Garbage Collection Algorithms

Ganesh Bikshandi

Announcement

* MP4 posted

* Term paper posted

Introduction

* Garbage : discarded or useless material
* Collection : the act or process of collecting

* Garbage collection 1s the reclamation of chunks
of storage holding objects that can no longer be

accessed by a program.

Why GC?

* Manual deallocation is tedious and error-prone

— memory leaks

— dangling pointer dereference
* GC also offers other advantages

— memory compaction

— 1improving locality (temporal and spatial)

Definitions

® Mutator : the program that modifies the objects 1n
heap (simply, the user program)

®* Root set :

— data accessed directly without pointer dereference

— e.g. set of static field variables & all local variables
(JAVA)

Reachability Analysis

* Transitive closure of all the object retferences

‘/ \b reachable unreachable

e

Reachability

* Compiler might complicate reachability analysis

— store references 1n registers

— pointers to middle of an array

Basic Requirement

* Type safety

— ML - statically typed

- JAVA — dynamically typed
* C and C++ are type unsafe

— pointer arithmetic

— integer casts (any memory 1s reachable)

Essential characteristics

minimal overall execution time
optimal space usage (no fragmentation)
minimal pause time (esp. real time tasks)

improved locality for mutator

Reachable object set

* Object Allocations (+)

* Parameter passing (;)

* Return values (;)

* Reference assignments (-)

* Procedure returns (-)

Garbage Collection Schemes

* Reference counting

®* Trace based collection

— mark & sweep
— Baker's
— mark & compact

— copying collectors
* Short-Pause Garbage Collection

— 1ncremental

— partial

Reterence Counting

* Add a count to each heap object

* Update on :
— object allocation (+) : c(A) =1
— parameter passing (+) : C(A)++;
— reference assignments (+/-) : c(u)--; c(v)++;
— returns (-) : c(A)--;
— transitively decrement the count upon zero

* ¢(A) =0 ==>c(B)--; for all B pointed to by A.

Reterence Counting

* Advantages
— Simple
— Immediate garbage collection
— Short pause times

— Low space usage

* Disadvantages

-—-

Trace-Based Collection

* Run the garbage collection periodically

— for ex, when the free space 1s exhausted

— or a cut-off 1s reached

* Sweep all the allocated objects

Mark-and-Sweep collector

initial

mark

sweep

Basic Mark-and-Sweep Algorithm

/* mar ki ng phase */
Unscanned = all the objects referenced by root set
while (unscanned != 0) {
renove sone object o from Unscanned;
for (each object o' reference in o) {
I1f (o' 1Is Unreached) {
set the reached bit of o' to 1;
put o' 1 n Unscanned,

}
}
}
/* sweepi ng phase */
Free = O;

for (each chunk of nenory o in the heap) {
|f (the reached bit of ois O0) add o to Free;
el se set the reached bit of o to O;

Baker's Mark-and-Sweep Algorithm

/* mar ki ng phase */
Unscanned = all the objects referenced by root set
Unreached = set of all the allocated objects
while (Unscanned != 0) {

renove sone object o from Unscanned,

for (each object o' reference in o) {

If (0" 1s 1n Unreached) {
nove o' from Unreached to Unscanned;

}
}
/* sweepi ng phase */

Free = Free U Unreached:
Unr eached = Scanned:

Relocating Collectors

* Relocates the reachable objects to end of heap
* Improves locality
* Reduces fragmentation

* Catch: update the references contained in all the
reachable objects

Mark-and-Compact

free

Mark-and-Compact

* Mark all the reachable objects
* Find the new location for each reachable object

* move each reachable object to new location
— modify 1ts references

* modify the references in the root set

Copying collector

R

From

To To

From

Copying Collector

/

- — unscanned
p free

\\
-) ——

from to

Copying Collector

o

—

unscanned
P free

'm 1% e

from Tto

Copying Collector

/ ‘\
A BN

from

Copying Collector

unscanned

“ free

\} "

