CIVIL_DM_062014

1. A cantilever beam 4 m long carries a uniformly distributed load of $40 \mathrm{KN} / \mathrm{m}$ over entire span. Bm at 3 m from the fixed end is:
1) 160 KNm
2) 320 KNm
3) 120 KNm
A) 20 kNm
2. A perfect frame should satisfy the relation-

- $m=2 j-3$

2) $m=2 j-4$
3) $m=3 j-2$
4) $m=3 j-3$
3. Match list I with list II and select the correct

List I		List II
		1) Shear force
	y $/ \mathrm{dx}^{\text {a }}$	2) Slope
	$y / d x^{3}$	3) Load
	$4{ }^{4} /{ }^{4}{ }^{4}$	4) Bending moment
	A B	D
A.	23	1
B	24	3
C.	13	2
D.	42	3

4. Assertion (A) : Strain is a fundamental behaviour of the material, while stress is a derived concept. Reason (R) : Strain does not have a unit while stress has unit. Codes:
1) Both A and R are true and R is the correct explanation of A
2) Both A and R are true but R is not a correct explanation of A
3) A is true but R is false
4) A is false but R is true
5. When shear force at a point is zero, then bending moment at that point will be-
1) Zero
2) Minimum
) Maximum
3) Infinity
6. Robert Hooke discovered experimentally that withim elastic limit-
1) Stress is equal to strain
2) Product of stress and strain is unity
3Stress is proportional to strain
3) Stress is inversely proportional to strain
7. In NBC, fire safety is given as,
1) Fire and life safety
2) Fire safety code
3) Building Fire code
4) Fire protection and safety

CIVIL_DM_062014
8. Maximum torque transmitted by a circular solid shaft is:

A.	$\frac{\pi}{16} \mathrm{D}^{4}$
B.	$\frac{\pi}{16} \mathrm{TD}^{3}$
C.	$\frac{\pi}{64} \mathrm{D}^{4}$
D.	$\frac{\pi}{32} \mathrm{D}^{4}$

9. Match list I with list II and select the cornect

10. Polar modulus of a section is a measure strength of section in-
1) Bending
2) Shear
д) Torsion
3) Compression
11. The BMD diagram for a cantilever with udl for a distance of ' a ' from free end is in the shape of-
1) A parabola
2) A straight line
Combination of parabola and straight
3) A circle
12. Point of contraflexure means-
1) Point at which $S F$ is zero 2) Point at which BM changes its sign
2) Point at which BM is maximum
3) Point at which the shear force is minimum

CIVIL_DM_ 062014
13.

Simple bending equation is:	
A	$\frac{M}{I}=\frac{E}{R}=\frac{f}{y}$.
B.	$\frac{I}{M}=\frac{E}{R}=\frac{y}{f}$
C.	$\frac{M}{I}=\frac{R}{E}=\frac{f}{y}$
D.	$\frac{M}{I}=\frac{R}{E}=\frac{y}{f}$

14.

A simply supported beam carries two equal concentrated loads W at distance $\frac{L}{3}$ from either support. The maximum bending moment M is	
A.	$\frac{\text { WL }}{8}$.
B.	$\frac{\text { WL }}{4}$
C.	$\frac{W L}{3}$
D.	$\frac{5 W L}{8}$

15. When a beam is loaded with concentrated loads, the bending moment diagram will bea-
1) Horizontal straight line
2) Vertical straight line
3 Inclined straight line
3) Parabolic curve
16. The shear force at the ends of a simply supported beam carrying a uniformly distributed load of W per unit lengthis:

A.	Zero at its both ends
B.	wl at one end, -wl at the other end
C.	$\frac{\mathrm{wl}}{2}$ at one end, $-\frac{\mathrm{wl}}{2}$ at the other end
D.	$\frac{\mathrm{wl}}{}{ }^{2}$

17. Which of the following is dimensionless?
1) Young's modulus
2) Strain
3) Stress
4) Shear force

CIVIL_DM_062014
18. The M. I of a rectangular section about its neutral axis is given by-
A. $\frac{1}{3} \mathrm{bh}^{2}$

B.	$\frac{1}{12} \mathrm{bh}^{2}$
C.	$\frac{1}{12} \mathrm{bh}^{3}$
D.	$\frac{1}{36} \mathrm{bh}^{3}$

19. Deflection of a cantilever beam of span T subjected with an uniformly distributed load of intensity w/m is:

A	$\frac{\omega \\|^{4}}{8 E I}$
B.	$\frac{\omega 1^{2}}{8 E I}$
C.	$\frac{\omega \\|^{4}}{48 E I}$
D.	$\frac{a a^{4}}{384 E I}$

20. The radius of gyration of a rectangular section is equal to-
1) Square root of the moment of inertia
2) Square root of the inverse of the area
3) Square root of the moment of inertia divided by area of section
4) Square of the moment of Inertia divided by area of section
21. A cantilever of 4 m span carries a point load of 10 KN at the free end. The max deflection is, $\left(E I=8 \times 10^{13} \mathrm{~N} \mathrm{~mm}{ }^{2}\right.$)
1) 2.76 mm
2) 2.56 mm
万) 2.67 mm
3) 2.50 mm
22. The critical load P due to buckling (long columns) is given by Euler's formula-

A.	$\frac{\pi \mathrm{EI}}{l^{2}}$
B.	$\frac{\pi^{2} \mathrm{EI}}{l^{2}}$
C.	$\frac{l^{2} \mathrm{EI}}{\pi^{2}}$
D.	$\frac{\pi^{2} \mathrm{EI}}{2 d^{2}}$

