
        LECTURE 1 INTRODUCTION
      The solid mechanics may be defined as a branch of applied 
mechanics( includes fluid mechanics, solid mechanics etc) that deals with 
behaviours of solid bodies subjected to various types of loadings. This is 
usually subdivided into further two streams i.e Mechanics of rigid bodies and 
Mechanics of deformable solids.   The mechanics of deformable solids is also 
known by strength of materials.        Mechanics of rigid bodies:  The mechanics
of rigid bodies treats materials as infinitely strong and undeformable.

Mechanics of deformable solids :  The mechanics of deformable solids is more 
concerned with the internal forces and associated changes in the geometry of the
components involved. Of particular importance are the properties of the 
materials used, the strength of which will determine whether the components fail
by breaking in service, and the stiffness of which will determine whether the 
amount of deformation they suffer is acceptable. Therefore, the subject of 
mechanics of materials or strength of materials is central to the whole activity
of engineering design. Usually the objectives in analysis here will be the 
determination of the stresses, strains, and deflections produced by loads. 
Theoretical analyses and experimental results have an equal roles in this field.
  Analysis of stress and strain : 
    Concept of stress :  The main problem of  engineering mechanics of material 
is the investigation of the internal resistance of the body, i.e. the nature of 
forces set up within a body to balance the effect of the externally applied 
forces.  The externally applied forces are termed as loads. These externally 
applied forces may be due to any one of the reason. 
(i)   due to service conditions   (ii)  due to environment in which the 
component works   (iii)  through contact with other members 
(iv)  due to fluid pressures   (v)   due to gravity or inertia forces. 
As we know that in mechanics of deformable solids, externally applied forces 
acts on a body and body suffers a deformation. From equilibrium point of view, 
this action should be opposed or reacted by internal forces which are set up 
within the particles of material due to cohesion. 
These internal forces give rise to a concept of stress

Stress:     stress is defined as the internal force per unit area.
    Where A is the area of the section 
   Here we are using an assumption that the total force or total load carried by
any material is uniformly distributed over its cross – section. 
But the stress distributions may be for from uniform, with local regions of high
stress known as stress concentrations. 
If the force carried by a component is not uniformly distributed over its cross 
– sectional area, A
        Units :     The basic units of stress in S.I units i.e. (International 
system) are N/m^2 (or Pa).             MPa = 10^6 Pa ;  GPa = 10^9 Pa;  KPa = 
10^3 Pa 
Some times N/mm^2 units are also used, because this is an equivalent to MPa.
TYPES OF STRESSES : 
only two basic stresses exists : (1) normal stress and (2) shear shear stress. 
Other stresses either are similar to these basic stresses or are a combination 
of these e.g. bending stress is a combination tensile, compressive and shear 
stresses. Torsional stress, as encountered in twisting of a shaft is a shearing 
stress.
   Normal stresses : We have defined stress as force per unit area. If the 
stresses are normal to the areas concerned, then these are termed as normal 
stresses. The normal stresses are generally denoted by a Greek letter ( s ) 

This is also known as uniaxial state of stress, because the stresses acts only 
in one direction however, such a state rarely exists, therefore we have biaxial 
and triaxial state of stresses where either the two mutually perpendicular 
normal stresses acts or three mutually perpendicular normal stresses acts as 
shown in the figures below :

Tensile or compressive stresses :  The normal stresses can be either tensile or 
compressive whether the stresses acts out of the area or into the area 



      Bearing Stress : When one object presses against another, it is referred 
to a bearing stress ( They are in fact the compressive stresses ).

Shear stresses :   Let us consider now the situation, where the cross – 
sectional area of a block of material is subject to a distribution of forces 
which are parallel, rather than normal, to the area concerned. Such forces are 
associated with a shearing of the material, and are referred to as shear forces.
The resulting force interistes are known as shear stresses.  The resulting force
intensities are known as shear stresses, the mean shear stress being equal to 

Where P is the total force and A the area over which it acts.   As we know that 
the particular stress generally holds good only at a point therefore we can 
define shear stress at a point as 

The greek symbol t ( tau ) ( suggesting tangential ) is used to denote shear 
stress. However, it must be borne in mind that the stress ( resultant stress ) 
at any point in a body is basically resolved into two components s and t one 
acts perpendicular and other parallel to the area concerned, as it is clearly 
defined in the following figure. 

LECTURE 2 ANALYSIS OF STERSSES 
       General State of stress at a point :  Stress astate of stress at a point 
is where the stresses on the three mutually perpendiclar planes are labelled in 
the manner as shown earlier. the state of stress as depicted earlier is called 
the general or a triaxial state of stress that can exist at any interior point 
of a loaded body. 
Before defining the general state of stress at a point.
         Sign convention : The tensile forces are termed as ( +ve ) while the 
compressive forces are termed as negative ( -ve ). 
First sub – script : it indicates the direction of the normal to the surface. 
Second subscript : it indicates the direction of the stress. It may be noted 
that in the case of normal stresses the double script notation may be dispensed 
with as the direction of the normal stress and the direction of normal to the 
surface of the element on which it acts is the same. Therefore, a single 
subscript notation as used is sufficient to define the normal stresses. 
Shear Stresses : With shear stress components, the single subscript notation is 
not practical, because such stresses are in direction parallel to the surfaces 
on which they act. We therefore have two directions to specify, that of normal 
to the surface and the stress itself. To do this, we stress itself. To do this, 
we attach two subscripts to the symbol ' t' , for shear stresses. 
Now let us combine the normal and shear stress components as shown below :  Now 
let us define the state of stress at a point formally. 
State of stress at a point : 
By state of stress at a point, we mean an information which is required at that 
point such that it remains under equilibrium. or simply a general state of 
stress at a point involves all the normal stress components, together with all 
the shear stress components as shown in earlier figures. 
Therefore, we need nine components, to define        Complementary shear 
stresses:    The existence of shear stresses on any two sides of the element 
induces complementary shear stresses on the other two sides of the element to 
maintain equilibrium. 

on planes AB and CD, the shear stress t acts. To maintain the static equilibrium
of this element, on planes AD and BC, t' should act, we shall see that t' which 
is known as the complementary shear stress would come out to equal and opposite 
to the t . 
The figure shows a small rectangular element with sides of length Dx, Dy 
parallel to x and y directions. Its thickness normal to the plane of paper is Dz
in z – direction. All nine normal and shear stress components may act on the 
element, only those in x and y directions are shown. 
Sign convections for shear stresses:    Direct stresses or normal stresses   - 
tensile +ve     - compressive –ve 
Shear stresses:    - tending to turn the element C.W +ve.    - tending to turn 
the element C.C.W – ve. 



