
Pre-Scheme: A Scheme Dialect forSystems ProgrammingRichard A. KelseyNEC Research Institutekelsey@research.nj.nec.comJune 4, 1997AbstractPre-Scheme is a statically typed dialect of Schemethat gives the programmer the e�ciency and low-level machine access of C while retaining manyof the desirable features of Scheme. The Pre-Scheme compiler makes use of type inference, par-tial evaluation and Scheme and Lisp compilertechnology to compile the problematic featuresof Scheme, such as closures, into C code with-out signi�cant run-time overhead. Use of suchfeatures in Pre-Scheme programs is restricted tothose cases that can be compiled into e�cientcode. Type reconstruction is done using a mod-i�ed Hindley/Milner algorithm that allows over-loaded user-de�ned functions. All top-level formsin Pre-Scheme programs are evaluated at compiletime, which gives the user additional control overthe compiler's partial evaluation of a program.Pre-Scheme has been implemented and used towrite a byte-code interpeter and associated sup-port code for a complete Scheme implementation.1 IntroductionHigh-level programming languages, such asScheme [15], Haskell [6], and ML [11], don't workwell for writing programs that require maximumc1997 NEC Research Institute, Inc.All rights reserved

performance or direct access to machine-level in-structions and data structures. This is deliber-ate in some circumstances, such as checking atrun-time that array references are in range, andunavoidable in others, for example the run-timeoverhead required for garbage collection. Pre-Scheme is a statically typed dialect of Scheme thatavoids all such overhead while attempting to pre-serve the features of Scheme as much as possible.The most important Scheme feature that is pre-served is Scheme's semantics. Pre-Scheme's se-mantics are identical to Scheme's, with the caveatthat a Pre-Scheme program may run out of space,because it lacks both a garbage collector and fullproper tail-recursion. A Pre-Scheme program willproduce the same answer when compiled as whenrun in a Scheme implementation, if the compiledprogram does not run out of space.The programs for which Pre-Scheme is appro-priate are usually written in a low-level language,for example C or Pascal. Doing so gives the de-sired access to the machine, but only by giving upall of the advantages of using a higher-level lan-guage. Pre-Scheme is an attempt to get the bestof both worlds by restricting Scheme to those pro-grams that when compiled run with no more over-head than equivalent programs written in low-level languages. Obviously we want the minimumnecessary restrictions so as to preserve as much ofScheme's expressiveness as possible. Pre-Scheme1

provides the following features lacking in C:� local proper tail recursion� nontrivial syntactic extensions (macros)� higher order procedures� type-checked polymorphism� interactive debugging� a module system� Scheme semanticsLocal proper tail recursion is necessary, sincerecursion is the only way to express iterative con-structs in Scheme or Pre-Scheme. Pre-Schemeinherits Scheme's macro facility. C has its ownmacros, but they are textual as opposed to syn-tactic, and are much less powerful and convenientthan Scheme macros. Proper tail recursion is im-plemented so long as the compiler can translateit into an iterative C construct, or when the userhas indicated a willingness to put up with the ad-ditional overhead.Both Scheme and C allow the user to de�nepolymorphic procedures. In Scheme polymor-phism is unlimited, with type checking done dy-namically. C functions can be made polymorphicthrough the use of type casts. This is limitedto types having a common size, and also pre-vents any type checking on the polymorphic val-ues. Pre-Scheme's static type checker, like thatof ML and Haskell, correctly handles parametricpolymorphism.Pre-Scheme's module system is not part of stan-dard Scheme but is inherited from Scheme 48 anddescribed in [9].The main di�erences between Scheme and Pre-Scheme are:� A Pre-Scheme program's top-level forms areevaluated at compile time and may make useof full Scheme. This is exactly the evalua-tion that happens when a Scheme programis loaded into an interpreter.