Copying Collector

unscanned

4 - free

=

Summary

* Mark-and-Sweep : O(h)

* Baker's : O(r)

* Mark-and-Compact : O(h + s(r))
* Copying : O(s(1))

* h =size of heap, r = # of reach objects s(r) : total
size of reached objects

Short-Pause Garbage Collection

* GC 1n part
— incremental = by time

— partial or generational = by space

Incremental Garbage Collector

* Breaks the reachability analysis into smaller units

®* mutator 1s executed between these units

Problem (1)

* Mutator changes the reachable set

* Solution:
— Preserve all the references that existed before GC and
mark them unscanned
* intercept all the write operations

— All the new objects are placed in the unscanned state

Problem (1I)

P

‘ reachable

‘/ % ‘/‘% @ unscanned

black always points to blacks or grays

Problem (1I)

Al A IA]

> > >

col | ector mut at or col | ect or

Solutions

®* Write Barriers

— 1ntercept writes of references to blacks, mark the
reference gray or change the black to gray

® Read Barriers

— 1ntercept the reads of references in whites or grays,
mark the reference gray

Partial-Collection

* Objects die young

- 80% - 98% die within a few million instructions or
before another MB 1s allocated

* Objects that survive a collection once are likely
to survive more

Generational Garbage Collection

* Splits the heap 1n to generations
®* Younger objects in the recent generation

* Mature objects in the older generations

Generational Garbage Collection

'ﬁ>

young mature
(target) (stable)

Generational Garbage Collection

E

Generational Garbage Collection

'@

Generational Garbage Collection

'@

Generational Garbage Collection

iy o

Generational Garbage Collection

iy o

Generational Garbage Collection

®* root Set + = remembered set

* remembered set (1) = all the objects from partition
> 1 that point to the objects 1n set 1

Train Algorithm

T

Train Algorithm

Cars
-
11 12
Tr ai ns 21 22 23

y 3l 32 33

Train Algorithm

* Remembered Sets for each train

— 1ternal (within the cars of the train)
— external (other trains)

— only higher numbered cars & trains

* Root set += remembered set

Train Algorithm
* Start with (1)

* If the entire train has no reference fully collect
* Step 1:

— Move objects with references from other trains to

those trains
* Step 2:

— Move object with references from root set or other
cars to those cars

* Collect (1,1)

Train Algorithm

:

=N

[4

:

Train Algorithm

Train Algorithm

Train Algorithm

Train Algorithm

®* Ensures that related structures in same train
— that 1s why, we can detect cycles

* Usetul for mature objects

* Two phase scheme

— Generational for young objects

— Train for mature objects

Issues

* How are trains managed?
— for eg. after every k new objecs a new train 1s created

®* What if we are stuck 1in (1)?

— step 2 just keeps on producing cars in same train

— panic mode
®* Why this happens?

— Mutator changes the references from higher
numbered trains during collection

Parallel & Concurrent GC

* Extension of incremental GC
* parallel = uses multiple gc threads

® concurrent = runs simultaneously with mutator

.

nmut at or col | ect or

Parallel & concurrent GC

* Tracing phase (parallel & concurrent)

* Stop-the-world phase (atomic)

* Scale of the problem 1s huge

— Root set = union of root set of all the threads

Parallel & concurrent GC

®* Recall the incremental GC:

— Find the root set atomically

— Interleave the tracing with mutator
* remember dirty cards

— Stop the mutator(s) again to rescan all dirty cards

Parallel & Concurrent GC

* Scan the root set for each thread (p)
* Scan the objects in Unscanned state (p & ¢)
— In parallel using a queue

* Rescan for dirty objects (p & ¢)
— once or for a fixed number of times

* Stop the mutator & collect the garbage (p)

Conclusion

* Garbage collection 1s extremely important

* Various types of garbage collection schemes

* Minimizing the pause time is the key

