- 1. A cantilever beam 4m long carries a uniformly distributed load of 40 KN/m over entire span. Bm at 3m from the fixed end is:
 - 1) 160 KNm 2) 320 KNm
 - 3) 120 KNm AY 20 KNm

2. A perfect frame should satisfy the relation-

J m = 2j - 3	2) m = 2j - 4
3) m = 3j - 2	4) m = 3j - 3

3. Match list I with list II and select the correct

	List I			List II		
A)	A) $\frac{dy}{dx}$			1) Shear force		
B) d	l ² y/dx	1		2) Slope		
C) (d ³ y/dx ³ 3) Load					
D) ()) d4y/dx4			4) Bending moment		
	A	B	C	D		
A .	2	3	4	1		
B.	2	4	1	3		
C.	1	3	4	2		
	4	2	1	3		

4. Assertion (A) : Strain is a fundamental behaviour of the material, while stress is a derived concept. Reason (R) : Strain does not have a unit while stress has unit. Codes:

 Both A and R are true and R is the correct explanation of A
 A is true but R is false 2) Both A and R are true but R is not a correct explanation of A
4) A is false but R is true

5. When shear force at a point is zero, then bending moment at that point will be-

1) Zero Maximum Minimum
 Infinity

6. Robert Hooke discovered experimentally that within elastic limit-

- Stress is equal to strain
 Stress is proportional to strain
- 2) Product of stress and strain is unity
- 4) Stress is inversely proportional to strain

7. In NBC, fire safety is given as,

- Fire and life safety
 - 3) Building Fire code

- 2) Fire safety code
- 4) Fire protection and safety

A.	$\frac{\pi}{16}D^3$				
z.	$\frac{\pi}{16}$ TD ³	dan ya shadan ya shadan sa s		nekiny tanàng	
C.	$\frac{\pi}{64}D^4$		 <u>индиф (() () () () () () () () () () () () ()</u>		

-

Match list I with list II and select the correct 9.

105	Ner us	ing the	o code:	s giver	below the list.		
List I			1	List II			
A) Poisson's ratio				1) Direct stress/ direct strain			
B) 1	digidi	ty mod	ulus		2) Lateral strain/ longitudinal strain		
CI	C) Elastic modulus				3) Load / deflection		
D) \$	Stiffne	33			4) Shear stress / shear strain		
	A	B	С	D			
A.	3	4	1	2			
B.	2	4	3	1			
07	2	4	1	3			
D.	4	3	2	1			

10. Polar modulus of a section is a measure strength of section in-

		_
1) Bending		2) Shear
2) Torsion		4) Compression

11. The BMD diagram for a cantilever with udl for a distance of 'a' from free end is in the shape of -

1) A parabola

2) A straight line

Combination of parabola and straight line

4) A circle

12. Point of contraflexure means-

1) Point at which SF is zero 2) Point at which BM is maximum Point at which BM changes its sign 4) Point at which the shear force is

minimum

).	$\frac{M}{I} = \frac{E}{R} = \frac{f}{v} .$	
787%		
В.	$\frac{1}{M} = \frac{E}{R} = \frac{y}{f}$	
C.	$\frac{M}{I} = \frac{R}{R} = \frac{f}{v}$	n ng
4 .	1 6 9	

A co	simply supported beam carries two equal ncentrated loads W at distance $\frac{L}{3}$ from either
su	pport. The maximum bending moment M is:
A	WL .
B.	$\frac{WL}{4}$
Pe	$\frac{WL}{3}$
D	SWL 8

- 15. When a beam is loaded with concentrated loads, the bending moment diagram will be a-
 - 1) Horizontal straight line 37 Inclined straight line
- Vertical straight line
 Parabolic curve

- 17. Which of the following is dimensionless?
 - 1) Young's modulus
 - 3) Stress

2) Strain 4) Shear force

	A .	$\frac{1}{3}$ bh ²	-
	B .	$\frac{1}{12}bh^2$	
-	e.	$\frac{1}{12}bh^3$	
	D.	$\frac{1}{36}bh^3$	

19.	Def sub inte	lection of a cantilever beam of span ' jected with an uniformly distributed ensity w/m is:	l' load of
	x	<u>al</u> ⁴ 8EI	
	B .	<u> 21</u> 21 21 21 21 21 21 21 21 21 21 21 21 21	
	C.	<u>ها</u> 48EI	
	D.	al ⁴ 384EI	

20. The radius of gyration of a rectangular section is equal to-

 Square root of the moment of inertia
 Square root of the moment of inertia divided by area of section

بھی

2) Square root of the inverse of the area4) Square of the moment of Inertia divided by area of section

21. A cantilever of 4m span carries a point load of 10 KN at the free end. The max deflection is. (EI = 8 x 10¹³N mm²)

1) 2.76 mm		2) 2.56 mm
2.67 mm		4) 2.50 mm

22. The critical load P due to buckling (long columns) is given by Euler's formula-

A .	$\frac{\pi EI}{l^2}$	· · · · · · · · · · · ·			
	•	 			
×.	$\frac{\pi^2 \text{EI}}{l^2}$				
C.	$\frac{l^2 \text{EI}}{\pi^2}$	 			
D.	$\frac{\pi^2 \text{EI}}{2l^2}$	 2017 III III III IIII IIII IIIIIIIIIIIIII	and a second	<u> </u>	

CIVIL DM 062014

- ^{23.} The expression EI d^4y/dx^4 at any section for a beam is equal to-
 - H Load intensity at the section2) S.F at the section3) B.M at the section4) Slope at the section

- 25. Stiffness of a beam is the property by virtue of which it resists-
 - 1) Tension

2) Bending moment

3) Shear Force

A) Rotation and deflection

spa	1 15:		
A.	WL'		
	284EI		
B .	WL ²	anisonan ^a sugai minan na a sugai na sugai n	
	8		
e.	SWL ⁴		مىزىكىلىكەك يەككە مەتپەتەرىم
1	384EI		
D.	2WL ²		
	438FT		

	carrying a point load W at its free end is:							
	A.	WL'						
		2EI						
	B.	WL ³	annan an than the second s	and an an a state of the state				
		3EI						
	C.	WL'		- <u>,</u>				
	i i	8EI						
1	D.	WL ³		AND DESCRIPTION OF THE REAL PROPERTY OF	-town - Wanteren			
in the second		16EI						

