# Analysis and design of symmetric cryptographic algorithms 

Jean-Philippe Aumasson

PhD public defense

## Agenda

Introduction

- Cryptography and its applications
- Symmetric cryptographic algorithms
- What is a cryptographic attack?

This thesis

- Context
- Attacks on ciphers
- Attacks on hash functions
- New design of hash function

Conclusion

## Introduction

## Cryptography

"Science of secret"


Historical application: encryption


Need to know the secret key to encrypt/decrypt

## Crypto in practice

The Enigma machine (1920's)


Used by German army during WWII. . .
...broken by British intelligence
Modern crypto: different machines, more applications...

## Secure communication

Goals

- Message privacy
- Sender \& recipient authentication
- Non-repudiation



## Tools

- Symmetric crypto
- Public-key crypto
- Key-agreement protocols
- Digital signatures
- Certificates



## Digital money

Goals

- Anonymity
- Fairness
- Untraceability
- Transferability
- etc.


Tools

- Number theory mathematics
- Zero-knowledge protocols
- Secure hardware tokens


## Conditional access TV

Goals

- Broadcast operation (satellite, etc.)
- Message privacy
- Selective reception


## Tools

- Symmetric crypto
- Public-key crypto
- Secure hardware



## Conditional access TV

Goals

- Broadcast operation (satellite, etc.)
- Message privacy
- Selective reception


## Tools

- Symmetric crypto
- Ciphers
- Hash functions
- Public-key crypto
- Secure hardware



## Ciphers

Transform a plaintext to a ciphertext
Key $K$ necessary to encrypt and to decrypt

MESSAGE $\xrightarrow{\text { Encrypt }_{K}}$ LSJFSDH<br>LSJFSDH $\xrightarrow{\text { Decrypt }_{k}}$ MESSAGE

## Ciphers

Transform a plaintext to a ciphertext
Key $K$ necessary to encrypt and to decrypt

$$
\text { MESSAGE } \xrightarrow{\text { Encrypt }_{K}} \text { LSJFSDH }
$$

$$
\text { LSJFSDH }^{\text {Decrypt }_{K}} \text { MESSAGE }
$$

"meaningful text" $\xrightarrow{\text { Encrypt }_{K}}$ "unreadable text"

## Cipher by substitution

Replace A by D, B by E, C by F, etc. Ex: EPFL $\longrightarrow \mathrm{HSIO}$

## Cipher by substitution

Replace A by D, B by E, C by F, etc. Ex: EPFL $\longrightarrow$ HSIO

Used by Julius Caesar in -50...

## Cipher by substitution

Replace A by D, B by E, C by F, etc. Ex: EPFL $\longrightarrow$ HSIO


Used by Julius Caesar in -50...
... and Sicilian Mafia bosses in 2000's

```
|A5-BL-C3-D2-E1
```


## Cipher by substitution

Replace A by D, B by E, C by F, etc. Ex: EPFL $\longrightarrow$ HSIO


Used by Julius Caesar in -50...
... and Sicilian Mafia bosses in 2000's (with less success)

$$
\begin{array}{|c|}
\hline A 5-B L-C 3-D 2-E 1 \\
6 F-7 G-9 H-9 I- \\
10 L-15 M-11 H-130 \\
12 P-11 Q-16 R-17 S \\
18 T-19 U-20 V \\
21 Z
\end{array}
$$



## Modern cryptography

- Uses computers, not pencil-and-paper

- Operates on bits, not on letters

- Is hard to break (in general)


## Perfect cipher

Plaintext: $0111011 \cdots 0101011$
$\oplus$
Key:
1101011… 1001101
$=$
Ciphertext: $1010000 \cdots 1100110$
"XOR" operation on bits

$$
1 \oplus 1=0 \quad 0 \oplus 0=0 \quad 1 \oplus 0=1 \quad 0 \oplus 1=1
$$

## Perfect cipher

Plaintext: $\begin{gathered}0111011 \cdots 0101011 \\ \oplus\end{gathered}$
Key: $\quad 1101011 \cdots 1001101$