CIVIL_DM_062014
23. The expression EI $d^{4} y / d x^{4}$ at any section for a beam is equal to-

1) Load intensity at the section
2) S.F at the section
3) B.M at the section
4) Slope at the section
24. Static indeterminancy of the beam shown in Fig is:

A.	1
B.	2
C.	3
D.	4

25. Stiffness of a beam is the property by virtue of which it resists-
1) Tension
2) Bending moment
3) Shear Force
4) Rotation and deflection
26. In a simply supported beam, subjected to UDL throughout, the maximum deflection at midspan is:

A.	$\frac{\mathrm{WL}^{3}}{284 \mathrm{EI}}$
B.	$\frac{\mathrm{WL}^{2}}{8}$
C.	$\frac{5 \mathrm{WL}^{4}}{384 \mathrm{EL}}$
D.	$\frac{2 \mathrm{WL}^{2}}{438 \mathrm{EI}}$

27. Maximum deflection of a cantilever beam of span 1 carrying a point load W at its free end is:

A.	$\frac{W L^{3}}{2 E I}$
D.	$\frac{W L^{3}}{3 E I}$
C.	$\frac{W L^{3}}{8 E I}$
D.	$\frac{\mathrm{WL}^{3}}{16 E I}$

28. Mohr's theorem II helps to find the-
I) Slope of a fixed beam
2) Moment at the supports for a continuous
3) Deflection of a beam beam
4) Shear force at the supports
29. For three equal span continuous beam whose ends are simply supported and EI values are constant, the distribution factors of the members are-
1) Equal
2) unequal
3) $3 / 7$
4) $4 / 7$
30. A fixed beam of span " 1 " is carrying a UDL of ω per unit run over the whole span. The maximum deflection in this case is givenas-

deflection in this case is given as-	
A.	$\frac{\partial 1^{4}}{48 \mathrm{EI}}$
B.	$\frac{\omega \mathrm{L}^{3}}{30 \mathrm{EI}}$
C.	$\frac{5 \omega 1^{4}}{384 \mathrm{EI}}$
D.	$\frac{\omega 1^{4}}{384 \mathrm{EI}}$

31. Consider the following assumptions in the analysis of a plane truss. 1. The individual members are straight 2 . The individual members are connected by frictionless hinges 3. The loads and reactions act only at the joints. Of these assumptions:
1) 1 and 2 are valid
2) 1 and 3 are valid
3) 2 and 3 are valid
4) 1,2 and 3 are valid
32. A rod of uniform cross - section A and length L is deformed by δ, when subjected to a normal force
P. The young's modulus E of the material, is:

A.	$\mathrm{E}=\frac{\mathrm{P} \cdot \delta}{\mathrm{AL}}$
B.	$\mathrm{E}=\frac{\mathrm{A} . \delta}{\mathrm{P} . \mathrm{L}}$
C.	$\mathrm{E}=\frac{\mathrm{P} . \mathrm{L}}{\mathrm{A} . \delta}$
D.	$\mathrm{E}=\frac{\mathrm{AL}}{\mathrm{P} . \delta}$

33. A cantilever of length L is subjected to a bending moment M due to point load at free end at its free end. If EI is the flexural rigidity of the section, the deflection of the free end, is:
1) ML/EI
2) $\mathrm{ML} / 2 \mathrm{EI}$
3) $\mathrm{ML}^{2} / 2 \mathrm{EI}$

CIVIL_DM_062014
34. The ratio of the area of cross section of a circular section to the area of its core, is:

1) 4
2) 8
3) 12
M16
35. The value of Rankine's constant for mild steel is-

A.	$\frac{1}{9000}$
B.	$\frac{1}{7500}$
C.	$\frac{1}{1600}$
D.	$\frac{1}{750}$

36. Consider the following statements: Sinking of an intermediate support of a continuous beam 1. Reduces the negative moment at support 2. Increases the negative moment at support 3. Reduces the positive moment at the centre of span 4. Increases the positive moment at the centre of span. Of these statements
11 and 4 are correct
2) I and 3 are correct
3) 2 and 3 are correct
4) 2 and 4 are correct
37. The kern of a circular section of diameter D is a concentric circular area of diameter-

A.	$\frac{3}{4} \mathrm{D}$
B.	$\frac{3}{5} \mathrm{D}$
C.	$\frac{2}{3} \mathrm{D}$
D.	$\frac{\mathrm{D}}{4}$

38. In SI units, one bar is equal to-
1) $0.1 \mathrm{~N} / \mathrm{mm}^{2}$
2) $1.0 \mathrm{~N} / \mathrm{mm}^{2}$
3) $1.0 \mathrm{~N} / \mathrm{cm}^{2}$
4) $10.0 \mathrm{~N} / \mathrm{m}^{2}$
39. If the stress on the cross-section of a circular short column of diameter D is to be wholly compressive, the load should be applied within a concentric circle of diameter-
1) $\mathrm{D} / 2$
2) $D / 8$
2)D/4
3) $D / 6$
40. Beams composed of more than one material, rigidly connected together so as to behave as one piece, are known as:
1) Compound beams
2) Indeterminate beams
3) Determinate beams
A)Composite beams