. 28. Mohr's theorem II helps to find the-

1) Slope of a fixed beam 2) Moment at the supports for a continuous beam

Deflection of a beam

4) Shear force at the supports

29. For three equal span continuous beam whose ends are simply supported and EI values are constant, the distribution factors of the members are-

1) Equal		Augonal
i) Equai		/2) unequar
3) 3/7		4) 4/7

	est ⁴	
A .	48EI	
B.	<u>ملاً</u> 30EI	ana in an
C.	501 ⁴ 384EI	n na ann an Airdinnean Aird

- 31. Consider the following assumptions in the analysis of a plane truss. 1. The individual members are straight 2. The individual members are connected by frictionless hinges 3. The loads and reactions act only at the joints. Of these assumptions:
 - 1) 1 and 2 are valid
 - 3) 2 and 3 are valid

2) 1 and 3 are valid A) 1, 2 and 3 are valid

P.	P. The young's modulus E of the material, is:					
A.	$\mathbf{E} = \frac{\mathbf{P}.\boldsymbol{\delta}}{\mathbf{A}\mathbf{L}}$					
B.	$\mathbf{E} = \frac{\mathbf{A} \cdot \boldsymbol{\delta}}{\mathbf{P} \cdot \mathbf{L}}$					
e.	$\mathbf{E} = \frac{\mathbf{P}.\mathbf{L}}{\mathbf{A}.\boldsymbol{\delta}}$					
D.	$E = \frac{AL}{D.5}$					

33. A cantilever of length L is subjected to a bending moment M due to point load at free end at its free end. If EI is the flexural rigidity of the section, the deflection of the free end, is:

1) ML/EI	2) ML/2EI
3) ML ² /2EI	A) ML ² /3EI

- 34. The ratio of the area of cross section of a circular section to the area of its core, is:
 - 1) 4 3) 12
- 2) 8 AT 16
- 35.
 The value of Rankine's constant for mild steel is

 A.
 $\frac{1}{9000}$

 B.
 $\frac{1}{7500}$

 C.
 $\frac{1}{1600}$

 D.
 $\frac{1}{750}$
- 36. Consider the following statements: Sinking of an intermediate support of a continuous beam 1. Reduces the negative moment at support 2. Increases the negative moment at support 3. Reduces the positive moment at the centre of span 4. Increases the positive moment at the centre of span. Of these statements
 - 1 and 4 are correct2) 1 and 3 are correct3) 2 and 3 are correct4) 2 and 4 are correct
- 37. The kern of a circular section of diameter D is a concentric circular area of diameter-A. $\frac{3}{4}D$ B. $\frac{3}{5}D$ C. $\frac{2}{3}D$ B. $\frac{D}{4}$
- 38. In SI units, one bar is equal to-

á

1) 0.1 N/mm ²	2) 1.0 N/mm ²
3) 1.0 N/cm ²	4) 10.0 N/m ²

39. If the stress on the cross-section of a circular short column of diameter D is to be wholly compressive, the load should be applied within a concentric circle of diameter-

1) D/2	2) D/8
8) D/4	4) D/6

40. Beams composed of more than one material, rigidly connected together so as to behave as one piece, are known as:

1) Compound beams	2) Indeterminate beams
3) Determinate beams	ATComposite beams

The bearing capacity of a soil cannot be i	ncreased by-
1) Chemical treatment	2) Grouting
3) Compacting	A) Moistening the soil
2. The black cotton soil-	
1) Has high bearing capacity	2) Has negligible permeability
27 Undergoes large volumetric change with	4) Is considered good soil for foundation
moisture	
3. Any store masonry work which is NOT h	ighly finished is known as-
T Rubble masonry	2) Rough masonry
3) Ashlar masonry	4) Base masonry
 Water absorption for 1st class bricks sho 	uld NOT be more than-
1) 12%	2515%
3) 20%	4) 25%
5. The defect in painting caused by excess n	noisture vaporising in back of the paint
film is known as:	
1) Wrinkling	2) Alligatoring
Blistering	4) Scaling
6. Which proportion of cement mortar is us	sed for pointing work?
171:2	2) 1:4
3) 1:5	4) 1:6
7. Slump test for concrete is carried out to o	determine-
H) Workability	2) Durability
3) Water content	4) Strength
8. The sides of an opening such as doors, wi	indows are known as-
1) Jambs	2) Heads
3) Reveals	4) Verticals
. The most commonly used deep foundation	on in building is:
1) Well foundation	2) Pile foundation
3) Raft foundation	4) Grillage foundation
). The minimum compressive strength of F	irst class bricks should be-
1) 75 kg/cm ²	2) 90 kg/cm ²
37100 kg/cm ²	4) 120 kg/cm ²
I. The term fog means-	<i></i>
I) An apparatus to lift the stone	2) A depression on a face of brick
3) Vertical joint in a brick work	4) Soaking brick in water
2. Strength of cement concrete primarily de	epends upon-
1) Quality of water	2) Quantity of aggregate
3) Quantity of cement	A) Water - cement ratio
3. Seasoning of timber-	Sugar
1) Increases the weight of timber	27 Improves the strength properties