� Pre-Scheme programs are statically typed bythe compiler using a type reconstruction al-gorithm.� Pre-Scheme has no garbage collection.� In Pre-Scheme not all tail-recursive callsare done with proper tail-recursion. Propertail recursion is guaranteed only for calls tolambda forms bound by let and letrec orwhen explicitly declared for a particular call.Of course, since Pre-Scheme programs areScheme programs, they can be developed and runusing a Scheme implementation, in which case theprogrammer can make full use of the Scheme im-plementation's programming environment. Thisis especially helpful for storage management. APre-Scheme program can be developed and de-bugged in the presence of a garbage collector, withexplicit storage management being added oncethe program is otherwise satisfactory.The above di�erences are not enough on theirown to get the desired program performance.Pre-Scheme presupposes a powerful compiler thatdoes a fair amount of partial evaluation. Boththe fancy compiler and the restrictions are nec-essary. Restrictions alone result in languagessuch as C and Pascal, which are e�cient but notvery powerful. While performance comparable tothat of low-level languages is occasionally claimedfor implementations of high-level languages, theseclaims are typically based on small benchmarksand not on full applications.The current Pre-Scheme compiler produces Ccode and is based on the compiler described in[8, 7]. It has been used to compile the Scheme48 virtual machine [9], a moderate-sized programthat includes a byte-code interpreter and garbagecollector. This particular application program,written in Pre-Scheme and compiled by the Pre-Scheme compiler, performs as well as comparableprograms written directly in C. As shown in �g-ure 1, when compiled with other systems, includ-ing Orbit [10], an optimizing Scheme compiler, it2

runs much more slowly. These timings are dis-cussed in more detail in secion 6 below.Scheme->C 120.00Orbit, no in-lining 33.00Orbit, in-lining 5.40Pre-Scheme 0.84Figure 1: Time, in seconds, for the Scheme 48virtual machine to run (fib 22) (106 byte-codeinstructions) on a MIPS R3000, when compiledwith various compilers.2 How Pre-Scheme di�ers fromSchemeThis section describes the di�erences betweenScheme and Pre-Scheme in more detail.2.1 Pre-Scheme is statically typedManaging the type information needed forScheme's dynamic type checking and type dis-crimination slows execution and denies the userdirect access to machine data and instructions.For this reason Pre-Scheme is a statically typedlanguage. Pre-Scheme's type system is a paramet-ric polymorphic one similar to ML's. The maindi�erences are in the handling of overloaded nu-meric operators and the use of an extended notionof polymorphism (see the section on type infer-ence below).The lack of dynamic type information meansthat type discrimination procedures such aspair? and number? are not available in Pre-Scheme. In the future we plan to add to Pre-Scheme record types, tagged unions, and tuplessimilar to those in ML. Currently the only datastructures are those found in Scheme.

2.2 No garbage collectionPre-Scheme's data model is that of Scheme's. Val-ues are represented by references and argumentsare passed by reference. Static typing allows thecompiler to elide the references when the valuesin question are either atomic, such as numbers, orare known not to be side-a�ected.The use of references means that values in gen-eral require some kind of allocated storage. Thereis no garbage collector, so any deallocation mustbe done by the programmer, using the system pro-cedure free.The lack of garbage collection makes closuresless useful than in Scheme. However, in many in-stances code that would ordinarily require a clo-sure can be compiled without one using variouscompiler optimizations. The compiler can be di-rected to indicate any code that will result in thecreation of closures at run time.2.3 Proper tail-recursionScheme implementations are required to be prop-erly tail-recursive. There can be a signi�cantrun-time overhead for this on certain platforms.For example, when compiling into C implement-ing proper tail recursion involves the introductionof some form of driver loop. For Pre-Scheme thetail-recusion requirement only applies to calls tolocal procedures, de�ned as lambda forms that arebound by let or letrec. The programmer candeclare that individual calls are to be compiled asproperly tail-recursive. (GOTO proc arg1 ...)is syntax indicating that proc should here becalled tail-recursively (assuming the goto formoccurs in tail position).2.4 Call-with-current-continuationcall-with-current-continuation is not avail-able in Pre-Scheme. We plan to add downwardcontinuations to Pre-Scheme in the future, sincethey incur no signi�cant run-time cost.3