The resulting forces applied to the element are in equilibrium in x and y 
direction. ( Although other normal and shear stress components are not shown, 
their presence does not affect the final conclusion ). 
Assumption : The weight of the element is neglected. 
Since the element is a static piece of solid body, the moments applied to it 
must also be in equilibrium. Let ‘O' be the centre of the element. Let us 
consider the axis through the point ‘O'. the resultant force associated with 
normal stresses sx and sy acting on the sides of the element each pass through 
this axis, and therefore, have no moment. 
Now forces on top and bottom surfaces produce a couple which must be balanced by
the forces on left and right hand faces     Thus,   tyx . D x . D z . D y = 
txy . D x . D z . D y
      In other word, the complementary shear stresses are equal in magnitude. 
The same form of relationship can be obtained for the other two pair of shear 
stress components to arrive at the relations

LECTURE 3  Analysis of Stresses:
     Consider a point ‘q' in some sort of structural member like as shown in 
figure below. Assuming that at point exist. ‘q' a plane state of stress exist. 
i.e. the state of state stress is to describe by a parameters sx, sy and txy 
These stresses could be indicate a on the two dimensional diagram as shown 
below: 

This is a commen way of representing the stresses. It must be realize a that the
material is unaware of what we have called the x and y axes. i.e. the material 
has to resist the loads irrespective less of how we wish to name them or whether
they are horizontal, vertical or otherwise further more, the material will fail 
when the stresses exceed beyond a permissible value. Thus, a fundamental problem
in engineering design is to determine the maximum normal stress or maximum shear
stress at any particular point in a body. There is no reason to believe apriori 
that sx, sy and txy are the maximum value. Rather the maximum stresses may 
associates themselves with some other planes located at ‘q'. Thus, it becomes 
imperative to determine the values of sq and tq. In order tto achieve this let 
us consider the following.
Shear stress:
If the applied load P consists of two equal and opposite parallel forces not in 
the same line, than there is a tendency for one part of the body to slide over 
or shear from the other part across any section LM. If the cross section at LM 
measured parallel to the load is A, then the average value of shear stress t = 
P/A . The shear stress is tangential to the area over which it acts. 
If the shear stress varies then at a point then t may be defined as 
Complementary shear stress: 
Let ABCD be a small rectangular element of sides x, y and z perpendicular to the
plane of paper let there be shear stress acting on planes AB and CD . It is 
obvious that these stresses will from a couple ( t . xz )y which can only be 
balanced by tangential forces on planes AD and BC. These are known as 
complementary shear stresses. i.e. the existence of shear stresses on sides AB 
and CD of the element implies that there must also be complementary shear 
stresses on to maintain equilibrium.
Let t' be the complementary shear stress induced on planes  AD and BC. Then for 
the equilibrium ( t . xz )y = t' ( yz )x   t  =  t'
Thus, every shear stress is accompanied by an equal complementary shear stress. 
Stresses on oblique plane: Till now we have dealt with either pure normal direct
stress or pure shear stress. In many instances, however both direct and shear 
stresses acts and the resultant stress across any section will be neither normal
nor tangential to the plane. 
A plane stse of stress is a 2 dimensional stae of stress in a sense that the 
stress components in one direction are all zero i.e  sz = tyz = tzx = 0 
examples of plane state of stress includes plates and shells.
Consider the general case of a bar under direct load F giving rise to a stress 
sy vertically 
           The stress acting at a point is represented by the stresses acting on
the faces of the element enclosing the point. 
The stresses change with the inclination of the planes passing through that 



