=0.222>0.2$
Hence, it is a problem of case (ii b) and discussed in sec. 5.10.4.2 b of Lesson 10.

Step 2: Computations of yf, Cand T
First, we have to compute yf from Eq.5.8 of Lesson 10 and then employ Eqs. 5.9, 10 and 11 of Lesson 10 to determine C, T and Mu, respectively.
$y f=0.15$ Xffmax $+0.65 \mathrm{Df}=0.15(216)+0.65(100)=97.4 \mathrm{~mm}$. (from Eq. 5.8)

C
(5.9)
0.36 fck bw Xugmax +0.45 fck (bf - bw) yf
$=0.36(20)(300)(216)+0.45(20)(1000-300)(97.4): 1,030.13 \mathrm{kN}$.
$\mathrm{T}=0.37 \mathrm{r}, \mathrm{As},=0.37$ (415) As,
(5.10)

Equating C and T, we have
2 (1080.18) (1000) N
$=2,991.772$
3' 0.87(415)N/rnmz mm
Provide $4-28 T(2463 \mathrm{~mm} 2)+3-16 \mathrm{~T}(603 \mathrm{~mm} 2)=3,066 \mathrm{~mm} 2$
Step 3: Computation of Mu
'xumux 2
Mu, lim d bw d

+ 0-45f;k(bf -bW)yf (d-yf /2) (5.11)
$=0.36(0.48)\{1-0.42(0.48)\}(20)(300)(450) 2$
$+0.45(20)(1000-300)(97.4)(450-97.4 / 2)=413.87 \mathrm{kNrn}$
$=0.36() C^{\prime \prime} 7{ }^{\prime \prime \prime}$ ") \{1-0.42(
Version 2 CE HT, Kharagpur

```
\(I_{-}{ }^{\prime} 101111\) _ E
_i__
r.=er:1. es
```



```
3.50
,g.- 4-2sT + 2-2rJT
f."-l"~::,...fi 1:23.91 mm')
2.11,\} 1'50
1
1 EEI-III
```

Fig. 5.11.4: Example 3. case \{iii In)
Ex.3: Determine the moment of resistance of the beam of Fig. 5.11.4 when As,
$=2,591 \mathrm{~mm} 2(4-25 \mathrm{~T}$ and 2-20 T). Other parameters are the same as those of Ex.1: $\mathrm{bf}=1,000 \mathrm{~mm}$, $\mathrm{Df}=100 \mathrm{~mm}$, $\mathrm{bw}=300 \mathrm{~mm}$, cover $=50 \mathrm{~mm}$ and $\mathrm{d}=$ 450 mm . Use M 20 and Fe 415.

Step 1: To determine xu
Assuming $x u$ to be in the flange and the beam is under-reinforced, we have from Eq. 3.16 of Lesson 5:
_ $0.87 \mathrm{f}, \mathrm{A}, \mathrm{I}_{\mathrm{t}}$ - $0.87(415)(2591)$ _
$\mathrm{xu}-129.93 \mathrm{~mm}>100 \mathrm{~mm}$
$0.36 \mathrm{bf} \mathrm{ft}, 0.36$ (1000) (20)
Since xu > Df, the neutral axis is in web. Here, Df/d = 100/450 = 0.222 > 0.2. So, we have to substitute the term yf from Eq. 5.15 of Lesson 10, assuming Df/ $\mathrm{Xu}>0.43$ in the equation of $\mathrm{C}=\mathrm{T}$ from Eqs. 5.16 and 17 of sec . 5.10 .4 .3 b of Lesson 10. Accordingly, we get:
$0.36 \mathrm{fa})$, $b w x u+0.45 \mathrm{fa}),(\mathrm{bf}-\mathrm{bw}) \mathrm{yf}=0.87$ fyAsf
or $0.36(20)(300)(x u)+0.45(20)(1000-300)\{0.15 x u+0.65(100)\}$
$=0.87$ (415) (2591)
or $\mathrm{Xu}=169.398 \mathrm{~mm}<216 \mathrm{~mm}(X u, \operatorname{maX}=0.48 \mathrm{Xu}=216 \mathrm{~mm})$
Version 2 CE HT, Kharagpur
So, the section is under-reinforced.
Step 2: To determine Mu
Df/Xu = 100/169.398 = 0.590 > 0.43
This is the problem of case (ill b) of sec. 5.10.4.3 b. The corresponding equations
are Eq. 5.15 of Lesson 10 for yf and Eqs. 5.16 to 18 of Lesson 10 for C, Tand M), respectively. From Eq. 5.15 of Lesson 10, we have:
$y f=0.15 x u+0.65 \mathrm{Df}=0.15(169.398)+0.65(100)=90.409 \mathrm{~mm}$
From Eq. 5.18 of Lesson 10, we have

```
Mu = 0.36(x,, /d){1 - 0.42( xu/d)} fa), bw d2 + 0.45 fCk(bf - bw) yf(d- yf/2)
or Mu = 0.36 (169.398/450) {1 - 0.42 (169.398/450)} (20) (300) (450) (450)
+ 0.45 (20) (1000-300) (90.409) (450 - 90.409/2)
= 138.62+230.56 = 369.18 kNm.
" 1C|E|C' -
I_ -___ - "_:9"'_'* no
X_.._..=21e ' _ ' _ ' _
-Ir NF'-.
3-EU
fi,1_N%-E}-32T
'i'=?':
_ '_ I fllfl
I, 1
1' '
```