CIV	/IL_DM_062014	
54.	The commonly used lime in white washin	ng is:
	1) Quick lime	2) Fat lime
	3) Lean lime	4) Hydraulic lime
55.	A roof sloping in four directions is called	E s
	1) Sloping roof	2) Hip roof
	3) Cable roof	4) Shed roof
	The temperature panes in a compart bile	
50.	1) 500 to 1000°C	-2) 1000 to 1200%
	261400 to 1500°C	4) 1600 to 2000°C
ø) 1400 10 1300 C	+) 1000 to 2000 C
57.	In initial setting time test of cement, the	needle falls to penetrate the test block by-
	1) 10 mm	2) 9 mm
	3) 3 mm	A) 5 mm
20	Coment morter 1.4 requires of can	n de la companya de l Norma de la companya d
30.	1) 240 kg	2/360 kg
	3) 480 kg	4) 420 kg
20		
39.	Rankine's formula for minimum depth of	
	$p(1+\sin \phi)$	
	A. $\frac{1}{\omega} \left(\frac{1-\sin \phi}{1-\sin \phi} \right)$	
	B. $\left \frac{p}{2} \right \frac{1 - \sin \phi}{1 + \sin \phi}$	
	$p\left(\frac{1-\sin\phi}{2}\right)^2$	
	$\omega(1+\sin\phi)$	
	$p(1+\sin\phi)^2$	
	D. $\frac{p}{\omega} \left(\frac{1 - \sin \phi}{1 - \sin \phi} \right)$	
60.	A partition wall is designed to carry-	
	1) Live loads	2) Wind loads
	3) Rolling loads	M No external loads
61.	Which of the following is cohesive soil?	*
	1) Clay	2) Red earth
	3) Black cotton soil	4) Compacted ground
63	A clone of 1 in 40 is designated as-	
94.	1) () 5% grade	2) () 8% grade
	3) 1.0% grade	AT 2.5% grade
<u>م</u> ت		
63.	Cement concrete road is the example for	
	1) Flexible pavements 3) Sami flexible pavements	(2) Rigid pavements
	5) Semi-nexible pavements	+) Composite pavements
64.	The layer that is directly in contact with	the traffic is:
	Wearing course	2) Base course
	3) Suo Dase	4) Suo grade
	*	

List – I a) Central Road Fund b) Indian Road Congress c) Motor Vehicles Act				List - II 1) 1939 2) 1943 3) 1934					
					d) N Con	lagpur ferenc	Road e		4) 1 st March 1923
						8	Ъ	C	d
					N	4	3	1	2
B .	1	4	2	3					
<u>c.</u>	2	3	4	1					
- +	*	0	9	······································					

Match List I with List II and select the correct 66.

Lis	a-1	1.1	List -	0		
a) Porosity b) Air content c) Water content d) Specific gravity		1) Volume of air / Volume of voids				
		2) Weight of Water / Weight of solids				
		3) Unit weight of solids / Unit weight of water 4) Volume of voids / total volume of soil mass				
						÷
5	1	2	3	4		
2	4	1	2	3		
2	3	2	1	4		
5	4	3	1	2		

A. $p = \frac{NB}{VR}$		
$B. \rho = \frac{Wv^2}{gR}$	ining and the second	÷
C. $\rho = \frac{gR}{Wv^2}$	an a	

68. For small drainage crossings _____ culverts are often found in practice to be most economical.

1) Concrete	2)
2) Pipe	4)

69. The plastic limit exists in-

1) Sandy soils 3) Silty soils

Ì

2) Gravel soils A) Clays

Masonry Steel

70. Camber on road pavement is provided for-

- 1) To minimize speed
- 1) Surface drainage
- 3) To avoid skidding

- 4) To accommodate change in direction

Cľ	VIL_DM_062014	
71.	In case of hilly areas, a wall is provide of the traffic. The wall is known as-	d on the outside of the road to ensure safety
	1) Retaining wall	2) Safety wall
	3) Danger wall	Af Parapet wall
72.	The upstream nose of a bridge pier is	known as-
	1) Ease water	2) Stop water
	3) Cut water	4) Water repeller
73.	Transition curve is provided in horizo	ntal alignment-
	1) To increase the radius of curvature	2) To facilitate the application of super elevation
	3) To counteract the centrifugal force developed	1) To prevent vehicles from skidding laterally
74.	On a national high way, the minimum	width of the pavement should be-
	1) 4.7 m	25.7 m
	3) 6.7 m	4) 7.5 m
75.	A gradient at which a vehicle does not specific speed is called-	require any tractive effort to maintain the
	1) Minimum gradient	2) Floating gradient
	3) Ruling gradient	4) Pushing gradient
76.	Gradients at hair pin bends or other s should never exceed-	harp corners with inside curves of 10 to 15 m
ۇر.	1) 1 in 20	2) 1 in 40
7	3) 1 in 60	4) 1 in 80
77.		and the second
	Camber 1s:	
	A	
	b	
	A. b/a	
	B. 2b/a	
	C. b/2a	
	D. a/b	
	There are a second a second	Name and the second state of the

CIVIL DM 062014

$\mathbf{A.} \mathbf{e} + \mathbf{s} = \mathbf{w} + \mathbf{G}$	
B. es = wG	
$C. \frac{e}{s} = \frac{w}{G}$	
D. $\frac{s+e}{w} = \frac{G+e}{s}$	
a cement concrete road, expansi	on joints are provided at interv
) 4 m	2) 10 m
f20 m	4) 50 m
through an open channe	l is equal to -
A. $C\sqrt{mi}$	
B. Cmi	
. AC√mi	ennen en e
D. $C^2 \sqrt{m}i$	
in the second	
he hydraulic mean depth of a circ	cular section is:
he hydraulic mean depth of a circ) πd	cular section is: 2) d/4
he hydraulic mean depth of a circ } πd) d/2	cular section is: 2) d/4 4) d/3
he hydraulic mean depth of a ciro) πd) d/2 he pressure measuring devices ar	cular section is: 2) d/4 4) d/3 re-
he hydraulic mean depth of a circ) πd) d/2 he pressure measuring devices ar Piezometer	cular section is: 2) d/4 4) d/3 re- 2) Orifice meter 4) Mouthairse
he hydraulic mean depth of a circ πd) d/2 he pressure measuring devices ar Piezometer) Venturimeter	cular section is: 2) d/4 4) d/3 re- 2) Orifice meter 4) Mouthpiece
he hydraulic mean depth of a cire πd) πd) d/2 he pressure measuring devices ar) Piezometer) Venturimeter iezometer is used to measure-	cular section is: 2) d/4 4) d/3 re- 2) Orifice meter 4) Mouthpiece
he hydraulic mean depth of a ciro πd d/2 he pressure measuring devices ar Piczometer Venturimeter ezometer is used to measure-	cular section is: 2) d/4 4) d/3 re- 2) Orifice meter 4) Mouthpiece