point i.e. the stress on the faces of the element vary as the angular position 
of the element changes. 
      Let the block be of unit depth now considering the equilibrium of forces 
on the triangle portion ABC  Resolving forces perpendicular to BC, gives 
sq.BC.1 = sysinq . AB . 1 but AB/BC = sinq or AB = BCsinq 
Substituting this value in the above equation, we get  sq.BC.1 = sysinq . BCsinq
. 1 or               (1)
Now resolving the forces parallel to BC      tq.BC.1 = sy cosq . ABsinq . 1     
again AB = BCcosq          tq.BC.1 = sycosq . BCsinq . 1 or tq = 
sysinqcosq                  (2)
If q = 900 the BC will be parallel to AB and tq = 0, i.e. there will be only 
direct stress or normal stress. 
By examining the equations (1) and (2), the following conclusions may be drawn
(i)  The value of direct stress sq is maximum and is equal to sy when q = 900. 
(ii)  The shear stress tq has a maximum value of 0.5 sy when q = 450        
(iii)  The stresses sq and sq are not simply the resolution of sy
Material subjected to pure shear: 
Consider the element shown to which shear stresses have been applied to the 
sides AB and DC 
Complementary shear stresses of equal value but of opposite effect are then set 
up on the sides AD and BC in order to prevent the rotation of the element. Since
the applied and complementary shear stresses are of equal value on the x and y 
planes. Therefore, they are both represented by the symbol txy. 
Now consider the equilibrium of portion of PBC 
       Assuming unit depth and resolving normal to PC or in the direction of sq 
sq.PC.1 = txy.PB.cosq.1+ txy.BC.sinq.1         = txy.PB.cosq + txy.BC.sinq
Now writing PB and BC in terms of PC so that it cancels out from the two sides  
PB/PC = sinq BC/PC = cosq          sq.PC.1 = txy.cosqsinqPC+ txy.cosq.sinqPC    
sq = 2txysinqcosq       sq = txy.2.sinqcosq
             (1) 
Now resolving forces parallel to PC or in the direction tq.then txyPC . 1 = 
txy . PBsinq - txy . BCcosq
-ve sign has been put because this component is in the same direction as that of
tq. 
again converting the various quantities in terms of PC we have         txyPC . 1
= txy . PB.sin2q - txy . PCcos2q       = -[ txy (cos2q - sin2q) ] 
   = -txycos2q or         (2)
the negative sign means that the sense of tq is opposite to that of assumed one.
Let us examine the equations (1) and (2) respectively
From equation (1) i.e,      sq = txy sin2q
The equation (1) represents that the maximum value of sq is txy when q = 450. 
Let us take into consideration the equation (2) which states that     tq = - txy
cos2q
It indicates that the maximum value of tq is txy when q = 00 or 900. it has a 
value zero when q = 450. 
From equation (1) it may be noticed that the normal component sq has maximum and
minimum values of +txy (tension) and -txy (compression) on plane at ± 450 to the
applied shear and on these planes the tangential component tq is zero. 
       Hence the system of pure shear stresses produces and equivalent direct 
stress system, one set compressive and one tensile each located at 450 to the 
original shear directions as depicted in the figure below: 

Material subjected to two mutually perpendicular direct stresses: 
Now consider a rectangular element of unit depth, subjected to a system of two 
direct stresses both tensile, sx and syacting right angles to each other. 

for equilibrium of the portion ABC, resolving perpendicular to AC     sq . AC.1 
= sy sin q . AB.1 + sx cos q . BC.1 
converting AB and BC in terms of AC so that AC cancels out from the sides   sq =
sy sin2q + sxcos2q
Futher, recalling that cos2q - sin2q = cos2q or (1 - cos2q)/2 = sin2q
Similarly (1 + cos2q)/2 = cos2q
Hence by these transformations the expression for sq reduces to  = 1/2sy (1 - 
cos2q) + 1/2sx (1 + cos2q)



On rearranging the various terms we get 
        (3)
Now resolving parallal to AC   sq.AC.1= -txy..cosq.AB.1+ txy.BC.sinq.1 
The – ve sign appears because this component is in the same direction as that of
AC.     Again converting the various quantities in terms of AC so that the AC 
cancels out from the two sides. 
           (4)
Conclusions : 
The following conclusions may be drawn from equation (3) and (4)
(i)   The maximum direct stress would be equal to sx or sy which ever is the 
greater, when q = 00 or 900     (ii)  The maximum shear stress in the plane of 
the applied stresses occurs when q = 450

LECTURE 4 Material subjected to combined direct and shear stresses:    Now 
consider a complex stress system shown below, acting on an element of material. 
The stresses sx and sy may be compressive or tensile and may be the result of 
direct forces or as a result of bending.The shear stresses may be as shown or 
completely reversed and occur as a result of either shear force or torsion as 
shown in the figure below:
      As per the double subscript notation the shear stress on the face BC 
should be notified as tyx , however, we have already seen that for a pair of 
shear stresses there is a set of complementary shear stresses generated such 
that tyx = txy
By looking at this state of stress, it may be observed that this state of stress
is combination of two different cases:
(i) Material subjected to pure stae of stress shear. In this case the various 
formulas deserved are as follows 
sq = tyx sin2 q       tq = - tyx cos 2 q 
(ii) Material subjected to two mutually perpendicular direct stresses. In this 
case the various formula's derived are as follows. 

To get the required equations for the case under consideration,let us add the 
respective equations for the above two cases such that

These are the equilibrium equations for stresses at a point. They do not depend 
on material proportions and are equally valid for elastic and inelastic 
behaviour
This eqn gives two values of 2q that differ by 1800 .Hence the planes on which 
maximum and minimum normal stresses occurate 900 apart. 

From the triangle it may be determined
                                                           Substituting the 
values of cos2 q and sin2 q in equation (5) we get 

This shows that the values oshear stress is zero on the principal planes. 
Hence the maximum and minimum values of normal stresses occur on planes of zero 
shearing stress. The maximum and minimum normal stresses are called the 
principal stresses, and the planes on which they act are called principal plane 
the solution of equation 

will yield two values of 2q separated by 1800 i.e. two values of q separated by 
900 .Thus the two principal stresses occur on mutually perpendicular planes 
termed principal planes. 
Therefore the two – dimensional complex stress system can now be reduced to the 
equivalent system of principal stresses. 

Let us recall that for the case of a material subjected to direct stresses the 
value of maximum shear stresses 

Therefore,it can be concluded that the equation (2) is a negative reciprocal of 
equation (1) hence the roots for the double angle of equation (2) are 900 away 
from the corresponding angle of equation (1). 
This means that the angles that angles that locate the plane of maximum or 
minimum shearing stresses form angles of 450 with the planes of principal 



stresses. 
Futher, by making the triangle we get 
                              
Because of root the difference in sign convention arises from the point of view 
of locating the planes on which shear stress act. From physical point of view 
these sign have no meaning. 
The largest stress regard less of sign is always know as maximum shear stress. 
Principal plane inclination in terms of associated principal stress: 
We know that the equation                 yields two values of q i.e. the 
inclination of the two principal planes on which the principal stresses s1 and 
s2 act. It is uncertain,however, which stress acts on which plane unless 
equation.      is used and observing which one of the two principal stresses is 
obtained.     Alternatively we can also find the answer to this problem in the 
following manner 