2.5 Compile-time evaluation of top-level formsA Pre-Scheme program's top-level forms are eval-uated at compile time. This is identical to theevaluation that occurs when a Scheme programis loaded. After this evaluation the program con-sists of a sequence of de�nitions of procedures andliteral values. The programmer must specify, atcompile time, one or more entry points to the pro-gram.Compile-time evaluation allows programmersto use all of Scheme in building and initializingcomplex data structures, which may include pro-cedures, that the rest of the compilation processcan treat as static. For example, if the program-mer creates a vector of procedures at top-level, acall to an (unknown) element of the vector can beimplemented as a computed-goto. All of Schemeis available for the evaluation of top-level forms;the restrictions described below do not apply.3 Type reconstructionThe most complex restriction on Pre-Scheme pro-grams is that they must be statically typed. Thegoal for Pre-Scheme's static type checking is tomodel Scheme's dynamic typing as accurately aspossible while still allowing the compiler to de-cide upon a machine representation for every vari-able, to insert any necessary coercions, and toproduce intelligible messages describing any typeerrors. Type reconstruction is done using a Hind-ley/Milner style polymorphic type reconstructionalgorithm augmented to deal with overloaded op-erators and to insert coercion operations. Coer-cions are limited to those that are computation-ally inexpesive, for example between di�erent nu-meric types. Coercions on procedural values arenot done, because they would require dynamicallyallocating closures to hold the values and the codeto do the necessary coercions. Type conicts thatcan be repaired by the insertion of an unsafe co-

ercion function are reported but do not stop thecompilation process.The type reconstruction algorithm produces aprogram augmented with coercions and a set oftype relations encoding constraints on the coer-cions, similar to that in [12]. A representitivesample of the type inference rules are given inthe appendix. Coercions, and their correspond-ing relations, are introduced wherever an expres-sion produces a value. After type reconstructionis completed the compiler produces a solution tothe type relations, and so determines the actualtype of each coercion.The type reconstruction algorithm allows forfour di�erent kinds of polymorphism:� no polymorphism� single size polymorphism. Di�erent types ofvalues are allowed, but they must all share asingle representation size.� multi-size polymorphism. Di�erent copies ofthe procedure are required for di�erent sizesof values.� full polymorphism. A separate copy of theprocedure's type, including any associatedrelations, is produced for each use. The pro-cedure itself will be in-lined by the compiler.If every value representation were the same size,single and multi-size polymorphism would beidentical. Most ML implementations work in thisfashion.Full polymorphism is used when a procedurewill be in-lined. As an example of full polymor-phism consider the procedure (define (add-onex) (+ x 1)). Scheme's dynamic type checkingand type discrimination mean that add-one canbe used on any of Scheme's di�erent numerictypes, and its result will be coerced as necessary.To duplicate this statically requires using multi-ple copies of the add-one procedure, since di�er-ent uses will require di�erent coercions or di�er-ent addition operators. The Haskell type system4

(define (carefully op)(lambda (x y succ fail)(let ((z (op (extract-fixnum x) (extract-fixnum y))))(if (overflows? z)(goto fail x y)(goto succ (enter-fixnum z))))))(define add-carefully (carefully +))(define (arith op)(lambda (x y)(op x y return arithmetic-overflow)))(define-primitive op/+ (number-> number->) (arith add-carefully))Figure 2: Pre-Scheme code implementing the Scheme 48 virtual machine's addition instructionallows the user to de�ne overloaded procedures,but the overloading is resolved at run time, whichis unacceptable for Pre-Scheme. Mitchell's algo-rithm for type inference with simple subtypes willintroduce the coercions, but assigns a single typeto add-one and would reject the following expres-sion:(* (add-one 1.5)(vector-ref v (add-one 3)))(add-one 1.5) will force add-one to take a oat-ing point argument and return a oating pointresult, which will cause a type error, since the re-sult is passed to vector-ref, which requires aninteger.4 An ExampleThis section presents a code example to show thatPre-Scheme programs really are like Scheme pro-grams, and not just C programs with Scheme syn-tax. The code is taken from the Scheme 48 vir-tual machine, which contains a byte-code inter-preter, a garbage collector, and code for reading

