
Implementing Orthogonal Persistence:

A Simple Optimization Based on Replicating Collection

Scott Nettles James O'Toole

School of Computer Science Laboratory for Computer Science

Carnegie Mellon University Massachusetts Institute of Technology

Pittsburgh, PA 15213 Cambridge, MA 02139

Abstract

Orthogonal persistence provides a safe and conve-
nient model of object persistence. We have imple-
mented a transaction system that supports orthogo-
nal persistence in a garbage collected heap. In our
system, replicating collection provides e�cient con-
current garbage collection of the heap. In this paper,
we show how replicating garbage collection can also
be used to reduce commit operation latencies in our
implementation.

We describe how our system implements transac-
tion commit. We explain why the presence of non-
persistent data can add to the cost of these opera-
tions. We show how to eliminate these additional costs
by using replicating garbage collection. The resulting
implementation of orthogonal persistent should pro-
vide transaction performance that is independent of
the quantity of non-persistent data in use. We ex-
pect e�cient support for orthogonal persistence to be
valuable in operating systems applications which use
persistent data.

Authors' addresses: nettles@cs.cmu.edu, otoole@lcs.mit.edu

This research was sponsored by the Avionics Lab, Wright Re-
search and DevelopmentCenter, Aeronautical Systems Division
(AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-
6543 under Contract F33615-90-C-1465, Arpa Order No. 7597,
by the Air Force Systems Command and the Defense Advanced
Research Projects Agency (DARPA) under Contract F19628-
91-C-0168, and by the Department of the Army under Contract
DABT63-92-C-0012.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the o�cial policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

1 Introduction

Systems in which arbitrary data structures can be
made persistent are becoming increasingly important.
Such systems form the basis of both persistent pro-
gramming languages and object-oriented databases.
In such systems an important design choice is de-
ciding which objects should be persistent. For both
safety and programmer convenience, the most desir-
able choice is orthogonal persistence [1]. We have built
a system that supports orthogonal persistence. In this
note we discuss a simple but signi�cant optimization
in its implementation.

In a system with orthogonal persistence, an object
is persistent if it is reachable by dereferencing point-
ers starting from a distinguished object, the persis-
tent root. Tracing garbage collectors also use reach-
ability to determine which objects must be retained.
Consequently, it is natural to use techniques related
to garbage collection to implement orthogonal persis-
tence.

We have used copying garbage collection techniques
to implement orthogonal persistence as part of a gen-
eral purpose multi-threaded transaction system. In
closely related work [7] we show how a new garbage
collection technique, replicating collection, can be
used to provide a simple e�cient concurrent garbage
collector for our system. This same technique can be
used to signi�cantly improve the performance of our
implementation of orthogonal persistence.

In the sections that follow we �rst present our basic
implementation and the performance problem it intro-
duces. We then present our solution to this problem
and briey discuss its implementation. The sections
that follow assume some familiarity with the technique
of copying garbage collection.



commit/abort

Client

read/alloc write

Client Client

roots

Transaction
Manager

Transitory

Persistent

Interface

Heap write log

Figure 1: The Transactional Heap Interface

2 The Problem

Figure 1 shows the basic interface to our system.
The system supports the operations: read, write, al-
locate, abort and commit. Objects that are reach-
able from the persistent root at commit are guaran-
teed to survive program failures. Objects that are
only reachable from the transitory root are lost upon
program failure. A concurrent replicating garbage col-
lector provides storage reclamation both of transitory
and persistent objects. To support abort, persistence,
and generational and replicating collection the loca-
tion and old value of each write operation is recorded
in a write log. Although our system supports multiple
clients, this aspect is not relevant to the current sub-
ject and will not be further discussed. The commit
operation has primary responsibility for maintaining
object persistence and its implementation is the fo-
cus of the remainder of this section. For more details
about our system see O'Toole et al [7].

Transitory
Heap

Volatile
Heap
Image

Stable
Heap
Image

pointer forwarding 
pointer

copied
object

object

Persistent Heap

Figure 2: A Committed State

Figure 2 shows a detailed view of the key compo-
nents of our system when it is in a committed state.
Permanent objects are stored in the persistent heap;
all other objects are stored in the transitory heap. The
persistent heap is composed of two images: the stable

image, which is stored on disk and which holds the
committed image of the heap, and the volatile image,
which is found in main memory and which holds any
uncommitted data. The client reads and writes the
volatile image. In a committed state all objects reach-
able from the persistent root must be found in the
persistent heap. Thus in a committed state no point-
ers may point from the persistent heap into the tran-
sitory heap. Pointers may point from the transitory
heap into the volatile image.

Transitory
Heap

Volatile
Heap
Image

Stable
Heap
Image

pointer forwarding 
pointer

copied
object

object

Persistent Heap

Figure 3: Before Commit

Figure 3 shows the system when uncommitted data
is present. Assignments have created pointers from
the volatile image into the transitory heap. Commit
must guarantee that any object that is now reachable
from the persistent root is in the volatile image and
that the stable image is atomically updated to reect
all changes to the volatile image. The only changes to
the stable image are those explicitly requested by the
system. Other details about of how the stable image
is updated are irrelevant to this discussion.