Consider once again the equilibrium of a triangular block of material of unit 
depth, Assuming AC to be a principal plane on which principal stresses sp acts, 
and the shear stress is zero. 
Resolving the forces horizontally we get: 
sx .BC . 1 + txy .AB . 1 = sp . cosq . AC   dividing the above equation through 
by BC we get 

LECTURE 5  GRAPHICAL SOLUTION – MOHR'S STRESS CIRCLE 
The transformation equations for plane stress can be represented in a graphical 
form known as Mohr's circle. This grapical representation is very useful in 
depending the relationships between normal and shear stresses acting on any 
inclined plane at a point in a stresses body.  To draw a Mohr's stress circle 
consider a complex stress system as shown in the figure 

The above system represents a complete stress system for any condition of 
applied load in two dimensions 
The Mohr's stress circle is used to find out graphically the direct stress s and
sheer stress t on any plane inclined at q to the plane on which sx acts.The 
direction of q here is taken in anticlockwise direction from the BC. 
STEPS: 
In order to do achieve the desired objective we proceed in the following manner
(i)    Label the Block ABCD.   (ii)   Set up axes for the direct stress (as 
abscissa) and shear stress (as ordinate)     (iii)  Plot the stresses on two 
adjacent faces e.g. AB and BC, using the following sign convention. 
Direct stresses - tensile positive; compressive, negative         Shear stresses
– tending to turn block clockwise, positive        – tending to turn block 
counter clockwise, negative
[ i.e shearing stresses are +ve when its movement about the centre of the 
element is clockwise ] 
This gives two points on the graph which may than be labeled as respectively to 
denote stresses on these planes. 
(iv)  Join .     (v)  The point P where this line cuts the s axis is than the 
centre of Mohr's stress circle and the line joining is diameter. Therefore the 
circle can now be drawn.      Now every point on the circle then represents a 
state of stress on some plane through C. 

Proof:    Consider any point Q on the circumference of the circle, such that PQ 
makes an angle 2q with BC, and drop a perpendicular from Q to meet the s axis at
N.Then OQ represents the resultant stress on the plane an angle q to BC. Here we
have assumed that sx > sy
Now let us find out the coordinates of point Q. These are ON and QN.
From the figure drawn earlier 
             ON = OP + PN              OP = OK + KP       OP = sy + 1/2 ( sx- 
sy)                                    = sy / 2 + sy / 2 + sx / 2 + sy / 2 
       = ( sx + sy ) / 2 
PN = Rcos( 2q - b )
hence ON = OP + PN                    = ( sx + sy ) / 2 + Rcos( 2q - b )      
     = ( sx + sy ) / 2 + Rcos2q cosb + Rsin2qsinb      
now make the substitutions for Rcosb and Rsinb. 



Thus,    ON = 1/2 ( sx + sy ) + 1/2 ( sx - sy )cos2q + txysin2q
                 (1)        Similarly   QM = Rsin( 2q - b )
            = Rsin2qcosb - Rcos2qsinb
Thus, substituting the values of R cosb and Rsinb, we get      QM = 1/2 ( sx - 
sy)sin2q - txycos2q           (2)
If we examine the equation (1) and (2), we see that this is the same equation 
which we have already derived analytically 
Thus the co-ordinates of Q are the normal and shear stresses on the plane 
inclined at q to BC in the original stress system. 
N.B: Since angle PQ is 2q on Mohr's circle and not q it becomes obvious that 
angles are doubled on Mohr's circle. This is the only difference, however, as 
They are measured in the same direction and from the same plane in both figures.
Further points to be noted are : 
(1) The direct stress is maximum when Q is at M and at this point obviously the 
sheer stress is zero, hence by definition OM is the length representing the 
maximum principal stresses s1 and 2q1 gives the angle of the plane q1 from BC. 
Similar OL is the other principal stress and is represented by s2
(2) The maximum shear stress is given by the highest point on the circle and is 
represented by the radius of the circle. 
This follows that since shear stresses and complimentary sheer stresses have the
same value; therefore the centre of the circle will always lie on the s axis 
midway between sx and sy . [ since +txy & -txy are shear stress & complimentary 
shear stress so they are same in magnitude but different in sign. ] 
(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's 
stress circle would be 

While the direct stress on the plane of maximum shear must be mid – may between 
sx and sy i.e

(4) As already defined the principal planes are the planes on which the shear 
components are zero.     Therefore are conclude that on principal plane the 
sheer stress is zero. 
(5) Since the resultant of two stress at 900 can be found from the parallogram 
of vectors as shown in the diagram.Thus, the resultant stress on the plane at q 
to BC is given by OQ on Mohr's Circle. 

(6) The graphical method of solution for a complex stress problems using Mohr's 
circle is a very powerful technique, since all the information relating to any 
plane within the stressed element is contained in the single construction. It 
thus, provides a convenient and rapid means of solution. Which is less prone to 
arithmetical errors and is highly recommended. 
LECTURE 6 ILLUSRATIVE PROBLEMS:  Let us discuss few representative problems 
dealing with complex state of stress to be solved either analytically or 
graphically. 
PROB 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. 
What is the Value of shear stress on the planes on which the normal stress has a
value of 50 MN/m2 tensile. 
PROB 2:   For a given loading conditions the state of stress in the wall of a 
cylinder is expressed as follows:    (a)  85 MN/m2 tensile      (b)  25 MN/m2 
tensile at right angles to (a)    (c)  Shear stresses of 60 MN/m2 on the planes 
on which the stresses (a) and (b) act; the sheer couple acting on planes 
carrying the 25 MN/m2 stress is clockwise in effect.   Calculate the principal 
stresses and the planes on which they act. What would be the effect on these 
results if owing to a change of loading (a) becomes compressive while stresses 
(b) and (c) remain unchanged 

Salient points of Mohr's stress circle:      1.  complementary shear stresses 
(on planes 900 apart on the circle) are equal in magnitude      2.  The 
principal planes are orthogonal: points L and M are 1800 apart on the circle 
(900 apart in material) 
3.  There are no shear stresses on principal planes: point L and M lie on normal
stress axis.      4.  The planes of maximum shear are 450 from the principal 
points D and E are 900 , measured round the circle from points L and M. 