CIVIL_DM_062014
41. The bearing capacity of a soil cannot be increased by-

1) Chemical treatment
2) Grouting
3) Compacting
4) Moistening the soil
42. The black cotton soil-
1) Has high bearing capacity
2) Has negligible permeability
3) Undergoes large volumetric change with 4) Is considered good soil for foundation moisture
43. Any store masonry work which is NOT highly finished is known as-
1) Rubble masonry
2) Rough masonry
3) Ashlar masonry
4) Base masonry
44. Water absorption for $1^{\text {st }}$ class bricks should NOT be more than-
1) 12%
2) 15%
3) 20%
4) 25%
45. The defect in painting caused by excess moisture vaporising in back of the paint film is known as:
1) Wrinkling
2) Alligatoring
3) Blistering
4) Scaling
46. Which proportion of cement mortar is used for pointing work?
म) $1: 2$
2) $1: 4$
3) $1: 5$
4) $1: 6$
47. Slump test for concrete is carried out to determine-
H) Workability
2) Durability
3) Water content
4) Strength
48. The sides of an opening such as doors, windows are known as-
1) Jambs
2) Heads
3) Reveals
4) Verticals
49. The most commonly used deep foundation in building is:
1) Well foundation
2) Pile foundation
3) Raft foundation
4) Grillage foundation
50. The minimum compressive strength of First class bricks should be-
1) $75 \mathrm{~kg} / \mathrm{cm}^{2}$
2) $90 \mathrm{~kg} / \mathrm{cm}^{2}$
गT $100 \mathrm{~kg} / \mathrm{cm}^{2}$
3) $120 \mathrm{~kg} / \mathrm{cm}^{2}$
51. The term fog means-
1) An apparatus to lift the stone
2) A depression on a face of brick
3) Vertical joint in a brick work
4) Soaking brick in water
52. Strength of cement concrete primarily depends upon-
1) Quality of water
2) Quantity of cement
3) Quantity of aggregate
4) Water - cement ratio
53. Seasoning of timber-
1) Increases the weight of timber
2) Does not give dimensional stability
3) Improves the strength properties
4) Improves the appearance

CIVIL_DM_062014
54. The commonly used lime in white washing is:

1) Quick lime
2) Fat lime
3) Lean lime
4) Hydraulic lime
55. A roof sloping in four directions is called-
1) Sloping roof
2) Hip roof
3) Cable roof
4) Shed roof
56. The temperature range in a cement kiln is:
1) 500 to $1000^{\circ} \mathrm{C}$
2) 1000 to $1200^{\circ} \mathrm{C}$
3) 1400 to $1500^{\circ} \mathrm{C}$
4) 1600 to $2000^{\circ} \mathrm{C}$
57. In initial setting time test of cement, the needle falls to penetrate the test block by-
1) 10 mm
2) 9 mm
3) 3 mm
A) 5 mm
58. Cement mortar 1:4 requires \qquad of cement.
1) 240 kg
2) 360 kg
3) 480 kg
4) 420 kg
59. Rankine's formula for minimum depth of foundationis:

foundationis:	
A.	$\frac{p}{\omega}\left(\frac{1+\sin \phi}{1-\sin \phi}\right)$
B.	$\frac{p}{\omega}\left(\frac{1-\sin \phi}{1+\sin \phi}\right)$
C.	$\frac{p}{\omega}\left(\frac{1-\sin \phi}{1+\sin \phi}\right)^{2}$
D.	$\frac{p}{\omega}\left(\frac{1+\sin \phi}{1-\sin \phi}\right)^{2}$

60. A partition wall is designed to carry-
1) Live loads
2) Rolling loads
3) Wind loads
4) No external loads
61. Which of the following is cohesive soil?
1) Clay
2) Red earth
3) Black cotton soil
4) Compacted ground
62. A slope of 1 in 40 is designated as-
1) 0.5% grade
2) 0.8% grade
3) 1.0% grade
4) 2.5% grade
63. Cement concrete road is the example for -
1) Flexible pavements
2) Rigid pavements
3) Semi-flexible pavements
4) Composite pavements
64. The layer that is directly in contact with the traffic is:
1) Wearing course
2) Base course
3) Sub base
4) Sub grade

CIVIL_DM_062014
65. Match List I with List II and select the correct

66. Match List I with Liat II and select the correct

67. The centrifugal force developed in horizontal curves is equal to-

A	$\rho=\frac{W g^{2}}{V R}$
B.	$\rho=\frac{W v^{2}}{g R}$
C.	$\rho=\frac{g R}{W v^{2}}$
D.	$\rho=\frac{W v^{2}}{2 g R}$

68. For small drainage crossings \qquad culverts are often found in practice to be most economical.
1) Concrete
2) Masonry
万)Pipe
3) Steel
69. The plastic limit exists in-
1) Sandy soils
2) Gravel soils
3) Silty soils 4) Clays
70. Camber on road pavement is provided for-
1) To minimize speed
2) Surface drainage
3) To avoid skidding
4) To accommodate change in direction

CIVIL_DM_062014
71. In case of hilly areas, a wall is provided on the outside of the road to ensure safety of the traffic. The wall is known as-

1) Retaining wall
2) Safety wall
3) Danger wall
4) Parapet wall
72. The upstream nose of a bridge pier is known as-
1) Ease water
2) Stop water
3) Cut water
4) Water repeller
73. Transition curve is provided in horizontal alignment-
1) To increase the radius of curvature
2) To facilitate the application of super elevation
3) To counteract the centrifugal force developed
4) To prevent vehicles from skidding laterally
74. On a national high way, the minimum width of the pavement should be-
1) 4.7 m
2) 5.7 m
3) 6.7 m
4) 7.5 m
75. A gradient at which a vehicle does not require any tractive effort to maintain the specific speed is called-
1) Minimum gradient
2) Floating gradient
3) Ruling gradient
4) Pushing gradient
76. Gradients at hair pin bends or other sharp corners with inside curves of 10 to 15 m should never exceed-
1) 1 in 20
2) 1 in 40
3) 1 in 60
4) I in 80
77. Camberis:

A.	b / a
B.	$2 b / a$
C.	$b / 2 a$
D.	a / b

CIVIL_DM_062014
78. The relation between void ratio(e) degree of saturation (s), water content (\mathbf{w}) and specific gravity of solids (G) is given by -
A. $e+s=w+G$
8. $e s=w G$
C. $\frac{e}{s}=\frac{W}{G}$
D. $\frac{s+e}{w}=\frac{G+e}{s}$
79. In a cement concrete road, expansion joints are provided at intervals of -

1) 4 m
2) 10 m
3) 20 m
4) 50 m
80. On a hill road, the radius of curve should not be less than -
I) 100 m
2) 60 m
3) 30 m
A) 15 m
81. According to chezy's formula the discharge through an open channel is equal to -

A.	$C \sqrt{\mathrm{mi}}$
B.	Cmi
e. $^{\mathrm{A}}$	$\mathrm{AC} \sqrt{\mathrm{mi}}$
D.	$\mathrm{C}^{2} \sqrt{\mathrm{mi}}$

82. The hydraulic mean depth of a circular section is:
1) πd
2) $\mathrm{d} / 4$
3) $d / 2$
4) $d / 3$
83. The pressure measuring devices are-
1) Piezometer
2) Orifice meter
3) Venturimeter
4) Mouthpiece
84. Piezometer is used to measure-
1) Atmospheric pressure
2) Very low pressure
3) Differential pressure
4) High pressure in pipes
85. The velocity of fluid particles at the centre of pipe-section is:
1) Minimum
2) Maximum
3) Equal
4) Zero
86. A venturimeter is used to measure -

1 Yuantity of liquid flowing through a pipe
3) Frictional resistance to flow of a liquid
2) Viscous forces acting on a fluid in motion
4) Specific gravity of a fluid flowing through a pipe
87. Which of the following relations is correct?

A.	$\mathrm{Cd}=\frac{\mathrm{C}_{\mathrm{c}}}{\mathrm{C}_{\mathrm{v}}}$
B.	$\mathrm{Cd}=\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{C}_{\mathrm{c}}}$
C.	$\mathrm{Cd}=\mathrm{C}_{\mathrm{c}} \times \mathrm{C}_{\mathrm{v}}$
D.	$\mathrm{Cv}=\mathrm{Cd}^{2} \times \mathrm{C}_{\mathrm{c}}$

88. The discharge through a V -notch varies as-
1) $\mathrm{H}^{1 / 2}$
2) $\mathrm{H}^{3 / 2}$
3) $\mathrm{H}^{5 / 2}$
4) $\mathrm{H}^{5 / 4}$
89. The pressure intensity of $49.05 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$ in meters of water is:
H5
2) 2
3) 3
4) 1
90. The range for co-efficient of discharge (Cd) for venturimeter is:
1) 0.5 to 0.6
2) 0.6 to 0.7
3) 0.7 to 0.8
4) 0.95 to 0.99
91. Which of the following has the maximum water application efficiency?
1) Surface Irrigation
2) Lift Irrigation
म1'Sprinkler Irrigation
3) Sub-Surface Irrigation
92. The run off increases with -
1 Increase in intensity of rain
2) Decrease in infilteration capacity
3) Increase in permeability of soil
4) Decrease in permeability of soil
93. According to Manning's formula, the discharge through an open channel is:
1) $\mathrm{AM} \mathrm{m}^{1 / 2} \mathrm{i}^{2 / 3}$
2) $\mathrm{AM} \mathrm{m}^{2 / 3} \mathrm{i}^{1 / 2}$
3) $A^{1 / 2} M^{2 / 3} m i$
4) $A^{2 / 3} M^{1 / 3} m i$
94. The most efficient section of a channel is:
1) Triangular
2) Rectangular
3) Circular
4) Trapezoidal
95. The hydrology cycle is expressed by the equation : (when $\mathbf{P}=$ Precipitation, $\mathrm{E}=$
Evaporation and $\mathbf{R}=$ Run off)
1) $P=E-R$
2) $\mathrm{P}=\mathrm{E}+\mathrm{R}$
3) $P=E \times R$
4) $P=E / R$

CIVIL_DM_062014
96. Match the following:

Mateh the following		
List-1		Lid. 11
a) In Perennial Canals		1) Water does not flow throughout the year
b) In non-perennial canals		2) hevenue trom water not expected
a) In protective canala		3) Revenue from water is expected
d) In maduetive camels.		4) Water hows throughout the year
Selet your andwer acoording to the coding scherne given below.		
	$a \quad b$	d
A	2×1	4
B.	31	2
Pr	$4 \quad 1$	3
D.	13	4

97. The surface Run-off is the quantity of water -
1) Absorbed by soil \quad 2) Intercepted by buildings and vegetative cover
2) Required to fill surface depressions
1)That reaches the steam channels
98. In Δ is the depth of water in meters, B is the base period in days and D is the duty in hectare $/$ cumecs, the relationship which holds good is:

A	$D=\frac{\Delta 8.64 \mathrm{D}}{\mathrm{B}}$
B.	$\mathrm{B}=\frac{\Delta 8.64 \mathrm{D}}{\mathrm{D}}$
C	$\mathrm{D}=\frac{8.64 \Delta}{\mathrm{~B}}$
D.	$\Delta=\frac{864 \mathrm{~B}}{\mathrm{D}}$

99. Match List-I with List-I and select the correct

		List. II	
	ospherie sume	1) Premure measured with reterence to absolute wacum pressure	
	cauge	2) Pressure measured with the help of a presure instruments	
	solute ure	3 The pressure below atmospheric pressure	
	scaum nume	4) Pressure exerted by atmosphericgases.	
	${ }^{*}$	c	d
F	4	1	3
B.	1	3	4
C,	3	2	1
D.	4	3	2

CIVIL_DM_062014
100.