We assume that all pointers from the volatile image
into the transitory heap refer to objects that are now
reachable from the persistent root. (This is a conser-
vative assumption.) The system traverses its write log
to identify such pointers and uses them as the roots
of a copying garbage collection. This collection moves
all objects that are reachable from these roots into the
volatile image. Figure 4 shows the state of the system
after the collection has been done and the stable image
updated. The cost of updating the persistent heap is
proportional to the number of writes and the amount
of data that must transferred to the volatile and stable
images.

However, the work of the commit operation is not
yet complete. Figure 4 shows that there remain point-
ers in the transitory heap that refer to objects that
have been moved into the volatile image. An obvi-



Transitory
Heap

Volatile
Heap
Image

Stable
Heap
Image

pointer forwarding 
pointer

copied
object

object

Persistent Heap

Figure 4: Before Scan

ous way to ensure that all such pointers are updated
properly is to scan the entire transitory heap. The for-
warding pointers left by the copying collection allow
these pointers to be identi�ed and updated. Figure 5
shows the result of such a scan. Another option is to
immediately garbage collect the transitory heap; dur-
ing the collection these references will be redirected to
the copies in the volatile image.

Both of these method add a cost to commit which
is proportional to the total size of the transitory heap.
Unfortunately, we know of no way to selectively track
the pointers in the transitory heap that will require
updating at the time of transaction commit. It seems
inevitable that the cost of updating these pointers will
depend on the size of the transitory heap. Yet, we
would like the cost committing a single transaction
to be independent of the amount of transitory data.
Ideally, the latency of an individual commit operation
should depend only on the number of write operations
performed and the amount of data that must trans-
ferred to the volatile and stable images.

3 The Solution

To solve this problem we must perform the commit
operation without immediately updating the transi-
tory heap. The key insight is that the semantic re-
quirement of the commit operation is that the stable
image must contain the committed data. There is no
fundamental requirement that the stable and volatile
images be identical, nor that the transitory heap be
updated. However, if we delay updating the transi-
tory heap pointers, then we must also avoid updating
the pointers in the volatile image. This suggests the
following commit strategy:

Transitory
Heap

Volatile
Heap
Image

Stable
Heap
Image

pointer forwarding 
pointer

copied
object

object

Persistent Heap

Figure 5: After Scan

1. Do the commit up to the point of the scan, but
retain enough information to reverse the e�ects
of this step.

2. Update the stable image using the volatile image.

3. Rollback the e�ects of the �rst step.

There are several problems with this strategy. One
problem is that typically copying collectors destroy the
original version of the object that they are copying by
overwriting it with a forwarding pointer. However it is
not enough to simply repair this damage during roll-
back. The problem is that subsequent commits will
need to modify the stable image in a manner consis-
tent with the current placement of data in the stable
image. Thus it is necessary to retain complete place-
ment information in the volatile image.

Transitory
Heap

Volatile
Heap
Image

Stable
Heap
Image

pointer forwarding 
pointer

copied
object

object

Persistent Heap

Figure 6: After Rollback

To do this, we use replicating garbage collection.
Replicating collection was originally developed for in-
cremental and concurrent garbage collection [5, 6].
Replicating collection allows the client to continue us-
ing the original objects in the transitory heap and pre-



serves the required placement information so that it
can be used by subsequent commit operations.

The key idea of replicating collection is to per-
form the basic copy operation non-destructively. Non-
destructive copying requires that the object not be
overwritten by the forwarding pointer. The existence
of more than one potentially valid copy of mutable ob-
ject implies the possibility that the copies might be-
come inconsistent. Our system addresses this object
consistency issue in the following way:

� The client reads and writes the original version of
the object.

� All write operations are recorded in a log.

� When convenient, the system reads the log and
applies the writes to the new version of the object.

� Clients are permitted to switch to the new ver-
sion of the object only if all log entries have been
processed.

This method enables our system to replicate objects
but bring the replicas \into service" with the client at
a later time.

This technique is ideally suited to solving the prob-
lem at hand. After the replicating collection is com-
pleted, the changes to the volatile image are written to
the stable image. Then the rollback step is carried out
by setting the values of the roots (modi�ed locations
in the volatile image) back to the values they had at
the start of the collection. Figure 6 shows the state of
the system after this step.

After the commit operation has been completed,
the client continues to use the original objects in the
transitory heap. Although the replicating collection is
non-destructive, it does leave forwarding pointers to
the objects it copied, it simply does not overwrite the
original object with them. Subsequent commit oper-
ations will not recopy these objects because they are
already marked with forwarding pointers that indicate
that the object has been moved into the persistent
heap. The write operation logging used by replicating
collection will ensure that the replicas are kept up to
date.