5.  The maximum shear stresses are equal in magnitude and given by points D and 
E      6.  The normal stresses on the planes of maximum shear stress are equal 
i.e. points D and E both have normal stress co-ordinate which       is equal to 
the two principal stresses. 
     As we know that the circle represents all possible states of normal and 
shear stress on any plane through a stresses point in a material. Further we 
have seen that the co-ordinates of the point ‘Q' are seen to be the same as 
those derived from equilibrium of the element. i.e. the normal and shear stress 
components on any plane passing through the point can be found using Mohr's 
circle. Worthy of note: 
1. The sides AB and BC of the element ABCD, which are 900 apart, are represented
on the circle by and they are 1800 apart. 
2. It has been shown that Mohr's circle represents all possible states at a 
point. Thus, it can be seen at a point. Thus, it, can be seen that two planes LP
and PM, 1800 apart on the diagram and therefore 900 apart in the material, on 
which shear stress tq is zero. These planes are termed as principal planes and 
normal stresses acting on them are known as principal stresses.  Thus ,   s1 = 
OL   s2 = OM 
3. The maximum shear stress in an element is given by the top and bottom points 
of the circle i.e by points J1 and J2 ,Thus the maximum shear stress would be 
equal to the radius of i.e. tmax= 1/2( s1- s2 ),the corresponding normal stress 
is obviously the distance OP = 1/2 ( sx+ sy ) , Further it can also be seen that
the planes on which the shear stress is maximum are situated 900 from the 
principal planes ( on circle ), and 450 in the material.
4.The minimum normal stress is just as important as the maximum. The algebraic 
minimum stress could have a magnitude greater than that of the maximum principal
stress if the state of stress were such that the centre of the circle is to the 
left of orgin.     i.e. if      s1 = 20 MN/m2 (say)  s2 = -80 MN/m2 (say)   Then
tmaxm = ( s1 - s2 / 2 ) = 50 MN/m2
If should be noted that the principal stresses are considered a maximum or 
minimum mathematically e.g. a compressive or negative stress is less than a 
positive stress, irrespective or numerical value.
5. Since the stresses on perpendular faces of any element are given by the co-
ordinates of two diametrically opposite points on the circle, thus, the sum of 
the two normal stresses for any and all orientations of the element is constant,
i.e. Thus sum is an invariant for any particular state of stress. 
Sum of the two normal stress components acting on mutually perpendicular planes 
at a point in a state of plane stress is not affected by the orientation of 
these planes. 
      This can be also understand from the circle Since AB and BC are 
diametrically opposite thus, what ever may be their orientation, they will 
always lie on the diametre or we can say that their sum won't change, it can 
also be seen from analytical relations     We know     on plane BC; q = 0       
sn1 = sx
on plane AB; q = 2700       sn2 = sy         Thus sn1 + sn2= sx+ sy 
6. If s1 = s2, the Mohr's stress circle degenerates into a point and no shearing
stresses are developed on xy plane. 
7. If sx+ sy= 0, then the center of Mohr's circle coincides with the origin of s
- t co-ordinates. 

LECTURE 7-ANALYSIS OF STRAINS 
CONCEPT OF STRAIN: if a bar is subjected to a direct load, and hence a stress 
the bar will change in length. If the bar has an original length L and changes 
by an amount dL, the strain produce is defined as follows: 
Strain is a measure of the deformation of the material and is a nondimensional 
Quantity i.e. it has no units.    Since in practice, the extensions of materials
under load are very very small, it is often convenient to measure the strain in 
the form of strain x 10-6 i.e. micro strain, when the symbol used becomes m Î.
Sign convention for strain:   Tensile strains are positive whereas compressive 
strains are negative. The strain defined earlier was known as linear strain or 
normal strain.
Shear strain:  The tangent of the angle through which two adjacent sides of an 
element rotates relative to their initial position is termed shear strain. In 
many cases the angle is very small and the angle it self is used, ( in 



radians ).
Shear strain: shear stresses acts along the surface.
This Shear strain is measured in radians & hence is non – dimensional i.e. it 
has no unit.So we have two types of strain i.e. normal stress & shear stresses. 
Hook's Law :  A material is said to be elastic if it returns to its original 
unloaded dimensions when load is removed. 
Hook's law therefore states that     Stress (   ) a strain(   ) 

Modulus of elasticity : Within the elastic limits of materials i.e. within the 
limits in which Hook's law applies, it has been shown that 
Stress / strain = constant.  This constant is given by the symbol E and is 
termed as the modulus of elasticity or Young's modulus of elasticity 
Thus The value of Young's modulus E is generally assumed to be the same in 
tension or compression and for most engineering material has high, numerical 
value of the order of 200 GPa 
Poisson's ratio: If a bar is subjected to a longitudinal stress there will be a 
strain in this direction equal to s / E . There will also be a strain in all 
directions at right angles to s . The final shape being shown by the dotted 
lines. 

It has been observed that for an elastic materials, the lateral strain is 
proportional to the longitudinal strain.
Poison's ratio ( m ) = - lateral strain / longitudinal strain 
For most engineering materials the value of m his between 0.25 and 0.33.
Three – dimensional state of strain : Consider an element subjected to three 
mutually perpendicular tensile stresses sx , syand sz as shown in the figure 
below. 

If sy and sz were not present the strain in the x direction from the basic 
definition of Young's modulus of Elasticity E would be equal to   Îx= sx/ E 
The effects of sy and sz in x direction are given by the definition of Poisson's
ratio ‘ m ' to be equal as -m sy/ E and -m sz/ E 
The negative sign indicating that if syand sz are positive i.e. tensile, these 
they tend to reduce the strain in x direction thus the total linear strain is x 
direction is given by 

Principal strains in terms of stress:  In the absence of shear stresses on the 
faces of the elements let us say that sx , sy , sz are in fact the principal 
stress. The resulting strain in the three directions would be the principal 
strains. 
i.e. We will have the following relation.    