Ciphertext: $1010000 \cdots 1100110$
"XOR" operation on bits

$$
1 \oplus 1=0 \quad 0 \oplus 0=0 \quad 1 \oplus 0=1 \quad 0 \oplus 1=1
$$

Used during the cold war to encrypt the Moscow-Washington telescripter liaison

Problem: the key must be as long as the plaintext

## Solution: stream ciphers

Generate a long string of bits from a short key
Plaintext: $\quad 0111011 \cdots 0101011$
Key: $101011 \longrightarrow$ Keystream: $1101011 \cdots 1001101$
Ciphertext: $\quad 1010000 \cdots 1100110$

Expands a short bit string to a long one
If the key of 128 bits, there are $2^{128}$ possible keystreams $\Rightarrow$ ideally, an attack makes $2^{128}$ trials

## Hash functions

Compresses a long bit string to a short one


## Message: 0100… $1101 \longrightarrow$ Hash: 110101

$$
x \longrightarrow H(x)
$$

Main application: digital signatures
(signing short documents is cheaper than long ones)

## Hash functions security: preimage resistance



Given a hash $y$, it should be difficult to find $x$ such that

$$
H(x)=y
$$

## Hash functions security: collision resistance



It should be difficult to find $x_{1}$ and $x_{2}$ such that

$$
H\left(x_{1}\right)=H\left(x_{2}\right), \quad x_{1} \neq x_{2}
$$

## Hash functions security: randomness



The hashes should look like random values

## What is an attack?

Any mathematical method that finds either...

- the secret key (stream ciphers)
- preimages or collisions (hash functions)
- non-randomness
in less time than ideally expected
Bruteforce: works against any cipher or hash function


## What is an attack?

128-bit keys are typical: finding the secret key should require $2^{128}$ operations
$2^{128} \approx 10^{38}=100000000000000000000000000000000000000$
Using 7000000000 computers at 4 GHz in parallel:
It would take $10^{11.6}$ years to find the key
$\approx 28$ times the age of the universe

## What is an attack?

128-bit keys are typical: finding the secret key should require $2^{128}$ operations
$2^{128} \approx 10^{38}=100000000000000000000000000000000000000$
Using 7000000000 computers at 4 GHz in parallel:
It would take $10^{11.6}$ years to find the key
$\approx 28$ times the age of the universe
Suppose we find an attack in $2^{120}$ only It would only take 1 billion years!

## What is an attack?

128-bit keys are typical: finding the secret key should require $2^{128}$ operations
$2^{128} \approx 10^{38}=100000000000000000000000000000000000000$
Using 7000000000 computers at 4 GHz in parallel:
It would take $10^{11.6}$ years to find the key
$\approx 28$ times the age of the universe
Suppose we find an attack in $2^{120}$ only It would only take 1 billion years!

The cipher is considered broken

This thesis

## Context: crypto public competitions



1. Cryptographers submit algorithms
2. They try to destroy competitors
3. The organizer picks a design that survived

## Context: crypto public competitions

eSTREAM (2005-08)

Network of Excellence in Cryptology

- European Network of Excellence (EPFL, CNRS, etc.)
- New stream ciphers: Salsa20, Grain, etc.