and writing heap images. This virtual machine iswritten entirely in Pre-Scheme. The example isthe code implementing the virtual machine's ad-dition instruction, which operates on small taggedintegers.The Scheme 48 virtual machine also serves as anexample of utility of having a well-de�ned seman-tics for Pre-Scheme. The VLISP project [5] usesScheme 48 as the basis for a fully veri�ed Schemeimplementation. Verifying the correctness of theScheme 48 virtual machine would be much moredi�cult were portions of it written in C, as C'ssemantics are much more complicated, and lesswell de�ned, than Scheme's or Pre-Scheme's. Asit was, the VLISP members were able to write aPre-Scheme compiler that generated code for theMotorola 68000 and prove it correct [14].Figure 2 illustrates the coding style used in theScheme 48 virtual machine. The example consistsof the code implementing the addition instruc-tion. The procedure carefully takes an arith-metic operator and returns a procedure that per-forms that operation on two tagged arguments,either passing the tagged result to a success con-tinuation, or passing the original arguments to5

a failure continuation if the operation overows.extract-fixnum and enter-fixnum remove andadd type tags to small integers. The functionoverflows? checks that its argument has enoughunused bits for a type tag. carefully can thenbe used to de�ne add-carefully which performsaddition on integers.define-primitive is a macro that expandsinto a call to the procedure define-opcode whichactually de�nes the instruction. The three argu-ments to the macro are the instruction to de�ne,input argument speci�cations, and the body ofthe instruction. The expanded code retrieves ar-guments from the stack, performs type checks andcoercions, and executes the body of the instruc-tion. This is a simple Scheme macro that wouldbe painful, if not impossible, to write using C'slimited macro facility.5 ImplementationThe current Pre-Scheme compiler is based on thetransformational compiler described in [8, 7]. Ituses the following optimization techniques:� Beta reduction (substituting known valuesfor variables).� Block compilation. The entire program iscompiled at once. This maximizes the op-portunities for performing beta reduction. Italso increases the number of programs thatwill be accepted by the type checker by al-lowing global dependency analysis.� Transforming tail recursion to iteration. Tailrecursive loops are identi�ed and transformedinto iterative ones as described in [8].� Hoisting closures. Closures with no freelexically-bound variables are made into top-level procedures.� Constant folding.

� C translation tricks. A number of transfor-mations are applied to take advantage of thecapabilities of the C compiler.None of these techniques is new (for example,see [1, 10, 8, 2]), they have not previously beenapplied to a language intended for low-level pro-gramming. Pre-Scheme programs do not pay anypenalty for with type tags, garbage collection,or full run-time polymorphism, since Pre-Schemedoes not have them. As a result, the program-mer can be given direct access to machine data.The best that can be done in a full Scheme imple-mentation is to give the programmer these bene-�ts within a single procedure, and often not eventhen. Not implementing Scheme in its full gen-erality greatly increases the speed at which pro-grams run the low-level expressiveness of the re-sulting language.The Scheme 48 virtual machine illustrates thee�ectiveness of the Pre-Scheme compiler. Not in-cluding comments, the virtual machine consists of570 forms containing 2314 lines of Scheme code,and is compiled to 13 C procedures contining 8467lines of code.Figure 3 shows the C code produced for the ad-dition instruction. This is part of a large switchstatement which performs instruction dispatch.This code is not what we would have written ifwe had used C in the �rst place, but it is at leastas e�cient. The use of Pre-Scheme makes theprogram (moderately) comprehensible and easyto modify without incurring run-time cost. Fig-ure 4 is the assembly code produced by GCC [16]from the above, for a MIPS R3000 processor.Not surprisingly, the machine code closely fol-lows the C code, since the C code is straightfor-ward. The most important job done by the Ccompiler is register allocation.While quite good, this code is not quite as goodas we could have done had we started out writingin MIPS assembly language. For one thing, GCCdid some unhelpful tail merging, which, whilemaking the program a few instructions smaller,6

