
Garbage collection

David Walker

CS 320



Where are we?

• Last time:  A survey of common garbage 
collection techniques
– Manual memory management
– Reference counting (Appel 13.2)
– Copying collection (Appel 13.3)
– Generational collection (Appel 13.4)
– Baker’s algorithm (Appel 13.6)

• Today:
– Mark-sweep collection (Appel 13.1)
– Conservative collection
– Compiler interface (13.7)



Mark-sweep

• A two-phase algorithm
– Mark phase: Depth first traversal of object 

graph from the roots to mark live data
– Sweep phase:  iterate over entire heap, 

adding the unmarked data back onto the free 
list



Example

Free list

r1

In use

On free list



Example

Free list

r1

In use

On free list

Marked

Mark Phase: mark nodes reachable from roots



Example

Free list

r1

In use

On free list

Marked

Mark Phase: mark nodes reachable from roots



Example

Free list

r1

In use

On free list

Marked

Mark Phase: mark nodes reachable from roots



Example

Free list r1
In use

On free list

Marked

Sweep Phase: set up sweep pointer; begin sweep

p



Example

Free list r1
In use

On free list

Marked

Sweep Phase: add unmarked blocks to free list

p



Example

Free list r1
In use

On free list

Marked

Sweep Phase

p



Example

Free list r1
In use

On free list

Marked

Sweep Phase:  retain & unmark marked blocks

p



Example

Free list r1
In use

On free list

Marked

Sweep Phase

p



Example

Free list r1
In use

On free list

Marked

Sweep Phase: GC complete when heap boundary 
encountered; resume program

p



Cost of Mark Sweep

• Cost of mark phase: 
– O(R) where R is the # of reachable words
– Assume cost is c1 * R (c1 may be 10 instr’s)

• Cost of sweep phase:
– O(H) where H is the # of words in entire heap
– Assume cost is c2 * H (c2 may be 3 instr’s)

• Amortized analysis
– Each collection returns H - R words
– For every allocated word, we have GC cost:

• ((c1 * R) + (c2 * H)) / (H - R)
– R / H must be sufficiently small or GC cost is high
– Eg: if R / H is larger than .5, increase heap size



A Hidden Cost

• Depth-first search is usually implemented 
as a recursive algorithm
– Uses stack space proportional to the longest 

path in the graph of reachable objects 
• one activation record/node in the path
• activation records are big

– If the heap is one long linked list, the stack 
space used in the algorithm will be greater 
than the heap size!!

– What do we do?



A nifty trick

• Deutsch-Schorr-Waite pointer reversal
– Rather using a recursive algorithm, reuse the 

components of the graph you are traversing to 
build an explicit stack

– This implementation trick only demands a few 
extra bits/block rather than an entire activation 
record/block

– We already needed a few extra bits per block 
to hold the “mark” anyway



DSW Algorithm

…

back next



DSW Algorithm

…

back next

…

back next



DSW Algorithm

…

back next

…

back next

…

back

next



DSW Algorithm

…

back next

…

back next

…

back

next

…

back

next



DSW Algorithm

…

back next

…

back next

…

back

next

…

back

next

• extra bits needed to keep track of which
record fields we have processed so far



DSW Setup

• Extra space required for sweep:
– 1 bit/record to keep track of whether the record has 

been seen (the “mark bit”)
– f log 2 bits/record where f is the number of fields in 

the record to keep track of how many fields have 
been processed

• assume a vector: done[x]

• Functions:
– mark x = sets x’s mark bit
– marked x = true if x’s mark bit is set
– pointer x = true if x is a pointer
– fields x = returns number of fields in the record x



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
  not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

(* depth-first search in 
    constant space *)

(* next is object being processed *)

(* done[next] is field being processed *)



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
  not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

  back = nil; 
  mark next;          
  done[next] = 0;

(* depth-first search in 
    constant space *)



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

      y = next.i
      if (pointer y) & not (marked y) then
        next.i = back; 
        back = next; 
        next = y;
        mark next; 
        done[next] = 0;
      else
        done[next] = i + 1

(* depth-first search in 
    constant space *)

reuse field to
store back ptr 



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

      y = next.i
      if (pointer y) & not (marked y) then
        next.i = back; 
        back = next; 
        next = y;
        mark next; 
        done[next] = 0;
      else
        done[next] = i + 1