85. The velocity of fluid particles at the centre of pipe-section is:
1) Minimum
3) Equal
4) Zero

ia,

*

 $\frac{2}{2}$

10

86. A venturimeter is used to measure -

Quantity of liquid flowing through a pipe

2) Viscous forces acting on a fluid in motion

3) Frictional resistance to flow of a liquid

4) Specific gravity of a fluid flowing through a pipe

87.	Wh	ich of the following relatio	ns is correct?
	A	$Cd = \frac{C_c}{C_v}$	
	В.	$Cd = \frac{C_v}{C_c}$	
	e.	$Cd = C_c \times C_v$	
	D .	$Cv = Cd \times C_c$	
88.	The di	ischarge through a V-notch var	ries as-
	D H ^{1/2}	2	2) $H^{3/2}$
	ATH5/.	2	4) H ^{5/4}
	The		NY Jan 2 San and a Sanara Anna Sana
89.	ine p	ressure intensity of 49.05 x 10°	N/m- in meters of water is:
4	2)2		2) 2 4) 1
	درد		4)1
90.	The ra	ange for co-efficient of discharg	ge (Cd) for venturimeter is:
	1) 0.5	to 0.6	2) 0.6 to 0.7
	3) 0.7	to 0.8	M 0.95 to 0.99
91.	Which	of the following has the maxir	num water application efficiency?
~ ~ ~	I) Sur	face Irrigation	2) Lift Irrigation
	21 Spri	inkler Irrigation	4) Sub-Surface Irrigation
بر مد	en		
92.	The ru	un oii increases with -	2) Decrease in the file section
-	(\mathbf{A}) incl (\mathbf{A}) incl (\mathbf{A})	rease in intensity of rain	4) Decrease in infineration capacity
	5) mei	lease in permeability of soil	4) Decrease in permeability of som
93.	Accor	ding to Manning's formula, the	e discharge through an open channel is:
	1) AM	$m^{1/2} i^{2/3}$	$AM m^{2/3} i^{1/2}$
	3) A ^{1/2}	² M ^{2/3} m i	4) $A^{2/3} M^{1/3} m i$
94.	The m	ost efficient section of a channel	el is:
	1) Tria	angular	2) Rectangular
	3) Circ	cular	A) Trapezoidal
95.	The hy Evano	ydrology cycle is expressed by r	the equation : (when P = Precipitation, E =
	$1) \mathbf{P} =$	E • R	$\mathbf{P} = \mathbf{E} + \mathbf{R}$
	- 77 m	and the second sec	Server and the second s

1) P = E - K3) P = E X R4) P = E/R

96.

ويرا	t-I]	List - II		
a)]	n Pere	nnial		 Water does not flow throughout the year Revenue from water is not expected 		
Cau	nals					
b)] can	n non- als	perenni	al			
c) In protective canals				3) Revenue from water is expected		
d) In productive			ĺ	4) Water flows throughout the year		
		the state of the s				
Sel	set you me giv	r answe en belo	e ac N:	cording to the coding		
Sele	ect you me giv a	r answe en belou b	rac w: c	cording to the coding		
Sele sche	et you me giv a 2	r answe en belou b	rac w: c 3	cording to the coding d 4		
Sele sche A. B.	et you me giv a 2 3	r answe en belou b 1 1	rac w: 3 4	cording to the coding d 4 2		
Sele sche A. B.	et you me giv a 2 3 4	r answe en belov b 1 1 1	r ac w: 3 4 2	cording to the coding d 4 2 3		

97. The surface Run-off is the quantity of water -

1) Absorbed by soil

2) Intercepted by buildings and vegetative

cover

3) Required to fill surface depressions

A) That reaches the steam channels

	Ann 1 with reservations .	A HIGH HO	toa 800	a 18:
		17 g		- 1.000000
A	$D = \Delta 8.64D$			
~]	В			
D	Δ8.64 D			
D.	B =			
	<u>8.64</u>			-
- f ?	1 Name			

Lis	ist-1		List II			
a) Ato pre	nosphe ssure	ric 1 p	1) Pressure measured with reference to absolute vacuum pressure			
b) Gauge pressure			2) Pressure measured with the help of a pressure instrument:			
c) Abs	lbsolut ssure	e 3 a	3) The pressure below atmospheric pressure			
d) \ pre	d) Vacuum pressure	n 4 a) Press tmospl	ure exerted by heric gases.		
	â	b	C	d		
~	4	2	1	3		
B .	1	2	3	4		
c.	3	4	2	1		
\overline{n}	4	1	3	2		

A.	$\mathbf{Z} + \mathbf{p} + \mathbf{V} = \mathbf{C}$
B.	$Z + \frac{p}{w} + \frac{V}{g} = C$
C.	$Z + \frac{p}{w} + \frac{V^2}{g} = C$

- 101. The axis about which the telescope and the vertical circle of a theodolite rotates in the vertical plane is called-
 - 1) Vertical axis of the telescope
 - A) Trunnion axis

2) Bubble axis

- 4) Axis of the level tube
- 102. Irregular contour represents -
 - 1) Even ground

Uneven ground
 Steep ground

- 3) Sloped ground
- 103. The technique of plotting all the accessible stations with a single set up of plane table is called-
 - **N**Radiation
 - 3) Resection

2) Intersection
 4) Traversing

104. In a closed traverse ABC the following readings

AB	19°	200°	
RC	the second s	1000 M M	
	100°	277°	-
CA	227°	49°	
A. 2	75°		

105. The spacing of cross-hairs in a stadia diaphragm of a tacheometer is 1.20 mm and the focal length of the object glass is 24 cm, then the multiplying constant of tacheometer is :

1) 50	2)100
3) 150	4) 200

- 106. If the focal length of the object glass is 25 cm and the distance from the object glass to the trunnion axis is 15 cm, the additive constant is:
 - 1) 0.10 25 0.40
 - 3) 0.60 4) 1.33