case 46 : {long arg2_267X;RSstackS = (4 + RSstackS); /* pop an operand from the stack */arg2_267X = *((long*)((unsigned char*)RSstackS));if ((0 == (3 & (arg2_267X | RSvalS)))) { /* check operand tags */long x_268X;long z_269X;x_268X = RSvalS;z_269X = (arg2_267X >> 2) + (x_268X >> 2); /* remove tags and add */if ((536870911 < z_269X)) { /* overflow check */goto L20950;}else {if ((z_269X < -536870912)) { /* underflow check */goto L20950;}else {RSvalS = (z_269X << 2); /* add tag and continue */goto START;}}L20950: {merged_arg1K0 = 0;merged_arg0K1 = arg2_267X;merged_arg0K2 = x_268X;goto raise_exception2;}}else {merged_arg1K0 = 0;merged_arg0K1 = arg2_267X;merged_arg0K2 = RSvalS;goto raise_exception2;}}break; Figure 3: Compiler output for the Pre-Scheme code in �gure 21resulted in the unnecessary jump at the end ofthe code in �gure 4. Also, given that the tagfor small integers is zero, we could possibly haveadded the two numbers with their tags intact andused a hardware overow check instead of the twocomparisons above (on a machine that providedsuch a check). These two failings could not beenavoided by writing Scheme 48 in C instead of inPre-Scheme. It is the C compiler that introducesthe unnecessary jump, and C o�ers no direct ac-cess to the hardware overow check.1Many Scheme identi�ers are not legal C identi�ers,while on the other hand C is case-sensitive and Schemeis not. The compiler uses upper-case letters for the char-

6 DiscussionThe timings in �gure 1 show that the Pre-Schemecompiler does a much better job of compiling theScheme 48 virtual machine than either Orbit orScheme->C. Because the Scheme 48 virtual ma-chine is written in a very modular fashion, with anumber of procedure-based interfaces, it containsa large number of one and two line de�nitions.acters that are legal in identi�ers in Scheme but not in C;for example *val* becomes SvalS. The compiler also intro-duces local variables to shadow global variables to improveregister usage (similar to [17]). These introduced variablesbegin with R, thus RSvalS is a local variable shadowing theglobal variable SvalS.7

$L450: addu $19,$19,4 ; pop an argument from the stacklw $6,0($19)or $2,$6,$17 ; check tags on both argumentsandi $2,$2,0x0003bne $2,$0,$L1337li $2,0x1fff0000 ; for overflow checkori $2,$2,0xffffsra $4,$6,2 ; remove tagssra $3,$17,2addu $4,$4,$3 ; do the additionslt $2,$2,$4bne $2,$0,$L492 ; check for overflowmove $7,$17li $2,-536870912 ; check for underflowslt $2,$4,$2beq $2,$0,$L1619j $L1670move $22,$0$L1619: j $L221 ; jump to instruction dispatchsll $17,$4,2 ; add tagFigure 4: Assembly code for the C code in �gure 3If these procedures are not compiled in-line thesystem's performance is very poor, as shown inthe �rst two timings. In-lining these de�nitionswith Orbit gives much better performance, butstill not that of the Pre-Scheme compiler. In bothcases Orbit was in-lining standard Scheme proce-dures and using �xnum-speci�c arithmetic. In-lining was not done with Scheme->C as its mech-anism for handling user in-lining declarations wasnot su�ciently robust.One reason that Orbit's output is so muchslower is that Orbit does not do top-level formevaluation, and as a result compiles the code foreach of the virtual machine's op-codes as a sepa-rate top-level procedure and the exectution of ev-ery instruction then requires a full procedure call.This cost could be avoided rewriting the virtualmachine as a single large case or cond expres-

sion, at the cost of convoluting the code. Othercosts are more fundamental, such as the need tomaintain type information at run time.7 Related WorkIn this section we compare Pre-Scheme with threeother approaches: the design of standard lan-guages, high-performance Scheme and Lisp im-plementations, and low-level languages with Lispsyntax.7.1 C, Pascal, and other low-level lan-guagesThese languages use syntactic restrictions to forceprogrammers to write programs that can be rune�ciently using a particular type of implementa-8