For Two dimensional strain: system, the stress in the third direction becomes 
zero i.e sz = 0 or s3 = 0 
Although we will have a strain in this direction owing to stresses s1& s2 . 
Hence the set of equation as described earlier reduces to 
     Hence a strain can exist without a stress in that direction

Hydrostatic stress : The term Hydrostatic stress is used to describe a state of 
tensile or compressive stress equal in all directions within or external to a 
body. Hydrostatic stress causes a change in volume of a material, which if 
expressed per unit of original volume gives a volumetric strain denoted by Îv. 
So let us determine the expression for the volumetric strain. 
Volumetric Strain:        Consider a rectangle solid of sides x, y and z under 
the action of principal stresses s1 , s2 , s3 respectively. 
Then Î1 , Î2 , and Î3 are the corresponding linear strains, than the dimensions 
of the rectangle becomes 
( x + Î1 . x ); ( y + Î2 . y ); ( z + Î3 . z ) 
hence the
ALITER : Let a cuboid of material having initial sides of Length x, y and z. If 
under some load system, the sides changes in length by dx, dy, and dz then the 
new volume ( x + dx ) ( y + dy ) ( z +dz ) 
New volume = xyz + yzdx + xzdy + xydz         Original volume = xyz         
Change in volume = yzdx +xzdy + xydz



Volumetric strain = ( yzdx +xzdy + xydz ) / xyz = Îx+ Îy+ Îz
Neglecting the products of epsilon's since the strains are sufficiently small. 
Volumetric strains in terms of principal stresses: 
As we know that

Strains on an oblique plane 
(a) Linear strain 
           Consider a rectangular block of material OLMN as shown in the xy 
plane. The strains along ox and oy are Îx and Îy , and gxy is the shearing 
strain. 
Then it is required to find an expression for Îq, i.e the linear strain in a 
direction inclined at q to OX, in terms of Îx ,Îy , gxy and q.  Let the diagonal
OM be of length 'a' then ON = a cos q and OL = a sin q , and the increase in 
length of those under strains are Îxacos q and Îya sin q ( i.e. strain x 
original length ) respectively.    If M moves to M', then the movement of M 
parallel to x axis is Îxacos q + gxy sin q and the movement parallel to the y 
axis is Îyasin q 
Thus the movement of M parallel to OM , which since the strains are small is 
practically coincident with MM'. and this would be the summation of portions (1)
and (2) respectively and is equal to 

This expression is identical in form with the equation defining the direct 
stress on any inclined plane q with Îx and Îy replacing sx and sy and ½ gxy 
replacing txy i.e. the shear stress is replaced by half the shear strain
Shear strain: To determine the shear stain in the direction OM consider the 
displacement of point P at the foot of the perpendicular from N to OM and the 
following expression can be derived as 
In the above expression ½ is there so as to keep the consistency with the stress
relations. 
Futher -ve sign in the expression occurs so as to keep the consistency of sign 
convention, because OM' moves clockwise with respect to OM it is considered to 
be negative strain. 
The other relevant expressions are the following : 

Let us now define the plane strain condition 
Plane Strain : 
In xy plane three strain components may exist as can be seen from the following 
figures: 

Therefore, a strain at any point in body can be characterized by two axial 
strains i.e Îx in x direction, Îy in y - direction and gxy the shear strain. 
In the case of normal strains subscripts have been used to indicate the 
direction of the strain, and Îx , Îy are defined as the relative changes in 
length in the co-ordinate directions. 
With shear strains, the single subscript notation is not practical, because such
strains involves displacements and length which are not in same direction.The 
symbol and subscript gxy used for the shear strain referred to the x and y 
planes. The order of the subscript is unimportant. gxy and gyx refer to the same
physical quantity. However, the sign convention is important.The shear strain 
gxy is considered to be positive if it represents a decrease the angle between 
the sides of an element of material lying parallel the positive x and y axes. 
Alternatively we can think of positive shear strains produced by the positive 
shear stresses and viceversa. 
Plane strain :   An element of material subjected only to the strains as shown 
in Fig. 1, 2, and 3 respectively is termed as the plane strain state. 
Thus, the plane strain condition is defined only by the components Îx , Îy , gxy
: Îz = 0; gxz= 0; gyz= 0 
It should be noted that the plane stress is not the stress system associated 
with plane strain. The plane strain condition is associated with three 
dimensional stress system and plane stress is associated with three dimensional 
strain system.
LECTURE 8   PRINCIPAL STRAIN
For the strains on an oblique plane we have an oblique we have two equations 
which are identical in form with the equation defining the direct stress on any 



inclined plane q . 

Since the equations for stress and strains on oblique planes are identical in 
form, so it is evident that Mohr's stress circle construction can be used 
equally well to represent strain conditions using the horizontal axis for linear
strains and the vertical axis for half the shear strain. 
It should be noted, however that the angles given by Mohr's stress circle refer 
to the directions of the planes on which the stress act and not the direction of
the stresses themselves. 
The direction of the stresses and therefore associated strains are therefore 
normal (i.e. at 900) to the directions of the planes. Since angles are doubled 
in Mohr's stress circle construction it follows therefore that for a true 
similarity of working a relative rotation of axes of 2 x 900 = 1800 must be 
introduced. This is achieved by plotting positive sheer strains vertically 
downwards on the strain circle construction.
The sign convention adopted for the strains is as follows: 
Linear Strains : extension - positive      compression - negative 
{ Shear of strains are taken positive, when they increase the original right 
angle of an unstrained element. } 
Shear strains : for Mohr's strains circle sheer strain gxy - is +ve referred to 
x - direction the convention for the shear strains are bit difficult. The first 
subscript in the symbol gxy usually denotes the shear strains associated with 
direction. e.g. in gxy– represents the shear strain in x - direction and for 
gyx– represents the shear strain in y - direction. If under strain the line 
associated with first subscript moves counter clockwise with respect to the 
other line, the shearing strain is said to be positive, and if it moves 
clockwise it is said to be negative. 
N.B: The positive shear strain is always to be drown on the top of Îx .If the 
shear stain gxy is given ] 
Moh's strain circle
For the plane strain conditions can we derivate the following relations