Later, when the system eventually garbage collects
the transitory heap, all of the pointers in the transitory
heap will be updated just as in Figure 5. At that time,
the pointers in the volatile image that were reset to
their original values will also be updated.

4 The Implementation

We are currently implementing this optimization
in our system. The implementation is straightforward
because the system already includes all of the mech-
anism needed to support replicating collection. To
support the rollback step of this optimization and the
associated bookkeeping, the following changes to the
implementation are required:

� When the commit operation updates a root
pointer, the location and old value of this pointer
is saved in a log. This commit log has the same
format as the write log already in use by the sys-
tem.

� When the commit operation has updated the sta-
ble image, the commit log is used to restore the
pointers into the transitory heap. Existing sup-
port for rollback makes this easy.

� The write log processing code that supports repli-
cating garbage collection is extended to create
transaction log entries when it reapplies write op-
erations to replicas of persistent objects.

� After a transitory heap garbage collection is com-
pleted, the commit log is used to redo the pointer
updates that were undone in the rollback step.

Because of space limitations as well as their highly
technical nature, we have omitted a complete discus-
sion of some di�cult modi�cations that involve coor-
dinating this optimization with the operations of the
concurrent persistent heap garbage collector.

We plan to measure the performance of the new sys-
tem soon. We expect the performance improvement
due to this optimization to be substantial when the
transitory heap is large. Because the extra bookkeep-
ing required by this optimization is not expensive, we
expect performance to be good even if the transitory
heap is small.

5 Related Work

The presentation of this optimization has been
closely tied to the implementation of our system. Be-
cause of the ease of implementing orthogonal persis-
tence using copying collection we expected this issue
to arise in other systems. For example, Kolodner [3]
discusses this problem in the context of his Argus de-
sign, but does not o�er a satisfactory solution. We are
unaware of any other solution.



How best to update pointers which cross between
two heaps is a common problem for distributed and
generational garbage collectors [2, 4, 8]. Unfortu-
nately, none of this work is applicable to the prob-
lem we face here. This is because commit occurs at a
time chosen by the client, and the set of objects which
must be made newly persistent is de�ned by reachabil-
ity from the persistent root at that time. In contrast,
generational collectors and other similar systems that
track pointers are able to identify the relevant pointers
well in advance of when they must be updated. This
allows the pointers to be tracked in specially designed
data structures and updated e�ciently.

6 Conclusion

In this paper we have illustrated a subtle perfor-
mance problem with our implementation of orthogo-
nal persistence. We have also shown a simple solution
based on replicating collection. Our solution uses the
logs that are central to our existing system to provide
a simple implementation which should have low over-
head. Because our basic implementation of orthogonal
persistence uses an obvious and natural technique we
expect our solution will have broad applicability.

Acknowledgements

Thanks to the DEC Systems Research Center for
support as summer interns in 1990, at which time the
idea of replicating collection was originally conceived.

References

[1] M. P. Atkinson, K. J. Chisolm, and W. P. Cockshott.
PS-Algol: an Algol with a persistent heap. SIGPLAN
Notices, 17(7):24{31, July 1982.

[2] Peter B. Bishop. Computer Systems with a Very

Large Address Space and Garbage Collection. PhD
thesis, Massachusetts Institute of Technology Labora-
tory for Computer Science, May 1977. Technical report
MIT/LCS/TR-178.

[3] Eliot K. Kolodner. Atomic Incremental Garbage Col-
lection and Recovery for a Large Stable Heap. Techni-
cal Report MIT/LCS/TR-534, Massachusetts Institute
of Technology, February 1992.

[4] Henry Lieberman and Carl Hewitt. A Real-Time
Garbage Collector Based on the Lifetimes of Objects.
Communications of the ACM, 26(6):419{429, June
1983.

[5] Scott M. Nettles and James W. O'Toole. Real-Time
Replication Garbage Collection. In SIGPLAN Sym-

posium on Programming Language Design and Imple-

mentation. ACM, June 1993.

[6] James W. O'Toole and Scott M. Nettles. Concur-
rent Replicating Garbage Collection: An Implmenta-
tion Report. Technical Report MIT-LCS-TR-570 and
CMU-CS-93-138, Massachusetts Institute of Technol-
ogy, 1993.

[7] James W. O'Toole, Scott M. Nettles, and David K. Gif-
ford. Concurrent Compacting Garbage Collection of a
Persistent Heap. In Proceedings of the 14th ACM Sym-

posium on Operating Systems Principles. ACM, SIG-
PLAN, December 1993.

[8] David Plainfosse and Marc Shapiro. Experience with
Fault Tolerant Garbage Collection in a Distributed
Lisp System. In Yves Bekkers and Jacques Cohen,
editors, International Workshop on Memory Manage-

ment, number 637 in Lecture Notes in Computer Sci-
ence, pages 116{133, St. Malo, France, September
1992. Springer-Verlag.