According to Bernoulli's equation-	
A.	$Z+p+V=C$
B.	$Z+\frac{P}{w}+\frac{V}{g}=C$
C.	$Z+\frac{p}{w}+\frac{V^{2}}{g}=C$
D.	$Z+\frac{P}{w}+\frac{V^{2}}{2 g}=C$

101. The axis about which the telescope and the vertical circle of a theodolite rotates in the vertical plane is called-
1) Vertical axis of the telescope
2) Bubble axis
万) Trunnion axis
3) Axis of the level tube
102. Irregular contour represents -
1) Even ground
2) Uneven ground
3) Sloped ground
4) Steep ground
103. The technique of ploting all the accessible stations with a single set up of plane table is called-
1) Radiation
2) Intersection
3) Resection
4) Traversing
104. In a closed traverse ABC the following readings were taken

Line	Fore bearing	Back bearing
AB	19°	200°
BC	100°	277°
CA	227°	49°

If station A is free from local attraction, correct bearing of CB is:

A.	275°
B.	276°
C.	277°
D	279°

105. The spacing of cross-hairs in a stadia diaphragm of a tacheometer is 1.20 mm and the focal length of the object glass is 24 cm , then the multiplying constant of tacheometer is :
1) 50
2) 100
3) 150
4) 200
106. If the focal length of the object glass is 25 cm and the distance from the object glass to the trunnion axis is $\mathbf{1 5 ~ c m}$, the additive constant is:
1) 0.10
2) 0.40
3) 0.60
4) 1.33

CIVIL_DM_062014
107. The process of turning the felescope in vertical plane through 180° about the trunnion axis is called -
) Transiting
2) Reversing
3) Plunging
4) Swinging
108. A fixed point of reference whose elevation is known as-

1) Datum point
2) Bench mark
3) Reference point
4) Mean level
109. Levelling deals with measurement in -
1) Horizontal plane
2) Both horizontal and vertical plane
3) Vertical plane
4) Inclined plane
110. Method of contouring suitable for a hilly terrain is-
1) Direct method
2) Square method
3) Cross-section method
4) Tachometric method
111. The deflection angle may have any value between-
1) 0° and 45°
2) 0° and 90°
3) 0° and 120°
A1 0° and 180°
112. In a whole circle bearing system $\mathbf{N} \mathbf{2 5 ^ { \circ }} 15^{\prime} w^{\prime}$ corresponds to-
1) $115^{\circ} 15^{\prime}$
2) $154^{\circ} 45^{\prime}$
3) $205^{\circ} 15^{\prime}$
A) $334^{\circ} 45^{\prime}$
113. If whole circle bearing of a line is 120°, its reduced bearing is:
1) $S 20^{\circ} E$
2) $60^{\circ} \mathrm{E}$
3) $\mathrm{N} 120^{\circ} \mathrm{E}$
4) $\mathrm{N} 60^{\circ} \mathrm{E}$
114. Contours of different elevations may cross each other only in the case of -
1) An over hanging cliff
2) A vertical cliff
3) A saddle
4) An inclined plane
115. Perpendicularity of an offset may be judged by eye, if the length of the offset is:
1) 5 m
2) 10 m
3) 15 m
4) 20 m
116.

If h is the difference in height between end points of a chain of length l , the required slope correction is: C$\frac{\mathrm{h}^{2}}{21}$	
B.	$\frac{\mathrm{h}}{21}$
C.	$\frac{\mathrm{h}^{2}}{1}$
D.	$\frac{\mathrm{h}^{2}}{2 \mathrm{I}^{2}}$

CIVIL_DM_062014
117. The process of turning the telescope about the vertical axis in horizontal plane is known as-

1) Reversing
2) Plumbing
3) Transisting
4) Swinging
118. A branch of surveying in which the horizontal and vertical distances of points are obtained by instrumental observations is known as-
1) Chain surveying
2) Plane-table surveying
3) Tacheometric surveying
4) Hydrographic surveying
119. The aggregates which are passing through $1 S ~ 4.75 \mathrm{~mm}$ sieve, are called -
1) Fine aggregates
2) Coarse aggregates
3) Saturated
4) Unsaturated
120. The combined correction for curvature of earth and refraction is given by-
1) $0.06 \mathrm{D}^{2}$
2) $0.0736 \mathrm{D}^{2}$
$200.0673 \mathrm{D}^{2}$
3) $0.0055 \mathrm{D}^{2}$
121. To obtain large quantities of water, the following form of underground sources are sunk in series in the banks of river -
1) Infiltration gallery
2) Infiltration well
3) Springs
4) Reservoir
122. The temporary hardness is mainly due to -
1) Chlorides and sulphates
2) Calcium and Magnesium bicarbonates
3) Sodium and potassium
4) Sodium and potassium carbonates
123. The amount of precipitation is measured by-
1) Rain gauge
2) Osmoscope
3) Turbidimeter
4) Hydrograph
124. A septic tank is:
1) An aerobic method of on site sewage treatment
2) An anaerobic method of on site treatment
3) A physical method of water treatment
4) Facultative method
125.