A typical point P on the circle given the normal strain and half the sheer 
strain 1/2gxy associated with a particular plane. We note again that an angle 
subtended at the centre of Mohr's circle by an arc connecting two points on the 
circle is twice the physical angle in the material. 
Mohr strain circle : 
Since the transformation equations for plane strain are similar to those for 
plane stress, we can employ a similar form of pictorial representation. This is 
known as Mohr's strain circle. 
The main difference between Mohr's stress circle and stress circle is that a 
factor of half is attached to the shear strains. 
       Points X' and Y' represents the strains associated with x and y 
directions with Î and gxy /2 as co-ordiantes 
Co-ordinates of X' and Y' points are located as follows : 
      In x – direction, the strains produced, the strains produced by sx,and - t
xy are Îx and - gxy /2 
where as in the Y - direction, the strains are produced by Îy and + gxy are 
produced by sy and + txy
These co-ordinated are consistent with our sign notation ( i.e. + ve shear 
stresses produces produce +ve shear strain & vice versa ) 
on the face AB is txy+ve i.e strains are ( Îy, +gxy /2 ) where as on the face 
BC, txy is negative hence the strains are ( Îx, - gxy /2 ) 

A typical point P on the circle gives the normal strains and half the shear 
strain, associated with a particular plane we must measure the angle from x – 
axis (taken as reference) as the required formulas for Îq , -1/2 gq have been 
derived with reference to x-axis with angle measuring in the c.c.W direction 

CONSTRUCTION :
In this we would like to locate the points x' & y' instead of AB and BC as we 
have done in the case of Mohr's stress circle. 
steps
1. Take normal or linear strains on x-axis, whereas half of shear strains are 



plotted on y-axis.
2. Locate the points x' and y'   3. Join x' and y' and draw the Mohr's strain 
circle    4. Measure the required parameter from this construction. 
        Note: positive shear strains are associated with planes carrying 
positive shear stresses and negative strains with planes carrying negative shear
stresses.
ILLUSTRATIVE EXAMPLES :

Use of strain Gauges : 
Although we can not measure stresses within a structural member, we can measure 
strains, and from them the stresses can be computed, Even so, we can only 
measure strains on the surface. For example, we can mark points and lines on the
surface and measure changes in their spacing angles. In doing this we are of 
course only measuring average strains over the region concerned. Also in view of
the very small changes in dimensions, it is difficult to archive accuracy in the
measurements 
In practice, electrical strain gage provide a more accurate and convenient 
method of measuring strains. 
A typical strain gage is shown below. 

The gage shown above can measure normal strain in the local plane of the surface
in the direction of line PQ, which is parallel to the folds of paper. This 
strain is an average value of for the region covered by the gage, rather than a 
value at any particular point. 
The strain gage is not sensitive to normal strain in the direction perpendicular
to PQ, nor does it respond to shear strain. therefore, in order to determine the
state of strain at a particular small region of the surface, we usually need 
more than one strain gage. 
To define a general two dimensional state of strain, we need to have three 
pieces of information, such as Îx , Îy and gxy referred to any convenient 
orthogonal co-ordinates x and y in the plane of the surface. We therefore need 
to obtain measurements from three strain gages. These three gages must be 
arranged at different orientations on the surface to from a strain rossett. 
Typical examples have been shown, where the gages are arranged at either 450 or 
600 to each other as shown below :

A group of three gages arranged in a particular fashion is called a strain 
rosette. Because the rosette is mounted on the surface of the body, where the 
material is in plane stress, therefore, the transformation equations for plane 
strain to calculate the strains in various directions.
Knowing the orientation of the three gages forming a rosette, together with the 
in – plane normal strains they record, the state of strain at the region of the 
surface concerned can be found. Let us consider the general case shown in the 
figure below, where three strain gages numbered 1, 2, 3, where three strain 
gages numbered 1, 2, 3 are arranged at an angles of q1 , q2 , q3 measured c.c.w 
from reference direction, which we take as x – axis. 
Now, although the conditions at a surface, on which there are no shear or normal
stress components. Are these of plane stress rather than the plane strain, we 
can still use strain transformation equations to express the three measured 
normal strains in terms of strain components Îx , Îy , Îz and gxy referred to x 
and y co-ordiantes as 

This is a set of three simultaneous linear algebraic equations for the three 
unknows Îx, Îy , gxy to solve these equation is a laborious one as far as 
manually is concerned, but with computer it can be readily done.Using these 
later on, the state of strain can be determined at any point. 
Let us consider a 450 degree stain rosette consisting of three electrical – 
resistance strain gages arranged as shown in the figure below :

The gages A, B,C measure the normal strains Îa , Îb , Îc in the direction of 
lines OA, OB and OC. 
Thus

Thus, substituting the relation (3) in the equation (2) we get   gxy = 2Îb- ( Îa



+ Îc ) and other equation becomes Îx = Îa ; Îy= Îc
Since the gages A and C are aligned with the x and y axes, they give the strains
Îx and Îy directly 
Thus, Îx , Îy and gxy can easily be determined from the strain gage readings. 
Knowing these strains, we can calculate the strains in any other directions by 
means of Mohr's circle or from the transformation equations. 
The 600 Rossett:   For the 600 strain rosette, using the same procedure we can 
obtain following relation. 