CIVIL_DM_062014	
107. The process of turning the telescop	e in vertical plane through 180° about the
trunnion axis is called -	
(1) Transiting	2) Reversing
3) Plunging	4) Swinging
108. A fixed point of reference whose ele	evation is known as-
1) Datum point	2) Bench mark
3) Reference point	4) Mean level
109. Levelling deals with measurement	in -
1) Horizontal plane	(2) Vertical plane
3) Both horizontal and vertical plane	4) Inclined plane
110. Method of contouring suitable for	a hilly terrain is-
1) Direct method	2) Square method
3) Cross-section method	A) Tachometric method
111 The deflection and a way have any	value hetween-
1) 0° and 45°	2) A° and OO°
$3) 0^{\circ} and 120^{\circ}$	$\Delta 0^{\circ}$ and 180°
5) 0 and 120	1) 0 and 100
112. In a whole circle bearing system N	25°15'w' corresponds to-
1) 115° 15'	2) 154° 45'
3) 205° 15'	AT 334° 45'
113. If whole circle bearing of a line is 1	120°, its reduced bearing is:
1) S 20° E	2) S 60° E
3) N 120° E	4) N 60° E
114. Contours of different elevations ma	ay cross each other only in the case of -
1 An over hanging cliff	2) A vertical cliff
3) A saddle	4) An inclined plane
the Demonstration of an officer many i	ha tond and has some if the low-of a false after the
115. Perpendicularity of an offset may i	be juaged by eye, if the length of the offset is:
1) 5 m	2) 10 m
alse	
MOLT M	4) 20 m
/ 15 m	4) 20 m
116. If h is the difference in height betw	4) 20 m reen end points
 15 m 116. If h is the difference in height betwork of a chain of length l, the required s is: 	4) 20 m reen end points alope correction
 116. If h is the difference in height betw of a chain of length l, the required s is: h² 	4) 20 m reen end points slope correction
116. If h is the difference in height betw of a chain of length l, the required s is: $\frac{h^2}{2i}$	4) 20 m reen end points alope correction
116. If h is the difference in height betw of a chain of length l, the required s is: $\frac{h^2}{2l}$	4) 20 m reen end points alope correction
116. If h is the difference in height betw of a chain of length l, the required s is: $\frac{h^2}{2i}$ B. $\frac{h}{2i}$	4) 20 m reen end points slope correction
116. If h is the difference in height betw of a chain of length l, the required s is: $\frac{h^2}{2l}$ $B. \frac{h}{2l}$	4) 20 m reen end points alope correction
116. If h is the difference in height betw of a chain of length l, the required s is: B. $\frac{h^2}{2l}$ C. $\frac{h^2}{1}$	4) 20 m veen end points alope correction
116. If h is the difference in height betw of a chain of length l, the required s is: A . $\frac{h^2}{2l}$ B . $\frac{h}{2l}$ C . $\frac{h^2}{l}$	4) 20 m reen end points slope correction

CIVIL_DM_062014		
. 117. The process of turning th	e telescope about the	vertical axis in horizontal plane is
known as-		
1) Reversing	2) Pl	umbing
3) Transisting	AS	vinging
118. A branch of surveying in obtained by instrumenta	which the horizontal l observations is know	and vertical distances of points are n as-
1) Chain surveying	2) Pl	ane-table surveying
3) Tacheometric surveying	; 4) H	vdrographic surveying
119. The aggregates which ar	e passing through IS 4	.75 mm sieve, are called -
Fine aggregates	2) C	parse aggregates
3) Saturated	4) U	nsaturated
120. The combined correction	for curvature of eart	h and refraction is given by-
1) 0.06 D ²	2) 0.	0736 D ²
25 0.0673 D ²	4) 0,	0055 D ²
121. To obtain large quantitie	s of water, the followi	ng form of underground sources are
Sunk in series in the bank	s of river -	Charter and M
1) Inflitration gallery	2) In	nitration well
5) Springs	4) N	servon
122. The temporary hardness	is mainly due to -	
1) Chlorides and sulphates	2) C	alcium and Magnesium bicarbonates
3) Sodium and potassium	4) So	dium and potassium carbonates
123. The amount of precipitat	tion is measured by-	
1) Rain gauge	2) O	smoscope
3) Turbidimeter	4) H	ydrograph
124. A septic tank is:		
1) An aerobic method of o	n site sewage 2 A	n anaerobic method of on site
treatment	treat	nent
3) A physical method of w	ater treatment 4) Fa	cultative method
125. Match List - Lwith List - I	I and salast the sourcest	
answer by using the codes	given below the lists :	
List – I	List - II	
a) Turbidity (ppm)	1) 10	
b) Colour (ppm)	2) 20	
d) Odour (threshold)	4) 3	
	d	
1 2 3	4	
B 4 2 3	- 	
	- -	
	*	
D 1 2 0	4	

- 126. A good source of water requiring practically the least treatment is:1) A perennial river2) An impounded reservoir
 - 1) A perennial river
- 4) An elevated tank

127. The chloride content in the water for public water supply should not be more than -

1 250 ppm	2) 150 ppm
3) 80 ppm	4) 50 ppm

128. For controlling the growth of algae the chemical generally used is:

1) Alum	2) Lime
3) Bleaching powder	A) Copper Sulphate

129. The ratio of volume of voids to the total volume of given solid mass is-

1) Voids ratio	12)	Porosity
3) Specific gravity	4)	Density

130. Consider the following statement regarding sedimentation tank: 1) Raw water is screened for removal of large organic impurities 2) Raw water is passed through coagulation sedimentation plant 3) Raw water is passed through rapid gravity fillers 4) Cleaned water is disinfected for killing of germs and colour removal The correct sequence of the operation is:

$1) 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$	$2) 1 \rightarrow 2 \rightarrow 4 \rightarrow 3$
$21 \rightarrow 2 \rightarrow 3 \rightarrow 4$	$4) \ 3 \rightarrow 1 \rightarrow 2 \rightarrow 4$

131. Consider the following statements regarding the foul gases in the sewers. 1. Hydrogen sulphide (H₂S) is evolved 2. Carbon dioxide (CO₂) is evolved 3. Methane

is evolved 4. Oxygen is evolved Of these statements:

1) 1 and 2 are correct	2) 2 and 3 are correct
3) 3 and 4 are correct	AT 1, 2 and 3 are correct

132. Consider the following statements regarding ventilating column of sewers. 1. A level is provided at the top of the shaft for the escape of gases into the atmosphere. 2. A ventilating column is used near the street lamp posts. 3. The diameter of the ventilating column is preferably kept equal to one third of the diameter of the sewer. 4. The ventilating columns are generally kept lower than the height of nearby structures. Of these statements:

1) 1 alone is correct	2) 1 and 2 are correct
3) I and 4 are correct	4) 2 and 3 are correct
133. A reciprocating pump-	
1) Has a rotating impeller	2) Has a piston that moves back and forth

3) Has two plug valves	4) Is used to p	ump grit
------------------------	-----------------	----------

134. The capacity of a water supply reservoir should be-

Balancing storage - breakdown storage - 2) Balancing storage - breakdown storage + fire storage
 Balancing storage + breakdown storage - A Balancing storage + breakdown storage + fire storage

135. The bed slope in slow sand filters is usually-

I) 1	in 10	2)	l ír	1 50
151	in 100	4)	l ir	n 300

136. Water softening plants remove-

1) Turbidity	2) Bacteria
3) Minerals	A Scale forming compounds

OT 11 DA A (201)		
CIVIL_DM_062014		
· 137. The type of water supply distribut	ion system layout, in which water reaches each	
point from one side only is:		
1) Ring system	2) Dead ends system	
3) Radial system	4) Grid iron system	
138. The mixture of a number of sewag fluctuation in sewage quality) is kn	e samples (representing the important nown as-	
1) True sample	2) Representation sample	
3) Grab sample	4 Composite sample	
139. The trap provided, at the junction	of waste stack with the building drain is called-	
1) D-trap	2) Anti-syphonage trap	
3) Gully trap	4) S-trap	
140. Water taken out from shallow or d is known as-	leep wells, infiltration galleries, artesian wells etc	
+) Ground water supply	2) Surface water	
3) Underground water	4) Overhead storage water	
141. Quantities of wood work are comp	outed generally in terms of-	
1) Numbers	2) Numbers and Sizes	
3) Area in square meters	A) Volume in cubic meters	
142. The useful area of liveable area of	a building is also known as-	
1) Carpet area	2) Circulation area	
3) Horizontal circulation area	4) Plinth area	
141 The original cost of a property min	and the amount of depreciation unto previous	
vear is known as-	aus the amount of depreciation up to previous	
1) Market value	2) Book value	
3) Sinking value	4) Rentable value	
144. The percentage of total cost provid	led towards water charge, in rate analysis is:	
011/2 %	2) 216 %	
3) 31/2 /0	2) 272 70 4) 5 %	
33 372 70	ματογραφικά το μετάλο τη μετάλο Για το προστά το προστ	
145. Various taxes on a building are ge	nerally fixed on the basis of-	
1) Plinth area	2) Location	
3) Orientation	A) Annual rental value	
146. Net rent + Outgoings =		
1) Total rent	2) Depreciation value	
3) Gross rent	4) Sinking fund installment	
147. In case of Government accommod rent on the basis of-	ation normally officers are required to pay the	
1) Gross rent	2) Plinth area	
Salary	4) Location of building	

TVIL_DM_062014		
8. The value of the property, wit	thout being dismantled, at the end of the useful life	
period is known as-		
H Salvation value	2) Book value	
3) Write off value	4) Junk value	
^{9.} The number of tiles required	for 10 m ² , using 200 x 200 x 20 mm size mosaic tiles	
are- 1) 220 Numbers	2) 200 Numbers	
3) 230 Numbers	AT 250 Numbers	
waterstand to severally water and		
huilding to accommodate 120	students is:	
1) 2 50 lakba	2) 2 25 laths	
1) 3.50 lakhs 3) 3.00 lakhs	2) 3.25 lakhs	
1) 3.50 lakhs 3) 3.00 lakhs	2) 3.25 lakhs 47 3.72 lakhs	
 1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be cal 	2) 3.25 lakhs 47 3.72 lakhs iculated to the nearest-	
 1) 3.50 lakhs 3) 3.00 lakhs I. Volumes of works shall be call 1) 0.1 cu.m 	2) 3.25 lakhs 4/3.72 lakhs iculated to the nearest- 2/0.01 cu.m	
 1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be cal 1) 0.1 cu.m 3) 0.001 cu.m 	2) 3.25 lakhs 4/ 3.72 lakhs Iculated to the nearest- 2/ 0.01 cu.m 4) 0.02 cu.m	
 1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be cal 1) 0.1 cu.m 3) 0.001 cu.m 2. The volume of cement require 	2) 3.25 lakhs 4/ 3.72 lakhs iculated to the nearest- 2/ 0.01 cu.m 4) 0.02 cu.m ed for 10m ³	
 1) 3.50 lakhs 3) 3.00 lakhs i. Volumes of works shall be call 1) 0.1 cu.m 3) 0.001 cu.m 2. The volume of cement require of brick wall in cm 1 : 6 is approximation of brick wall in cm 1 : 6 is approximation. 	2) 3.25 lakhs 47 3.72 lakhs Iculated to the nearest- 27 0.01 cu.m 4) 0.02 cu.m ed for 10m ³ proximately equal to-	
 1) 3.50 lakhs 3) 3.00 lakhs i. Volumes of works shall be call i.) 0.1 cu.m j. 0.001 cu.m i. The volume of cement require of brick wall in cm 1 : 6 is approximation of brick wall in cm 1 : 6 is approximation. 	2) 3.25 lakhs 4) 3.72 lakhs lculated to the nearest- 2) 0.01 cu.m 4) 0.02 cu.m ed for 10m ³ proximately equal to-	
 1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be call 1) 0.1 cu.m 3) 0.001 cu.m 2. The volume of cement require of brick wall in cm 1 : 6 is app A 3/7 m³ 	2) 3.25 lakhs 47 3.72 lakhs iculated to the nearest- 27 0.01 cu.m 4) 0.02 cu.m ed for 10m ³ proximately equal to-	
1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be call 1) 0.1 cu.m 3) 0.001 cu.m 2. The volume of cement require of brick wall in cm 1 : 6 is app $\mathbf{K} = \frac{3}{7}m^3$ B. $\frac{3}{6}m^3$	2) 3.25 lakhs 47 3.72 lakhs iculated to the nearest- 27 0.01 cu.m 4) 0.02 cu.m ed for 10m ³ proximately equal to-	
1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be call 1) 0.1 cu.m 3) 0.001 cu.m 2. The volume of cement require of brick wall in cm 1 : 6 is app $\mathbf{K} = \frac{3}{7}m^3$ B. $\frac{3}{6}m^3$ $\mathbf{R} = \frac{3}{6}m^3$	2) 3.25 lakhs 4/ 3.72 lakhs lculated to the nearest- 2/ 0.01 cu.m 4) 0.02 cu.m ed for 10m ³ proximately equal to-	
1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be call 1) 0.1 cu.m 3) 0.001 cu.m 2. The volume of cement require of brick wall in cm 1 : 6 is app $K = \frac{3}{7}m^3$ B. $\frac{3}{6}m^3$ C. $\frac{3}{4}m^3$	2) 3.25 lakhs 4/3.72 lakhs lculated to the nearest- 2/0.01 cu.m 4) 0.02 cu.m ed for 10m ³ proximately equal to-	
1) 3.50 lakhs 3) 3.00 lakhs 1. Volumes of works shall be cal 1) 0.1 cu.m 3) 0.001 cu.m 2. The volume of cement require of brick wall in cm 1 : 6 is app $\mathbf{K} = \frac{3}{7}m^3$ B. $\frac{3}{6}m^3$ C. $\frac{3}{4}m^3$ D. $\frac{3}{-}m^3$	2) 3.25 lakhs 4/ 3.72 lakhs lculated to the nearest- 2/ 0.01 cu.m 4) 0.02 cu.m ed for 10m ³ proximately equal to-	