| Match List - I with List - II and select the correct
 answer by using the codes given below the lists : |
| :--- | :--- |
| List - I List-II
 a) Turbidity (ppm) 1) 10
 b) Colour (ppm) 2) 20
 c) Total solids (ppm) 3) 500
 d) Odour (threshold) 4) 3 |

	a	b	c	d
A	1	2	3	4
B.	4	2	3	1
C.	4	3	2	1
D.	1	3	2	4

126. A good source of water requiring practically the least treatment is:
1) A perennial river
2) An impounded reservoir
2)A deep well
3) An elevated tank

CIVIL_DM_062014
127, The chloride content in the water for public water supply should not be more than -

1) 250 ppm
2) 150 ppm
3) 80 ppm
4) 50 ppm
128. For controlling the growth of algae the chemical generally used is:
1) Alum
2) Lime
3) Bleaching powder
4) Copper Sulphate
129. The ratio of volume of voids to the total volume of given solid mass is-
1) Voids ratio
2) Porosity
3) Specific gravity
4) Density
130. Consider the following statement regarding sedimentation tank: 1) Raw water is screened for removal of large organic impurities 2) Raw water is passed through coagulation sedimentation plant 3) Raw water is passed through rapid gravity fillers 4) Cleaned water is disinfected for killing of germs and colour removal The correct sequence of the operation is:
1) $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$
2) $1 \rightarrow 2 \rightarrow 4 \rightarrow 3$
3) $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
4) $3 \rightarrow 1 \rightarrow 2 \rightarrow 4$
131. Consider the following statements regarding the foul gases in the sewers. 1. Hydrogen sulphide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ is evolved 2. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is evolved 3. Methane is evolved 4. Oxygen is evolved Or these statements:
1) 1 and 2 are correct
2) 2 and 3 are correct
3) 3 and 4 are correct
4)1,2 and 3 are correct
132. Consider the following statements regarding ventilating column of sewers. 1. A level is provided at the top of the shaft for the escape of gases into the atmosphere. 2. A ventilating column is used near the street lamp posts. 3 . The diameter of the ventilating column is preferably kept equal to one third of the diameter of the sewer. 4. The ventilating columns are generally kept lower than the beight of nearby structures. Of these statements:
1) 1 alone is correct
2) 1 and 2 are correct
3) I and 4 are correct
4) 2 and 3 are correct
133. A reciprocating pump-
1) Has a rotating impeller
2) Has a piston that moves back and forth
3) Has two plug valves
4) Is used to pump grit
134. The capacity of a water supply reservoir should be-
1) Balancing storage - breakdown storage -
2) Balancing storage - breakdown storage + fire storage fire storage
3) Balancing storage + breakdown storage - - Balancing storage + breakdown storage + fire storage fire storage
135. The bed slope in slow sand filters is usually-
I) 1 in 10
2) 1 in 50
3) 1 in 100
4) 1 in 300
136. Water softening plants remove-
1) Turbidity
2) Bacteria
3) Minerals
4) Scale forming compounds
137. The type of water supply distribution system layout, in which water reaches each point from one side only is:
1) Ring system
2) Dead ends system
3) Radial system
4) Grid iron system
138. The mixture of a number of sewage samples (representing the important fuctuation in sewage quality) is known as-
1) True sample
2) Representation sample
3) Grab sample
4) Composite sample
139. The trap provided, at the junction of waste stack with the building drain is called-
1) D-trap
2) Anti-syphonage trap
3)Gully trap
3) S-trap
140. Water taken out from shallow or deep wells, infiltration galleries, artesian wells etc is known as-
1) Ground water supply
2) Surface water
3) Underground water
4) Overhead storage water
141. Quantities of wood work are computed generally in terms of-
1) Numbers
2) Numbers and Sizes
3) Area in square meters
4) Volume in cubic meters
142. The useful area of liveable area of a building is also known as-
1) Carpet area
2) Circulation area
3) Horizontal circulation area
4) Plinth area
143. The original cost of a property minus the amount of depreciation upto previous year is known as-
1) Market value
2) Book value
3) Sinking value
4) Rentable value
144. The percentage of total cost provided towards water charge, in rate analysis is:
1) $11 / 2 \%$
2) $21 / 2 \%$
3) $31 / 2 \%$
4) 5%
145. Various taxes on a building are generally fixed on the basis of-
1) Plinth area
2) Location
3) Orientation
4) Annual rental value
146. Net rent + Outgoings $=$
1) Total rent
2) Depreciation value
3) Gross rent
4) Sinking fund installment
147. In case of Government accommodation normally officers are required to pay the rent on the basis of-
1) Gross rent
2) Plinth area
p) Salary
3) Location of building

CIVIL_DM_062014
-148. The value of the property, without being dismantled, at the end of the useful life period is known as-

1) Salvation value
2) Book value
3) Write off value
4) Junk value
149. The number of tiles required for $10 \mathrm{~m}^{2}$, using $200 \times 200 \times 20 \mathrm{~mm}$ size mosaic tiles are-
1) 220 Numbers
2) 200 Numbers
3) 230 Numbers
A)250 Numbers
150. The cost of construction of a hostel building accommodating 200 students is found to be Rs. 6.2 lakhs. Using unit cost method, the cost of construction of a new building to accommodate 120 students is:
1) 3.50 lakhs
2) 3.25 lakhs
3) 3.00 lakhs
4) 3.72 lakhs
151. Volumes of works shall be calculated to the nearest-
1) 0.1 cu.m
2) $0.01 \mathrm{cu.m}$
3) $0.001 \mathrm{cu} . \mathrm{m}$
4) 0.02 cu m
152.