Fig. 5.11.5: Example 4.1:asei\{i~.r ti\}
Ex.4: Determine the moment of resistance of the flanged beam of Fig. 5.11.5 with As, $=4,825 \mathrm{~mm} 2(6-32 \mathrm{~T})$. Other parameters and data are the same as those of Ex.1: bf = 1000 mm , $\mathrm{Df}=100 \mathrm{~mm}$, $\mathrm{bw}=300 \mathrm{~mm}$, cover $=50 \mathrm{~mm}$ and $d=450 \mathrm{~mm}$. Use M 20 and Fe 415.

Version 2 CE HT, Kharagpur
Step 1: To determine xu
Assuming $x u$ in the flange of under-reinforced rectangular beam we have from Eq. 3.16 of Lesson 5:

X_0-87 f, A., $-0.37(415)(4325)$
" 0.36 bf f,, $0.36(1000)(20)$
$=241.95 \mathrm{~mm}>\mathrm{Df}$
Here, $D f / d=100 / 450=0.222>0.2$. So, we have to determine yf from Eq. 5.15 and equating Cand Tfrom Eqs. 5.16 and 17 of Lesson 10.
$y f=0.15 x,+0.65 \mathrm{D},(5.15)$
0.36 fck bw x, , 0.45 fck (bf - bw)yf $=0.37$ 1, As, (5.16 and
5.17)
or $0.36(20)(300)(x u)+0.45(20)(1000-300)\{0.15 x u+0.65(100)\}$
$=0.37$ (415) (4325)
or $2160 \mathrm{xu}+945 \mathrm{xu}=-409500+1742066$
or $x u=1332566 / 3105=429.17 \mathrm{~mm}$
$X u, \max =0.48(450)=216 \mathrm{~mm}$
Since xu > xffmax, the beam is over-reinforced. Accordingly.
$X u=X m m a x=216 m m$.
Step 2: To determine Mu
This problem belongs to case (iv b), explained in sec.5.10.4.4 b of Lesson 10. So, we can determine Mu from Eq. 5.11 of Lesson 10.
 yf(d-yf
/2)
(5.11)
where $\mathrm{yf}=0.15 \mathrm{Xu}, \mathrm{maX}+0.65 \mathrm{Df}=97.4 \mathrm{~mm}$
(5.8)

From Eq. 5.11, employing the value of $y f=97.4 \mathrm{~mm}$, we get:
$M u=0.36(0.48)\{1-0.42(0.48)\}(20)(300)(450)(450)$
Version 2 CE HT, Kharagpur
$+0.45(20)(1000-300)(97.4)(450-97.4 / 2)$
$=167.63+246.24=413.87 \mathrm{kNm}$
It is seen that this over-reinforced beam has the same Mu as that of the balanced beam of Example 2.
5.11.4 Summary of Results of Examples 1-4

The results of four problems (Exs. 1-4) are given in Table 5.1 below. All the examples are having the common data except As[.