- 153. The annual periodic payments made for the repayment of the capital invested is known as-
 - 1) Annuity
 - Sinking fund

2) Depreciation
 4) Solatium

34.	Match the followingList I with Lis					tΠ	
	List – I a) Brick work in superstructure b) Brick work in partition wall c) Plastering					List - II	
						1) m ² 2) m ³ 3) kg	
							d) :
		a	Ь	c	d	in a start and	
	X.	2	1	4	3	9	
	B .	1	2	3	4	<u>anton antono esperante para en a</u> tria.	
	C.	3	2	4	1		
	D.	4	3	2	1		

155. Choose the correct statement from the following: (i) Plinth area method is a rough estimate (ii) Service unit method is a rough estimate (iii) Cubic content method is a

- detailed estimate Of these statements:
- 1) (i), (ii) and (iii) are correct
 - 3) (ii) and (iii) are correct

(i) and (ii) are correct 4) (iii) alone is correct

156. Pick out the odd man out from the following, pertaining to estimate.

- 1) Schedule of rates 2) Preparation of data
 - 3) Abstract estimate

4) Rough estimate

157.	Capitalized value of a property is worked out using the following equation.				
	<u> </u>	Conitalizad unlus -	100		
	A.	Rate of interest			
	B.	Capitalized value =	Net annual rent x year's purchase		
	C.	Capitalized value =	Total cost of building + cost of land		
	D.	Capitalized value =	Gross income - outgoings		

158. The volume of coarse aggregate required to make 100 m³ of 1 : 2 : 4 concrete is:

1) 84	m ³	2) 88	m ³
<u> </u>	m ³	4) 96	m ³

159. The rent of the lift worked out with the following data. Cost of lift = Rs. 68640/-Estimated life of lift = 25 years Y.P allowing interest on capital at 6.5% and redemption of capital at 4.5% for 25 years = 11.44. Rent is:

TRs. 500/month

3) Rs. 872/month

4) Rs. 1000/month

2) Rs. 600/month

160. Choose the incorrect statement.

1) The expenses those are spent on the 2) Annual periodic payments for repayment property by taking periodical repairs are of the capital amount invested is called outgoings annuity The value of the property recorded in the 4) Plinth area is the usable area

register of local authority is called book value

161. The maximum value of Poisson's ratio for an elastic material is:

1) 0.25	2) 0.50
3) 0.75	4) 1.00
162. A moving load is a-	/

1) Static load

3) Static or Dynamic

2) Dynamic load 4) Dead load

163. Grade Fe 415 refers to-

1) Mild steel Grade I High yield strength deformed bars 2) Medium tensile steel 4) None of these

CIVIL_DM_062014			
164. The maximum area of tension reinforc	ement in beam shall NOT exceed-		
1) 0.02 bD	2) 0.03 bD		
370.04 bD	4) 0.05 bD		
165. The diameter of longitudinal bars of a	column should never be less than-		
1) 6 mm	2) 8 mm		
3) 10 mm	A) 12 mm		
166. The maximum ratio of span to depth o two directions, is:	f a slab simply supported and spanning in		
1) 25	2) 30		
35	4) 40		
167. The percentage of minimum reinforces when HYSD bars used is:	ment of the gross sectional area in slabs,		
1) 0.10%	20.12%		
3) 0.15%	4) 0.18%		
 168. If T and R are the tread and rise of a stair where carries a load ω per square metre on slope, the corresponding load per square metre of the horizontal area, is: A. ^{ω(R+T)}/_T B. ^{ω(R+T)}/_T C. ^{ω(R+T)}/_T D. ^{ωR}/_T 169. The maximum diameter of the reinformation 1) 20 mm 	cement bars in R.C.C slabs is: 2) 16 mm		
3) 30 mm	A) Thickness of slab/8		
170 For design nurnages a weight of D C (is taken os-		
1) 1900 ka/m ³	2) 2200 k_{a}/m^{3}		
3) 2500 kg/m ³	412400 kg/m^3		
171. Generally in freely supported T-beam, purpose will be taken as-	over all depth of the beam for design		
1) 1/12 to 1/15 of the span	2) 1/15 to 1/20 of the span		
3) $1/20$ to $1/24$ of the span	4) Half of the span		
172. For cantilever beams and slabs, the ba is:	sic value of the span to effective depth ratio		
107	2) 10		
3) 15	4) 25		
173. The deformation in a beam at a point of	can be completely defined by-		
1) Deflections	2) Deflections and rotations		
3) Deflections, elongation and twist	4) Elongation, twist and rotations		