The volume of cement required for $10 \mathrm{~m}^{3}$ of brick wall in $\mathrm{cm} 1: 6$ is approximately equal to- A$\frac{3}{7} \mathrm{~m}^{3}$	
B.	$\frac{3}{6} \mathrm{~m}^{3}$
C.	$\frac{3}{4} \mathrm{~m}^{3}$
D.	$\frac{3}{5} \mathrm{~m}^{3}$

153. The annual periodic payments made for the repayment of the capital invested is known as-
1) Annuity
2) Depreciation
3) Sinking fund
4) Solatium
154.

Match the following List I with List II				
List-1				List - II
a) Brick work in superstructure				1) m^{2}
b) Brick work in partition wall				2) m^{3}
c) Plastering				3) kg
d) Steel				4) sq.m
	a	b	c d	
A	2	1	4 3	
B.	1	2	3 4	
C.	3	2	41	
D.	4	3	$2 \quad 1$	

CIVIL_DM_062014
155. Choose the correct statement from the following: (i) Plinth area method is a rough estimate (ii) Service unit method is a rough estimate (iii) Cubic content method is a detailed estimate Of these statements:

1) (i), (ii) and (iii) are correct
(i) and (ii) are correct
2) (ii) and (iii) are correct
3) (iii) alone is correct
156. Fick out the odd man out from the following, pertaining to estimate.
1) Schedule of rates
2) Preparation of data
3) Abstract estimate
4)'Rough estimate
157. Capitalized value of a property is worked out using the following equation.

A.	Capitalized value $=\frac{100}{\text { Rate of interest }}$
D.	Capitalized value $=$ $=$ Net annual rent x year's purchase
C.	Capitalized value $=$ $=$ Total cost of building + cost of land
D.	Capitalized value $=$ Gross income - outgoings

158. The volume of coarse aggregate required to make $100 \mathrm{~m}^{3}$ of $1: 2: 4$ concrete is:
1) $84 \mathrm{~m}^{3}$
2) $88 \mathrm{~m}^{3}$
3) $92 \mathrm{~m}^{3}$
4) $96 \mathrm{~m}^{3}$
159. The rent of the lift worked out with the following data. Cost of lift $=$ Rs. $68640 /-$ Estimated life of lift $=25$ years Y.P allowing interest on capital at 6.5% and redemption of capital at 4.5% for 25 years $=11.44$. Rent is:
1)Rs. $500 /$ month
2) Rs. $600 /$ month
3) Rs. 872 /month
4) Rs. 1000 /month
160. Choose the incorrect statement.
1) The expenses those are spent on the property by taking periodical repairs are outgoings
2) Annual periodic payments for repayment of the capital amount invested is called annuity
3) The value of the property recorded in the 4) Plinth area is the usable area register of local authority is called book value
161. The maximum value of Poisson's ratio for an elastic material is:
1) 0.25
2) 0.50
3) 0.75
4) 1.00
162. A moving load is a-
1) Static load
2) Dynamic load
3) Static or Dynamic
4) Dead load
163. Grade Fe 415 refers to-
1) Mild steel Grade I
2) Medium tensile steel
H) High yield strength deformed bars
3) None of these

CIVIL_DM_062014
164. The maximum area of tension reinforcement in beam shall NOT exceed-

1) 0.02 bD
2) 0.03 bD
230.04 bD
3) 0.05 bD
165. The diameter of longitudinal bars of a column should never be less than-
1) 6 mm
2) 8 mm
3) 10 mm
A) 12 mm
166. The maximum ratio of span to depth of a slab simply supported and spanning in two directions, is:
1) 25
2) 30
3) 40
4) 35
167. The percentage of minimum reinforcement of the gross sectional area in slabs, when HYSD bars used is:
1) 0.10%
2) 0.12%
3) 0.15%
4) 0.18%
168. If T and R are the tread and rise of a stair which carries a loed 0 per square metre on slope, the corresponding lond per square metre of the horizontal area, is:

A	$\frac{\omega(R+T)}{T}$
B.	$\frac{\omega \sqrt{R^{2}+T^{2}}}{T}$
C.	$\frac{\omega \sqrt{R+T}}{T}$
D.	$\frac{\omega R}{T}$

169. The maximum diameter of the reinforcement bars in R.C.C slabs is:
1) 20 mm
2) 16 mm
3) 30 mm
4) Thickness of slab/8
170. For design purposes, a weight of R.C.C is taken as-
1) $1800 \mathrm{~kg} / \mathrm{m}^{3}$
2) $2300 \mathrm{~kg} / \mathrm{m}^{3}$
3) $2500 \mathrm{~kg} / \mathrm{m}^{3}$
4) $2400 \mathrm{~kg} / \mathrm{m}^{3}$
171. Generally in freely supported T-beam, over all depth of the beam for design purpose will be taken as-
1) $1 / 12$ to $1 / 15$ of the span
2) $1 / 15$ to $1 / 20$ of the span
3) $1 / 20$ to $1 / 24$ of the span
4) Half of the span
172. For cantilever beams and slabs, the basic value of the span to effective depth ratio is:
1) 7
2) 10
3) 15
4) 25
173. The deformation in a beam at a point can be completely defined by-
1) Deflections
2) Deflections and rotations
3) Deflections, elongation and twist
4) Elongation, twist and rotations