Table 5.1 Results of Examples 1-4 (Figs. 5.11.2-5.11.5)
Ex. Asf Case Section Mu Remarks
No. (mm2) No. (kNm)

1 1,963 (i) 5.10.4.1 290.06 X), $=98.44 \mathrm{~mm}<X u, \max (=216$
$\mathrm{mm})$,
$X u<\operatorname{Df}(=100 \mathrm{~mm})$,
Under-reinforced, (NA in the
flange).
2 3,066 (ii b) 5.10.4.2 413.87 x.) $=x u, \max =216 \mathrm{~mm}$,
(b) $D f / d=0.222>0.2$,

Balanced, (NA in web).
32,591 (ill b) 5.10.4.3 369.18 Xu $=169.398 \mathrm{~mm}<X u, \max (=216$
('0) mm).
Df/Xu = 0.59 > 0.43,
Under-reinforced, (NA in the
web).
44,825 (iv b) 5.10.4.4 $413.87 \mathrm{Xu}=241.95 \mathrm{~mm}>\mathrm{Xu}, \max (=216$
('0) mm).
Df/d = 0.222 > 0.2,
Over-reinforced, (NA in web).
It is clear from the above table (Table 5.1), that Ex.4 is an over-reinforced flanged beam. The moment of resistance of this beam is the same as that of balanced beam of Ex.2. Additional reinforcement of 1,759 mm2 (= 4, $825 \mathrm{~mm} 2-$ $3,066 \mathrm{~mm} 2$) does not improve the Mu of the over-reinforced beam. It rather prevents the beam from tension failure. That is why over-reinforced beams are to be avoided. However, if the Mu has to be increased beyond 413.87 kNm , the flanged beam may be doubly reinforced.

5.11.5 Use of SP-16 for the Analysis Type of Problems

Using the two governing parameters (bf /bw) and (Df/d), the Mu./im of balanced flanged beams can be determined from Tables 57-59 of SP-1 6 for the

Version 2 CE HT, Kharagpur
three grades of steel (250, 415 and 500). The value of the moment coefficient $\mathrm{Mu}),-\mathrm{m} / \mathrm{bwdzfax}$ of Ex.2, as obtained from $\mathrm{SP}-16$, is presented in Table 5.2 making
linear interpolation for both the parameters, wherever needed. Mu),-m is then calculated from the moment coefficient.

Table 5.2 Mu,/im of Example 2 using Table 58 of SP-1 6
Parameters: (i) bf/bw = 1000/300 $=3.33$
(ii) $D f / d=100 / 450=0.222$
(Mu)-m/bwdzfax) in $N / m m 2$
Df/d bf/bw
343.33
0.220 .3090 .395
0.230 .3140 .402
0.2220 .31 * 0.3964* 0.339*

* by linear interpolation

Mu lim
So, from Table 5.2, j', $=0.339$
bw d fck
$\mathrm{Mu}, / \mathrm{im}=0.339 \mathrm{bw} \mathrm{dz} \mathrm{fck}=0.339(300)(450)(450)(20) 106=411.88$

kNm

Mu, lim as obtained from SP-16 is close to the earlier computed value of Mu),-m = 413.87 kNm (see Table 5.1).
5.11.6 Practice Questions and Problems with Answers
\qquad
-I500

1200

i 1 i ..
ll. " _ _n E . 1 I.-
$1 \mathrm{c}{ }^{\prime \prime} \mathrm{f}^{\prime} .1^{\prime} \mathrm{x}^{\prime \prime} \mathrm{Y} 120$
L2-2UT+2-1ST i L
. - -:
gm" Na 1 1* UF"1f"|.| l
E00
543
" £3-SET + 2-161'
§‘1‘:...,
300
Fig. 5.11.5-_ o. 1
Version 2 CE HT, Kharagpur
Q.1: Determine the moment of resistance of the simply supported doubly reinforced flanged beam (isolated) of span 9 m as shown in Fig. 5.11.6. Assume M 30 concrete and Fe 500 steel.
A.1: Solution of Q.1:

9000
$\mathrm{T}^{\prime \prime}=\mathrm{T} 300=1200$
$(1,, / b)+4+W(9000 / 1500)+4+m$
Effective width bf =
Step 1: To determine the depth of the neutral axis
Assuming neutral axis to be in the flange and writing the equation $C=T$, we have:
fy A51 = f-Ck bfxu '1' (fsc Asc - f-CC Asa)
Here, $d^{\prime} / d=65 / 600=0.108=0.1$ (say). We, therefore, have faa $=353$
N/mm2.
From the above equation, we have:

```
x Z 0.87 (500) (6509) - {(353) (1030) - 0.446 (30) (1030)}
" 0.36 (30) (1200)
So, the neutral axis is in web.
= 191.48 mm>120 rnrn
Df/d = 120/600 = 0.2
Assuming Df/Xu < 0.43, and Equating C= T
    fy A51 = f-Ck bw Xu '1' Df '1' (fsc - f-CC) Ago
0.87 (500) (6509) - 1030{353 - 0.446 (30)}- 0.446 (30) (1200 - 300) (120)
0.36 (30) (300)
= 319.92 > 276 mm (xwm = 276 mm)
So, xu = xamax = 276 mm (over-reinforced beam).
```

```
Df/Xu = 120/276 = 0.4347 > 0.43
```

Let us assume $D f / X u>0.43$. Now, equating $C=$ Twith yf as the depth of flange having constant stress of 0.446 fax. So, we have:

```
yf = 0.15Xu+0.65 Df = 0.15Xu+78
    f-Ck bw Xu '1' f-Ck - bw) yf '1' Age (fsc - f-CC) = fy A51
```

Version 2 CE HT, Kharagpur
0.36 (30) (300) $x u+0.446$ (30) (900) (0.15 xu + 78)
$=0.87(500)(6509)-1030\{353-0.446(30)\}$
or X.) $=305.63 \mathrm{~mm}>$ Xamax. (Xamax $=276 \mathrm{~mm}$)
The beam is over-reinforced. Hence, X.) $=X u$, max $=276 \mathrm{~mm}$. This is a problem of
case (iv), and we, therefore, consider the case (ii) to find out the moment of
resistance in two parts: first for the balanced singly reinforced beam and then
for
the additional moment due to compression steel.

Step 2: Determination of xmf,-m for singly reinforced flanged beam
Here, $D f / d=120 / 600=0.2$, so yf is not needed. This is aproblem of case (ii
a) of sec. 5.10.4.2 of Lesson 10. Employing Eq. 5.7 of Lesson 10, we have:
$\mathrm{Mu}),-\mathrm{m}=0.36(\mathrm{x}$, , , , ,, $\mathrm{ax} / \mathrm{d})\{1-0.42(x u m a x / d)\} r s x 5 ., \mathrm{d} 2$
+0.45 fax (bf- bw) Df (d- Df/2)
$0.36(0.46)\{1-0.42(0.46)\}(30)(300)(600)(600)$
$+0.45(30)(900)(120)(540)$
1,220.20 kNm
M , .
M, 1Tn
A. =
W" 0.87fy d \{1 - 0.42 (xm,
(1220.20) (106)
$==5,794.6152 \mathrm{rnrnz}$
(0.87)(500)(600)(0.8068)
/d) \}

Step 3: Determination of Mug
Total As, $=6,509 \mathrm{~mm} 2$, Ast,/im $=5,794.62 \mathrm{~mm} 2$
Asfa $=714.33 \mathrm{~mm} 2$ and Ass $=1,030 \mathrm{~mm} 2$
It is important to find out how much of the total Ass and Asfg are required effectively. From the equilibrium of C and T forces due to additional steel
(compressive and tensile), we have:
(A312) (0-87) (fy) = (Asa) (fsc)
If we assume Ass $=1,030 \mathrm{~mm} 2$
Version 2 CE HT, Kharagpur
$=\mathrm{T}=335.34 \mathrm{~mm} 2>714.33 \mathrm{rnm} 2,(714.33 \mathrm{~mm} 2$ is the total