CIVIL_DM_062014 174. The design Live load on the floors of residential buildings is about-2) 2.0 KN/m² 1) 1.0 KN/m² 4) 4.0 KN/m² 3) 3.0 KN/m² * 175. The direction of the shear force in a beam is of the beam. 2) Inclined to the axis 1) Along the axis 37 On a plane normal to the axis 4) At centre of beam 176. The maximum diameter of the reinforcing bars in beams shall not exceed- $\frac{1}{2}$ of the total thickness of slab A $\frac{1}{3}$ of the total thickness of slab B. 1 6 of the total thickness of slab C.

177. A reinforced concrete beam is assumed to be made of-

of the total thickness of slab

1) Homogeneous material

3) Isotropic material

 $\frac{1}{8}$

A) Heterogeneous material4) Elastic material

	and the summer of the second
B. $n = \frac{mc}{mc - t} \times d$	
C. $n = \frac{mc + t}{mc} \times d$	ann a shingana ann a sa sagaran .

19.	For a slot continuous over two equal spans, the maximum bending moment near the centre of each span is taken as-					
	A	$-\frac{wL^2}{8}$	n diamagna angustangan anang ang sa			
	В.	$+\frac{wL^2}{8}$	an Anna Annaich ann an Annaich Annaich an Ann			
	C.	$-\frac{wL^2}{10}$				
	Ð.	$+\frac{wL^2}{10}$	<u>yr dref wrait yn arllen - yn yn dref yr dref yn dref y</u>			

CIVIL_DM_062014			
180. The minimum diameter 2000 is:	of main reinforc	ement bars used in beams as per IS 456 -	
I) 6 mm		2) 8 mm	
• 3710 mm		4) 12 mm	
181. The concept of function	al organisation w	as developed by-	
1) Henri Favol	ar or gampation .	21 F.W. Taylor	
3) H.L. Gantt	3	4) P.F. Drucker	
107 In DWD sincle in share	a is decignated as		
182. In F wD, circle in charg	e is designated as	Superintending Engineer	
3) Executive Engineer		4) Assistant Executive Engineer	
		·) + ··································	
183. Work study comprises-		2) Work measurement	
 Motion study Probabilistic analysis 		2) work measurement	
5) Flobabilistic analysis		(Welliod of study and work measurement	
184. Which one of the follow	ing is an activity		
I) Concrete cured		2) Concrete poured	
Excavation for founda	tion	4) Wall plastered	
185. The cost slope is:	anl <u>an ann an an Stàitean</u> an Annaistinnian an		
Crash cost - No	mm al coat		
A. Normal time - (Troch time		
Normai chile - C	and the		
B. $\frac{\text{Normal cost} - C}{\text{Normal cost}}$	Crash cost		
Normal time – (rash time		
C Crash cost - Nor	rmal cost		
Crash tir	ne		
- Crash cost - Not	rmal cost		
D. Normal ti	me		
	unigene gan an an ini ingi kira an an ini kangangan an		
186. An activity involves-		a sur	
 a) Triple event 	-	(2) Double events	
3) Triple events		4) 4 events	
187. The first stage of a large	e construction wo	rk is:	
1) Contract		2) Design	
31 Conception		A Study and evaluation	
188. Substitute for manual la	abour in construc	tion work is:	
1) Materials		2) Money	
3) Management		A Machines and equipments	
189. Earnest money deposit	is to about the fol	lowing % of total estimated cost-	
1) 1.5 % to 2.0 %		2) 1.2 % to 1.5 %	
31 1.0 % to 2.0 %		4) 2.0 % to 2.5 %	
190. Matters for reference to	arbitration are-		
1) Insolvency proceeding	S	2) Lunacy proceedings	
A) The matters pertaining	to the protection	4) The matters pertaining to the	
of private rights. procurement of labour			

Survey .						
	CIVIL_DM_062014					
	191. The following point is related to administrative approval-					
	1) It is given on the basis of detailed estimate	2) It is to be obtained first				
×	 3) It is accorded only by roads and building department 	4) It is to be obtained last				
	 192. The imprest account is: 1) Final settlement of money A standing advance of a fixed sum of money 	2) Interim amount4) Earnest money deposit				
R ¹	 193. Security deposit is: 1) 2.5 % of estimated cost of contract 3) 7.5 % of estimated cost of contract 	2) 5 % of estimated cost of contract 10 % of estimated cost of contract				
1 2 2	194. In a line organisation- I) Responsibility of each individual is fixed	Discipline is strong				
	3) Quick decisions are taken	4) Unity is strong				
	195. The chart which gives an estimate about various stations is known as-	the amount of materials handling between				
	1) Flow chart Travel chart	2) Process chart4) Operation chart				
	106 Negative slady accurs					
	 When latest allowable time is greater than earliest expected time 	2) When events stick to their schedule				
	When deficiency of resources exist	4) When deficiency of money does not exist				
	197. PERT is:					
	1) Activity oriented	2) Event oriented				
	3) Time oriented	4) Resources oriented				
	198. Consider the following statements: I. CPI 1) I and II use the concept of critical path of	M II. PERT f 2) I uses the concept of critical path but II				
	slack	does not				
	3) II uses the concept of critical path but I does not	4) None uses the concept of critical path and slack together				
	199. The first stage of a large construction wo	rk is:				
	a) Conception	A Study of evaluation				
	200 Which one of the following is seen bard	diama				
	200. Which one of the following is over head e	2) Establishment				
	3) Stationary and postage	4) Rent and taxes				
	s) ourional and homes	1/ ATWAR MADE MANYO				

.