(* depth-first search in 
    constant space *)

initialize for
next iteration 



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

      y = next.i
      if (pointer y) & not (marked y) then
        next.i = back; 
        back = next; 
        next = y;
        mark next; 
        done[next] = 0;
      else
        done[next] = i + 1

(* depth-first search in 
    constant space *)

field is done 



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

y = next; 
next = back;

if next = nil then return;

i = done[next];
back = next.i; 
next.i = y;
done[next] = i + 1;

(* depth-first search in 
    constant space *)

dfs complete 



DSW Algorithm
fun dfs(next) =
if (pointer next) & 
    not (marked next) then

  (* initialization *)

  while true do

    i = done[next]
    if i < (fields next) then

      (* process ith field *)

    else

      (* back-track to previous 
          record *)

y = next; 
next = back;

if next = nil then return;

i = done[next];
back = next.i; 
next.i = y;
done[next] = i + 1;

(* depth-first search in 
    constant space *)

advance to
next field 



More Mark-Sweep 

• Mark-sweep collectors can benefit from the 
tricks used to implement malloc/free efficiently
– multiple free lists, one size of block/list

• Mark-sweep can suffer from fragmentation
– blocks not copied and compacted like in copying 

collection

• Mark-sweep doesn’t require 2x live data size to 
operate
– but if the ratio of live data to heap size is too large 

then performance suffers



Conservative Collection

• Even languages like C can benefit from GC
– Boehm-Weiser-Demers conservative GC uses 

heuristics to determine which objects are pointers and 
which are integers without any language support

• last 2 bits are non-zero => can’t be a pointer
• integer is not in allocated heap range => can’t be a pointer
• mark phase traverses all possible pointers
• conservative because it may retain data that isn’t reachable

– thinks an integer is actually a pointer
• all gc is conservative anyway so this is almost never an issue 

(despite what people say)
• sound if your program doesn’t manufacture pointers from 

integers by, say, using xor (using normal pointer arithmetic is 
fine)



Compiler Interface

• The interface to the garbage collector involves 
two main parts
– allocation code

• languages can allocated up to approx 1 word/7 instructions 
• allocation code must be blazingly fast!
• should be inlined and optimized to avoid call-return overhead

– gc code
• to call gc code, the program must identify the roots
• to traverse data, heap layout must be specified somehow



Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into function result

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move result into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]



Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into function result

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move result into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]

useful computation
not alloc overhead



Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into function result

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move result into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]

inline
alloc
code



Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into computationally useful place

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move next into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]

combine
moves



Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into computationally useful place

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move next into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]

eliminate
useless
store



Allocation Code

Assume size of record allocated is N:
1. Call alloc function

2. Test next + N < limit   (call gc on failure)

3. Move next into computationally useful place

4. Clear M[next], ..., M[next + N – 1]

5. next = next + N

6. Return from alloc function

7. Move next into computationally useful place

8. Store useful values into M[next],....,M[next + N - 1]

total overhead for allocation on the order of 3 instructions/alloc 



Calling GC code

• To call the GC, program must:
– identify the roots:

• a GC-point, is an control-flow point where the 
garbage collector may be called

– allocation point; function call

• for any GC-point, compiler generates a pointer 
map that says which registers, stack locations in 
the current frame contain pointers

• a global table maps GC-points (code addresses) to 
pointer maps

• when program calls the GC, to find all roots:
– GC scans down stack, one activation record at a time, 

looking up the current pointer map for that record



Calling GC code

• To call the GC, program must:
– enable GC to determine data layout of all 

objects in the heap
• for ML, Tiger, Pascal:

– every record has a header with size and pointer info

• for Java, Modula-3:
– each object has an extra field that points to class 

definition

– gc uses class definition to determine object layout 
including size and pointer info



Summary

• Garbage collectors are a complex and 
fascinating part of any modern language 
implementation

• Different collection algs have pros/cons
– explicit MM, reference counting, copying, 

generational, mark-sweep
– all methods, including explicit MM have costs
– optimizations make allocation fast, GC time, space 

and latency requirements acceptable
– read Appel Chapter 13 and be able to analyze, 

compare and contrast different GC mechanisms


	Garbage collection
	Where are we?
	Mark-sweep
	Example
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Cost of Mark Sweep
	A Hidden Cost
	A nifty trick
	DSW Algorithm
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	DSW Setup
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	More Mark-Sweep
	Conservative Collection
	Compiler Interface
	Allocation Code
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Calling GC code
	Slide 40
	Summary