tion. Syntactic restrictions have the advantage ofbeing easy to understand and easy to enforce. Un-fortunately, implementation limitations tend notto be easily modelled in syntax, with the resultthat the syntactic restrictions are much strongerthan necessary. A good example of this is howclosures are avoided in C and Pascal. Closures re-sult from allowing the unrestricted use of nestedprocedures as values. C allows the unrestricteduse of procedures as values, but does not al-low nested procedure declarations. Pascal allowsnested procedures, but restricts how procedurevalues may be used. Enforcing exactly the im-plementation's restriction would require syntac-tically distinguishing procedures that containedfree lexical references from those that don't.7.2 Other languages with Lisp syntaxLisp syntax has been used for a variety of low-level languages, from assembly code (LAP code inmany Lisp implementations) to FORTRAN (themisnamed Tinylisp used in [4]). This both allowsthe use of syntactic macros and makes parsing thelanguage trivial. Other than the syntax, theselanguages typically have little or nothing to dowith Lisp, or with high-level languages in general.7.3 High-performanceimplementationsMost e�orts to produce e�cient Scheme or Lispimplementations are hampered by being requiredto implement the full language. Low-level lan-guage speed has been claimed for particular Lispand Scheme implementations, usually on the basisof running some fairly small benchmarks [10, 13].Here, instead of a small benchmark we have a non-trivial, useful application, written in Pre-Scheme,that performs as well as similar programs writtenin C. Scheme 48, when the VM is compiled usingthe Pre-Scheme compiler, runs at about the samespeed of SCM4, a widely used Scheme implemen-tation hand-written in C (the two have very di�er-

ent implementation strategies and the actual rel-ative speeds varies widely depending on the codebeing run). As discussed in section 6, Scheme 48'sperforance decreases drastically when its VM iscompiled using the Orbit compiler.Like the Pre-Scheme compiler, [3] and [17]translate high-level languages (Scheme and ML)into C. Scheme->C translates calls to globalScheme procedures into calls to C procedures (asdoes the Pre-Scheme compiler for most calls), andthus has global tail recursion only if it is imple-mented by the C implementation. CMU-ML->Cuses a driver loop to implement global tail re-cursion in C (as the Pre-Scheme compiler doeswhen the user declares that a call should be tail-recursive). Unlike Pre-Scheme, Scheme->C usestype bits and both ->C implementations requirethat programs be linked to a special run-time li-brary. Scheme->C also does not do the global opti-mizations necessary to get maximal performance.8 Future WorkThe Pre-Scheme language could be enhanced byadding additional functionality to the compiler,allowing a larger set of Scheme programs to becompiled. Downward closures could be allowed,as they are in Pascal, since doing so would notcompromise the e�ciency of compiled programs.This might require declarations on the part ofthe programmer to indicate when a closure couldbe passed downwards, instead of needing to beeliminated by beta reduction. Downward con-tinuations could also be implemented using Clongjumps.Obtaining maximally e�cient code from thecurrent compiler requires programmer directivesto make up for the compiler not having informa-tion about the dynamic behavior of the programor knowledge of the target architecture. For ex-ample, the programmer may want a procedurethat deals with an exceptional case not to be in-lined, since it might slow down the normal case,9

or desire that within a given set of procedures aparticular global variable be shadowed by a localvariable, and thus end up in a machine register.This opens up two avenues for further design andexperimentation. A more sophisticated compilercould get by with less user information, and moresophisticated directives could produce better Coutput and increase the number of programs thatcould be compiled e�ectively.9 ConclusionPre-Scheme is Scheme restricted to those pro-grams that can be compiled to very e�cient ob-ject code using current techniques.Pre-Scheme programs can be run as Schemeprograms or compiled into native code. Runningthem as Scheme programs gives full access to thedebugging and automatic storage reclamation fea-tures of the Scheme implementation. But unlikeScheme programs, Pre-Scheme programs can bestatically type-checked and compiled into nativecode that does not require type tags, garbage col-lection or other features that slow execution. Pre-Scheme programs' use of these Scheme features isrestricted to exactly those instances that can becompiled e�ciently.We have shown that these restrictions allow theuse of many of Scheme's powerful features in writ-ing low-level programs, without sacri�cing perfo-mance.10 AcknowledgementsPre-Scheme was developed as part of theScheme 48 project, which is a joint e�ort on thepart of Jonathan Rees and myself. Jonthan Rees,Suresh Jaganathan, Rick Mohr, and Mitch Wandprovided many helpful comments on this paper.