$0.37(500)$

Asfg provided). So, this is not possible.
st2

Now, using Asfg $=714.38 \mathrm{~mm} 2$, we get Ass from the above equation.
$A=m\left(714^{\prime} 38\right)(0 ‘ 87)(500)=330.326<1,030 \mathrm{rnrnz},(1,030 \mathrm{~mm} 2$ is
S‘ 353
the total Ass provided).
$114,,=4, f_{,},\left(d-d^{\prime}\right)=(330.326)(353)(600-60)=167.307 \mathrm{kNm}$
Total moment of resistance $=$ Mu), $-m+M u g=1,220.20+167.81=1,388.01$ kNm

Total As, required = As,,, -m+As,a = 5,794.62+ 714.33 = 6,509.00 mm2, (provided Asf $=6,509 \mathrm{~mm} 2$)

Ass required $=880.326 \mathrm{~mm} 2$ (provided 1,030 mm2).

5.11.7 References

1. Reinforced Concrete Limit State Design, 6"‘ Edition, by Ashok K. Jain, Nem Chand \& Bros, Roorkee, 2002.
2. Limit State Design of Reinforced Concrete, 2"" Edition, by P.C.Varghese, Prentice-Hall of India Pvt. Ltd., New Delhi, 2002.
3. Advanced Reinforced Concrete Design, by P.C.Varghese, Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.
4. Reinforced Concrete Design, $2^{\prime \prime \prime}$ Edition, by S.Unnikrishna Pillai and Devdas Menon, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2003.
5. Limit State Design of Reinforced Concrete Structures, by P.Dayaratnam, Oxford \& |.B.H. Publishing Company Pvt. Ltd., New Delhi, 2004.
6. Reinforced Concrete Design, 13^{\prime} Revised Edition, by S.N.Sinha, Tata McGraw-Hill Publishing Company. New Delhi, 1990.
7. Reinforced Concrete, 6"' Edition, by S.K.Mallick and A.P.Gupta, Oxford \& IBH Publishing Co. Pvt. Ltd. New Delhi, 1996.
8. Behaviour, Analysis \& Design of Reinforced Concrete Structural Elements, by I.C.Syal and R.K.Ummat, A.H.Wheeler \& Co. Ltd., Allahabad, 1989.
9. Reinforced Concrete Structures, $3^{\prime \prime \prime}$ Edition, by |.C.Syal and A.K.Goel, A.H.Wheeler \& Co. Ltd., Allahabad, 1992.
10.Textbook of R.C.C, by G.S.Birdie and J.S.Birdie, Wiley Eastern Limited, New Delhi, 1993.

Version 2 CE HT, Kharagpur
11. Design of Concrete Structures, $13^{\prime \prime \prime}$ Edition, by Arthur H. Nilson, David Darwin and Charles W. Dolan, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2004.
12. Concrete Technology, by A.M.Neville and J.J.Brooks, ELBS with Longman, 1994.
13.Properties of Concrete, 4"، Edition, 13‘ Indian reprint, by A.M.Neville, Longman, 2000.
14. Reinforced Concrete Designer's Handbook, 10"' Edition, by C.E.Reynolds and J.C.Steedman, E \& FN SPON, London, 1997.
15.|ndian Standard Plain and Reinforced Concrete - Code of Practice (4 Revision), IS 456: 2000, BIS, New Delhi.
16. Design Aids for Reinforced Concrete to IS: 456 -1978, BIS, New Delhi.

Ih
5.11.8 Test 11 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes
Answer all questions.
TQ.1: Determine Mu, lim of the flanged beam of Ex. 2 (Fig. 5.11.3) with the help of
SP-16 using (a) M 20 and Fe 250, (b) M 20 and Fe 500 and (c) compare the results with the Mu),-m of Ex. 2 from Table 5.2 when grades of concrete and steel
are M 20 and Fe 415, respectively. Other data are: bf $=1000 \mathrm{~mm}$, $\mathrm{Df}=100$ mm , bw $=300 \mathrm{~mm}$, cover $=50 \mathrm{~mm}$ and $\mathrm{d}=450 \mathrm{~mm}$.
(10 X 3 = 30 marks)
A.TQ.1: From the results of Ex. 2 of sec. 5.11 .5 (Table 5.2), we have:

Parameters: (i) bf/bw $=1000 / 300=3.33$
(ii) $D f / d=100 / 450=0.222$

For part (a): When Fe 250 is used, the corresponding table is Table 57 of SP-
16. The computations are presented in Table 5.3 below:

Table 5.3 (M..,r.-n./b.. dz rsx) in $N / m m z$ Of TO.1 (PART a for M 20 and Fe 250)
(Mam/bwdzrsx) in N/mmz
Df/d bf/bw
343.33
0.220 .3240 .411
0.230 .3300 .421
0.222 0.3252* 0413* 0.354174*

0 by linear interpolation
Mam, /bf, dz rsx $=0.354174=0.354$ (say)
Version 2 CE HT, Kharagpur
80, $M u),-m=(0.354)(300)(450)(450)(20) \mathrm{N} \mathrm{mm}=430.11 \mathrm{kNm}$
For part (b): When Fe 500 is used, the corresponding table is Table 59 of SP16. The computations are presented in Table 5.4 below:

Table 5.4 (M..,r.-n./b.. dz rsx) in $N / m m z$ Of To. 1 (PART b for M 20 and Fe 500)
(Mam/bwdzrsx) in $N / m m z$
Df/d bf/bw
343.33
0.220 .3020 .386
0.230 .3060 .393
0.222 0.3028* 0.3874* 0.330718*

* by linear interpolation

Mu, /im/bw dz fax $=0.330718=0.3307$ (say)
So, $M u),-m=(0.3307)(300)(450)(450)(20) \mathrm{mm}=401.8 \mathrm{kNm}$
For part Comparison of results of this problem with that of Table 5.2 (M 20 an e
415) is given below in Table 5.5.

Table 5.5 Comparison of results of Mu),-m
Sl. Grade of Steel Mu),-m (kNm)
No.
1 Fe 250430.11
2 Fe 415411.88

3 Fe 500401.80
It is seen that $M u$),-m of the beam decreases with higher grade of steel for a particular grade of concrete.

TQ.2: With the aid of SP-16, determine separately the limiting moments of resistance and the limiting areas of steel of the simply supported isolated, singly reinforced and balanced flanged beam of Q. 1 as shown in Fig.
5.11 .6 if the span $=9 \mathrm{~m}$. Use M 30 concrete and three grades of steel, Fe 250, Fe 415 and Fe 500, respectively. Compare the results obtained above with that of Q .1 of sec. 5.11.6, when balanced.
(15 + 5 = 20 marks)
A.TQ.2: From the results of 0.1 sec .5 .11 .6 , we have:

Parameters: (i) bf/bw = 1200/300 = 4.0
(ii)Df/d $=120 / 600=0.2$

Version 2 CE HT, Kharagpur
For Fe 250, Fe 415 and Fe 500, corresponding tables are Table 57, 58 and 59, respectively of $\mathrm{SP}-16$. The computations are done accordingly. After computing the limiting moments of resistance, the limiting areas of steel are determined as
explained below. Finally, the results are presented in Table 5.6 below:

M

A. =
$W^{\prime \prime} 0.87 f y \mathrm{~d}\{1-0.42(x m, / d)\}$
u Jim
Table 5.6 Values of Mu),-m in $N / m m z$ Of To. 2
Grade of $\mathrm{Fe} / \mathrm{o} .1$ of (Mu),-m/bw dz rsx) Mu),-m(kNm) Asff,-m(mm2)
sec. 5.11 .6 ($\mathrm{N} / \mathrm{mmz}$)
Fe 250 0.39 1, 263.60 12,455.32
Fe 4150.379 1,227.96 7,099.73
Fe 500 0.372 1, 205.23 5,723.76
o.1 of sec. 5.11.6 (Fe 1,220.20 5,794.62
415)

The maximum area of steel allowed is $.04 \mathrm{~b} D=(.04)(300)(660)=7,920$
mm2 . Hence, Fe 250 is not possible in this case.

5.11.9 Summary of this Lesson

This lesson mentions about the two types of numerical problems (i) analysis and (ii) design types. In addition to explaining the steps involved in solving the analysis type of numerical problems, several examples of analysis type of problems are illustrated explaining all steps of the solutions both by direct
computation method and employing SP-16. Solutions of practice and test problems will give readers the confidence in applying the theory explained in Lesson 10 in solving the numerical problems.

Version 2 CE HT, Kharagpur