SHA-3 Competition (2008-12)


- US Institute of Standards (NIST)
- Future hash function standard SHA-3


## The stream cipher Salsa20

Operations on 32-bit words:

- XOR: words viewed as strings of bits

$$
0101 \cdots 0101 \oplus 1010 \cdots 1010=1111 \cdots 1111
$$

- Rotation: words viewed as strings of bits

$$
1000 \cdots 0000 \lll 1=0000 \cdots 0001
$$

- Integer addition: words viewed as integer numbers

$$
\begin{aligned}
1000+1 & \equiv 1001 \bmod 2^{32} \\
\left(2^{32}-1\right)+1 & \equiv 0 \bmod 2^{32}
\end{aligned}
$$

## The stream cipher Salsa20

1. Initialize a table of 32 -bit words with 256 key bits

$$
\left(\begin{array}{llll}
x_{0} & x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} & x_{7} \\
x_{8} & x_{9} & x_{10} & x_{11} \\
x_{12} & x_{13} & x_{14} & x_{15}
\end{array}\right)
$$

2. Repeat 10 times (rounds)

$$
\begin{aligned}
& x_{4} \oplus=\left(x_{0}+x_{12}\right) \lll 7 ; \quad x_{9} \oplus=\left(x_{5}+x_{1}\right) \lll 7 ; \quad x_{14} \oplus=\left(x_{10}+x_{6}\right) \lll 7 ; \quad x_{3} \oplus=\left(x_{15}+x_{11}\right) \lll 7 \\
& x_{8} \oplus=\left(x_{4}+x_{0}\right) \lll 9 ; \quad x_{13} \oplus=\left(x_{9}+x_{5}\right) \lll 9 ; \quad x_{2} \oplus=\left(x_{14}+x_{10}\right) \lll 9 ; x_{7} \oplus=\left(x_{3}+x_{15}\right) \lll 9 \\
& x_{12} \oplus=\left(x_{8}+x_{4}\right) \lll 13 ; \quad x_{1} \oplus=\left(x_{13}+x_{9}\right) \lll 13 ; \quad x_{6} \oplus=\left(x_{2}+x_{14}\right) \lll 13 ; \quad x_{11} \oplus=\left(x_{7}+x_{3}\right) \lll 13 \\
& x_{0} \oplus=\left(x_{12}+x_{8}\right) \lll 18 ; \quad x_{5} \oplus=\left(x_{1}+x_{13}\right) \lll 18 ; \quad x_{10} \oplus=\left(x_{6}+x_{2}\right) \lll 18 ; \quad x_{15} \oplus=\left(x_{11}+x_{7}\right) \lll 18 \\
& x_{1} \oplus=\left(x_{0}+x_{3}\right) \lll 7 ; \quad x_{6} \oplus=\left(x_{5}+x_{4}\right) \lll 7 ; \quad x_{11} \oplus=\left(x_{10}+x_{9}\right) \lll 7 ; \quad x_{12} \oplus=\left(x_{15}+x_{14}\right) \lll 7 \\
& x_{2} \oplus=\left(x_{1}+x_{0}\right) \lll 9 ; \quad x_{7} \oplus=\left(x_{6}+x_{5}\right) \lll 9 ; \quad x_{8} \oplus=\left(x_{11}+x_{10}\right) \lll 9 ; \quad x_{13} \oplus=\left(x_{12}+x_{15}\right) \lll 9 \\
& x_{3} \oplus=\left(x_{2}+x_{1}\right) \lll 13 ; \quad x_{4} \oplus=\left(x_{7}+x_{6}\right) \lll 13 ; \quad x_{9} \oplus=\left(x_{8}+x_{11}\right) \lll 13 ; \quad x_{14} \oplus=\left(x_{13}+x_{12}\right) \lll 13 \\
& x_{0} \oplus=\left(x_{3}+x_{2}\right) \lll 18 ; x_{5} \oplus=\left(x_{4}+x_{7}\right) \lll 18 ; \quad x_{10} \oplus=\left(x_{9}+x_{8}\right) \lll 18 ; \quad x_{15} \oplus=\left(x_{14}+x_{13}\right) \lll 18
\end{aligned}
$$

3. Add the initial table to the final table

## Attack strategy for 4 rounds

Structure $\operatorname{permut}(K) \oplus K$, with $K$ a 256-bit key


Invert 2 rounds to observe the bias, based on partial knowledge of the key

Can be used to verify the correctness of 220 key bits
$\Rightarrow$ can find the key 64 times faster than ideally

## Summary and impact

We developed the best known attacks on the stream cipher Salsa20

Contributes to increase the confidence in the cipher
Salsa20 chosen as

- Cowinner of the eSTREAM competition
- Alternative to AES by programmers
- Basis for a new hash function...