References[1] Alfred V. Aho, Ravi Sethi, and Je�rey D.Ullman. Compilers: Principles, Techniques,and Tools. Addison-Wesley, Reading, MA,1986.[2] Andrew W. Appel. Compiling withContinuations. Cambridge University Press,Cambridge, 1992.[3] J. Bartlett. Scheme!c: A portablescheme-to-c compiler. Technical report,DEC Western Research Laboratory, 1989.[4] John Ellis. Bulldog: A Compiler for VLIWArchitectures. MIT Press, 1985.[5] J. D. Guttman, L. G. Monk, J. D.Ramsdell, W. M. Farmer, and V. Swarup.A guide to vlisp, a veri�ed programminglanguage implementation. Technical ReportM92B091, The MITRE Corporation, 1992.[6] P. Hudak and P. Wadler (eds.). Report onthe programming language haskell.Technical Report YALEU/DCS/TR-777,Department of Computer Science, YaleUniversity, New Haven, CT, 1990.[7] Richard Kelsey. Compilation by programtransformation. Technical ReportYALEU/DCS/TR-702, Department ofComputer Science, Yale University, NewHaven, CT, 1989.[8] Richard Kelsey and Paul Hudak. Realisticcompilation by program transformation. InConf. Rec. 16 ACM Symposium onPrinciples of Programming Languages,pages 281{292, 1989.[9] Richard Kelsey and Jonathan Rees. Atractable Scheme implementation. Lisp andSymbolic Computation, 7:315{335, 1994.10

[10] David A. Kranz, Richard Kelsey,Jonathan A. Rees, Paul Hudak, JamesPhilbin, and Norman I. Adams. Orbit: Anoptimizing compiler for scheme. InProceedings SIGPLAN '86 Symposium onCompiler Construction, 1986. SIGPLANNotices 21 (7), July, 1986, 219-223.[11] R. Milner, M. Tofte, and R. Harper. TheDe�nition of Standard ML. MIT Press,1990.[12] John C. Mitchell. Type inference withsimple subtypes. Journal of FunctionalProgramming, 1:245{285, 1991.[13] A. Nagasaka, Y. Shintani, and T. Ito.Tachyon common lisp: An e�cient andportable implementation of cltl2. In Proc.1992 ACM Conf. on Lisp and FunctionalProgramming, 1992.[14] D. P. Oliva, Ramsdell, and M J. D., Wand.The vlisp veri�ed prescheme compiler. Lispand Symbolic Computation, 8(1 &2):111{182, 1995.[15] Jonathan A. Rees and eds. Clinger,William C. Revised3 report on thealgorithmic language scheme. SIGPLANNotices, 21(12):37{79, December 1986.[16] R. Stallman. Using and Porting GNU CC.Free Software Foundation, 1989.[17] D. Tarditi, A. Acharya, and P. Lee. Noassembly required: Compiling Standard MLto C. Technical report, School of ComputerScience, Carnegie Mellon University, 1991.Appendix: type reconstructionrules Simpli�ed Scheme Syntax

N literal constant(lambda (I) E) procedure(let (I Evalue) Ebody) local bindingI identifier(set! I E) variable binding mutation(Eproc Earg) procedure application(if Etest Econs Ealt) conditionalThe statement: A ` E ! E0 : tmeans that in type environment A expression Eexpands to E0, which has type t.A[I 7! s] ` E) E0 : tA ` (lambda (I) E)) (lambda (I) E0) : s! tA ` E1) E10 : sA[I 7! Oracle(A;E1 0; s)] ` E2) E20 : tA ` (let (I E1) E2)) (let (I E10) E20) : tThe oracle is needed to choose between the vari-ous kinds of polymorphism.integer v tA ` N) (coerce-integer->t N) : tt v t0A[I 7! t] ` I) (coerce-t->t0 I) : t0A[I 7! t] ` E) E0 : tA[I 7! t] ` (set! I E)) (set! I E0) : unitA ` E1) E10 : s! tA ` E2) E20 : st v t0A ` (E1 E2)) (coerce-t->t0 (E10 E20)) : t0A ` E1) E10 : booleanA ` E2) E20 : tA ` E3) E30 : tt v t0A ` (if E1 E2 E3)) (coerce-t->t0 (if E10 E20 E30)) : t011