CIVIL_DM_062014
174. The design Live load on the floors of residential buildings is about-

1) $1.0 \mathrm{KN} / \mathrm{m}^{2}$
2) $2.0 \mathrm{KN} / \mathrm{m}^{2}$
3) $3.0 \mathrm{KN} / \mathrm{m}^{2}$
4) $4.0 \mathrm{KN} / \mathrm{m}^{2}$

- 175. The direction of the shear force in a beam is \qquad of the beam.

1) Along the axis
2) Inclined to the axis

HOn a plane normal to the axis
4) At centre of beam
176. The maximum diameter of the reinforcing bars in beams shall not exceed-
A. $\frac{1}{2}$ of thetotal thickness of slab
B. $\frac{1}{3}$ of the total thickness of slab
C. $\frac{1}{6}$ of the total thickness of slab
$\frac{1}{8}$ of the total thickness of slab
177. A reinforced concrete beam is assumed to be made of-

1) Homogeneous material
2) Heterogeneous material
3) Isotropic material
4) Elastic material
178. In a singly reinforced beam, the depth of neutral axis below the top of the beam (\mathbf{n}) is given by-

A.	$n=\frac{m c}{m c+t} \times d$
B.	$n=\frac{m c}{m c-t} \times d$
C.	$n=\frac{m c+t}{m c} \times d$
D.	$n=\frac{m c-t}{m c} \times d$

179. For a slot continuous over two equal spans, the maximum bending moment near the centre of each span is taken as-

A	$-\frac{w L^{2}}{8}$
B.	$+\frac{w L^{2}}{8}$
C.	$-\frac{w L^{2}}{10}$
B.	$+\frac{w L^{2}}{10}$

CIVIL_DM_062014
180. The minimum diameter of main reinforcement bars used in beams as per IS 4562000 is:
I) 6 mm
2) 8 mm
2) 10 mm
4) 12 mm
181. The concept of functional organisation was developed by-

1) Henri Fayol
2)'F.W. Taylor
2) H.L. Gantt
3) P.F. Drucker
182. In PWD, circle in charge is designated as-
1) Chief Engineer
2) Superintending Engineer
3) Executive Engineer
4) Assistant Executive Engineer
183. Work study comprises-
1) Motion study
2) Work measurement
3) Probabilistic analysis
A) Method of study and work measurement
184. Which one of the following is an activity?
1) Concrete cured
2) Concrete poured
ว) Excavation for foundation
3) Wall plastered
185.

The cost slope is:	
A.	$\frac{\text { Crash cost-Normal cost }}{\text { Normal time-Crash time }}$
B.	$\frac{\text { Normal cost-Crash cost }}{\text { Normal time-Crash time }}$
C.	$\frac{\text { Crash cost-Normal cost }}{\text { Crash time }}$
D.	$\frac{\text { Crash cost-Normal cost }}{\text { Normal time }}$

186. An activity involves-
1) Single event
2) Double events
3) Triple events
4) 4 events
187. The first stage of a large construction work is:
1) Contract
2) Design
3) Conception
4) Study and evaluation
188. Substitute for manual labour in construction work is:
1) Materials
2) Money
3) Management
4) Machines and equipments
189. Earnest money deposit is to about the following \% of total estimated cost-
1) 1.5% to 2.0%
2) 1.2% to 1.5%
D) 1.0% to 2.0%
3) 2.0% to 2.5%
190. Matters for reference to arbitration are-
1) Insolvency proceedings
2) Lunacy proceedings
3) The matters pertaining to the protection of private rights.
4) The matters pertaining to the procurement of labour
191. The following point is related to administrative approval-
1) It is given on the basis of detailed estimate
2) It is to be obtained first
3) It is accorded only by roads and building 4) It is to be obtained last department
192. The imprest account is:
1) Final settlement of money
2) Interim amount
3) A standing advance of a fixed sum of
4) Earnest money deposit money
93. Security deposit is:
1) 2.5% of estimated cost of contract
2) 7.5% of estimated cost of contract
3) 5% of estimated cost of contract
-10\% of estimated cost of contract
194. In a line organisation-
1) Responsibility of each individual is fixed 26 Discipline is strong
2) Quick decisions are taken
3) Unity is strong
195. The chart which gives an estimate about the amount of materials handing between various stations is known as-
1) Flow chart
2) Process chart
3) Travel chart
4) Operation chart
196. Negative slack occurs-
1) When latest allowable time is greater than earliest expected time
2) When deficiency of resources exist
3) When events stick to their schedule
4) When deficiency of money does not exist
197. PERT is:
1) Activity oriented
2) Event oriented
3) Time oriented
4) Resources oriented
198. Consider the following statements: I. CPM II. PERT
1) I and II use the concept of critical path of 2 II uses the concept of critical path but II
slack
does not
2) II uses the concept of critical path but I
3) None uses the concept of critical path and does not slack together
199. The first stage of a large construction work is:
1) Contract
2) Design
3) Conception
4) Study of evaluation
200. Which one of the following is over head expenditure?
1) Workmen's compensation and insurance 2) Establishment
2) Stationary and postage
3) Rent and taxes
