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Where are we?

• Last time:  A survey of common garbage 
collection techniques
– Manual memory management
– Reference counting (Appel 13.2)
– Copying collection (Appel 13.3)
– Generational collection (Appel 13.4)
– Baker’s algorithm (Appel 13.6)

• Today:
– Mark-sweep collection (Appel 13.1)
– Conservative collection
– Compiler interface (13.7)



Mark-sweep

• A two-phase algorithm
– Mark phase: Depth first traversal of object 

graph from the roots to mark live data
– Sweep phase:  iterate over entire heap, 

adding the unmarked data back onto the free 
list
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Free list r1
In use
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Marked

Sweep Phase: GC complete when heap boundary 
encountered; resume program
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Cost of Mark Sweep

• Cost of mark phase: 
– O(R) where R is the # of reachable words
– Assume cost is c1 * R (c1 may be 10 instr’s)

• Cost of sweep phase:
– O(H) where H is the # of words in entire heap
– Assume cost is c2 * H (c2 may be 3 instr’s)

• Amortized analysis
– Each collection returns H - R words
– For every allocated word, we have GC cost:

• ((c1 * R) + (c2 * H)) / (H - R)
– R / H must be sufficiently small or GC cost is high
– Eg: if R / H is larger than .5, increase heap size



A Hidden Cost

• Depth-first search is usually implemented 
as a recursive algorithm
– Uses stack space proportional to the longest 

path in the graph of reachable objects 
• one activation record/node in the path
• activation records are big

– If the heap is one long linked list, the stack 
space used in the algorithm will be greater 
than the heap size!!

– What do we do?



A nifty trick

• Deutsch-Schorr-Waite pointer reversal
– Rather using a recursive algorithm, reuse the 

components of the graph you are traversing to 
build an explicit stack

– This implementation trick only demands a few 
extra bits/block rather than an entire activation 
record/block

– We already needed a few extra bits per block 
to hold the “mark” anyway
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• extra bits needed to keep track of which
record fields we have processed so far



DSW Setup

• Extra space required for sweep:
– 1 bit/record to keep track of whether the record has 

been seen (the “mark bit”)
– f log 2 bits/record where f is the number of fields in 

the record to keep track of how many fields have 
been processed

• assume a vector: done[x]

• Functions:
– mark x = sets x’s mark bit
– marked x = true if x’s mark bit is set
– pointer x = true if x is a pointer
– fields x = returns number of fields in the record x



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
  not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

(* depth-first search in 
    constant space *)

(* next is object being processed *)

(* done[next] is field being processed *)
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fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

      y = next.i
      if (pointer y) & not (marked y) then
        next.i = back; 
        back = next; 
        next = y;
        mark next; 
        done[next] = 0;
      else
        done[next] = i + 1

(* depth-first search in 
    constant space *)
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DSW Algorithm
fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

y = next; 
next = back;

if next = nil then return;

i = done[next];
back = next.i; 
next.i = y;
done[next] = i + 1;

(* depth-first search in 
    constant space *)

dfs complete 



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

y = next; 
next = back;

if next = nil then return;

i = done[next];
back = next.i; 
next.i = y;
done[next] = i + 1;

(* depth-first search in 
    constant space *)

advance to
next field 



More Mark-Sweep 

• Mark-sweep collectors can benefit from the 
tricks used to implement malloc/free efficiently
– multiple free lists, one size of block/list

• Mark-sweep can suffer from fragmentation
– blocks not copied and compacted like in copying 

collection

• Mark-sweep doesn’t require 2x live data size to 
operate
– but if the ratio of live data to heap size is too large 

then performance suffers



Conservative Collection

• Even languages like C can benefit from GC
– Boehm-Weiser-Demers conservative GC uses 

heuristics to determine which objects are pointers and 
which are integers without any language support

• last 2 bits are non-zero => can’t be a pointer
• integer is not in allocated heap range => can’t be a pointer
• mark phase traverses all possible pointers
• conservative because it may retain data that isn’t reachable

– thinks an integer is actually a pointer
• all gc is conservative anyway so this is almost never an issue 

(despite what people say)
• sound if your program doesn’t manufacture pointers from 

integers by, say, using xor (using normal pointer arithmetic is 
fine)



Compiler Interface

• The interface to the garbage collector involves 
two main parts
– allocation code

• languages can allocated up to approx 1 word/7 instructions 
• allocation code must be blazingly fast!
• should be inlined and optimized to avoid call-return overhead

– gc code
• to call gc code, the program must identify the roots
• to traverse data, heap layout must be specified somehow



Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into function result

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move result into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]
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Assume size of record allocated is N:
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Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into computationally useful place

4. Clear M[next], ..., M[next + N – 1]
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6. Return from alloc function

7. Move next into computationally useful place
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Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into computationally useful place

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move next into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]

total overhead for allocation on the order of 3 instructions/alloc 



Calling GC code

• To call the GC, program must:
– identify the roots:

• a GC-point, is an control-flow point where the 
garbage collector may be called

– allocation point; function call

• for any GC-point, compiler generates a pointer 
map that says which registers, stack locations in 
the current frame contain pointers

• a global table maps GC-points (code addresses) to 
pointer maps

• when program calls the GC, to find all roots:
– GC scans down stack, one activation record at a time, 

looking up the current pointer map for that record



Calling GC code

• To call the GC, program must:
– enable GC to determine data layout of all 

objects in the heap
• for ML, Tiger, Pascal:

– every record has a header with size and pointer info

• for Java, Modula-3:
– each object has an extra field that points to class 

definition

– gc uses class definition to determine object layout 
including size and pointer info



Summary

• Garbage collectors are a complex and 
fascinating part of any modern language 
implementation

• Different collection algs have pros/cons
– explicit MM, reference counting, copying, 

generational, mark-sweep
– all methods, including explicit MM have costs
– optimizations make allocation fast, GC time, space 

and latency requirements acceptable
– read Appel Chapter 13 and be able to analyze, 

compare and contrast different GC mechanisms
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