LECTURE 9  STRESS - STRAIN RELATIONS 
Stress – Strain Relations: The Hook's law, states that within the elastic limits
the stress is proportional to the strain since for most materials it is 
impossible to describe the entire stress – strain curve with simple mathematical
expression, in any given problem the behavior of the materials is represented by
an idealized stress – strain curve, which emphasizes those aspects of the 
behaviors which are most important is that particular problem. 
(i) Linear elastic material:            A linear elastic material is one in 
which the strain is proportional to stress as shown below: 
There are also other types of idealized models of material behavior. 
(ii) Rigid Materials:  It is the one which donot experience any strain 
regardless of the applied stress. 
      (iii) Perfectly plastic(non-strain hardening):    A perfectly plastic i.e 
non-strain hardening material is shown below: 
     (iv) Rigid Plastic material(strain hardening):  A rigid plastic material 
i.e strain hardening is depicted in the figure below: 

(v) Elastic Perfectly Plastic material:   The elastic perfectly plastic material
is having the characteristics as shown below: 
  
(vi) Elastic – Plastic material:    The elastic plastic material exhibits a 
stress Vs strain diagram as depicted in the figure below: 

Elastic Stress – strain Relations : 
              Previously stress – strain relations were considered for the 
special case of a uniaxial loading i.e. only one component of stress i.e. the 
axial or normal component of stress was coming into picture. In this section we 
shall generalize the elastic behavior, so as to arrive at the relations which 
connect all the six components of stress with the six components of elastic 
stress. Futher, we would restrict overselves to linearly elastic material.
Before writing down the relations let us introduce a term ISOTROPY 
ISOTROPIC: If the response of the material is independent of the orientation of 
the load axis of the sample, then we say that the material is isotropic or in 
other words we can say that isotropy of a material in a characteristics, which 
gives us the information that the properties are the same in the three 
orthogonal directions x y z, on the other hand if the response is dependent on 
orientation it is known as anisotropic.
Examples of anisotropic materials, whose properties are different in different 
directions are 
(i) Wood  (ii) Fibre reinforced plastic   (iii) Reinforced concrete 
HOMOGENIUS: A material is homogenous if it has the same composition through our 
body. Hence the elastic properties are the same at every point in the body. 
However, the properties need not to be the same in all the direction for the 
material to be homogenous. Isotropic materials have the same elastic properties 
in all the directions. Therefore, the material must be both homogenous and 
isotropic in order to have the lateral strains to be same at every point in a 
particular component. 
Generalized Hook's Law: We know that for stresses not greater than the 
proportional limit. 

These equation expresses the relationship between stress and strain (Hook's law)
for uniaxial state of stress only when the stress is not greater than the 
proportional limit. In order to analyze the deformational effects produced by 
all the stresses, we shall consider the effects of one axial stress at a time. 
Since we presumably are dealing with strains of the order of one percent or 



less. These effects can be superimposed arbitrarily. The figure below shows the 
general triaxial state of stress. 

Let us consider a case when sx alone is acting. It will cause an increase in 
dimension in X-direction whereas the dimensions in y and z direction will be 
decreased. 

Therefore the resulting strains in three directions are              Similarly 
let us consider that normal stress sy alone is acting and the resulting strains 
are 

Now let us consider the stress sz acting alone, thus the strains produced are 

In the following analysis shear stresses were not considered. It can be shown 
that for an isotropic material's a shear stress will produce only its 
corresponding shear strain and will not influence the axial strain. Thus, we can
write Hook's law for the individual shear strains and shear stresses in the 
following manner. 
The Equations (1) through (6) are known as Generalized Hook's law and are the 
constitutive equations for the linear elastic isotropic materials. When these 
equations isotropic materials. When these equations are used as written, the 
strains can be completely determined from known values of the stresses. To 
engineers the plane stress situation is of much relevance ( i.e. sz = txz = tyz 
= 0 ), Thus then the above set of equations reduces to 

Hook's law is probably the most well known and widely used constitutive 
equations for an engineering materials.” However, we can not say that all the 
engineering materials are linear elastic isotropic ones. Because now in the 
present times, the new materials are being developed every day. Many useful 
materials exhibit nonlinear response and are not elastic too. 
Plane Stress: In many instances the stress situation is less complicated for 
example if we pull one long thin wire of uniform section and examine – small 
parallepiped where x – axis coincides with the axis of the wire 

So if we take the xy plane then sx , sy , txy will be the only stress components
acting on the parrallepiped. This combination of stress components is called the
plane stress situation 
A plane stress may be defined as a stress condition in which all components 
associated with a given direction ( i.e the z direction in this example ) are 
zero 

Plane strain: If we focus our attention on a body whose particles all lie in the
same plane and which deforms only in this plane. This deforms only in this 
plane. This type of deformation is called as the plane strain, so for such a 
situation. 
Îz= gzx = gzy = 0 and the non – zero terms would be Îx, Îy & gxy
i.e. if strain components Îx, Îy and gxy and angle q are specified, the strain 
components Îx', Îy' and gxy' with respect to some other axes can be determined. 
ELASTIC CONSTANTS 
In considering the elastic behavior of an isotropic materials under, normal, 
shear and hydrostatic loading, we introduce a total of four elastic constants 
namely E, G, K, and g .
It turns out that not all of these are independent to the others. In fact, given
any two of them, the other two can be foundout . Let us define these elastic 
constants 
(i)   E = Young's Modulus of Rigidity           = Stress / strain 
(ii) G = Shear Modulus or Modulus of rigidity
          = Shear stress / Shear strain 
(iii)  g = Possion's ratio            = - lateral strain / longitudinal strain 
(iv) K = Bulk Modulus of elasticity              = Volumetric stress / 
Volumetric strain
Where    Volumetric strain = sum of linear stress in x, y and z direction.     
Volumetric stress = stress which cause the change in volume. 
Let us find the relations between them .