## New differential attacks

Differential equations play an important role in...

- Quantum mechanics (evolution of a quantum state)

$$
i \hbar \partial_{t}|\psi\rangle=H|\psi\rangle
$$

- Image processing (PDE-based techniques)

$$
\frac{\partial I}{\partial t}=\operatorname{div}(c(x, y, t) \nabla I)=\nabla c \cdot \nabla I+c(x, y, t) \Delta I
$$

- Economics (evolution of stock prices)

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}
$$

- Cryptography (differential attacks)

$$
\hat{E}_{k}(m) \oplus \hat{E}_{k}\left(m \oplus \hat{\Delta}_{\text {in }}\right)=\hat{\Delta}_{\text {out }}
$$

## New attacks: cube testers

View the cipher as a black-box


Differentiate its implicit Boolean equations

$$
\bigoplus_{i=0}^{2^{n}-1} f_{k}\left(v_{i}\right)
$$

Try to detect a structure in the differential equations


## Application of cube testers

## Goal: attacking the stream cipher Grain-128

## A Stream Cipher Proposal: Grain-128

Martin Hell, Thomas Johansson, Alexander Maximov<br>Department of Information Technology<br>Lund University, Sweden<br>E-mail: \{martin,thomas,movax\}@it.lth.se

Willi Meier<br>FH Aargau<br>CH-5210 Windisch, Switzerland<br>E-mail: mejerw@fh-aargau.ch


#### Abstract

A new stream cipher, Grain-128, is proposed. The design is very small in hardware and it targets environments with very limited resources in gate count, power consumption, and chip area. Grain-128 supports key size of 128 bits and IV size of 96 bits. The design is very simple and based on two shift registers, one linear and one nonlinear, and an output function.

\section*{I. Introduction}

Symmetric cryptographic primitives for encryption are di-


1 [2], targets applications which have very limited hardware resources. Grain Version 1 supports a key size of 80 bits (as specified in eSTREAM), which is not feasible to exhaustively search with modern computers. Recent research in time-memory-data trade-off attacks suggests that it is possible to mount an attack with complexity $O\left(2^{K / 2}\right)$ where $K$ is the size of the key. In this scenario the attacker has a collection of $2^{K / 2}$ plaintexts encrypted under different keys and the

## Application of cube testers

Implementation in programmable hardware


## Application of cube testers

## Optimize parameters with evolutionary methods

## stald

```
for(i=0;i<NUMBER_GENERATIONS;++i) {
    for(j=0;j<CHILDREN;++j) reproduction( rand()%POPULATION, rand()%POPULATION, j );
    for(j=0;j<POPULATION+CHILDREN;++j) perf[j] = (evaluate( j )<<8)^j;
    for( }\textrm{j}=0;\textrm{j}<\mathrm{ POPULATION+CHILDREN;++j)
            for(k=0;k<CUBE_SIZE;++k) buffer[j][k] = population[j][k];
    qsort( perf, POPULATION+CHILDREN, sizeof(int), compare );
    for(j=0;j<POPULATION;++j)
    for(k=0;k<CUBE_SIZE;++k) population[ j ] [ k ] = buffer[ perf[j]&0xFF ][k];
}
```


## Summary and impact

We showed that Grain-128 can be broken

- in time $2^{77}$ (1h30 with 7000000000 computers)
- instead of $2^{128}$ (28 universe lifetimes)

Unexpected result!
Grain-128 should not be used (anymore)

## Attacks on hash functions

Given the algorithm of $H()$
Preimage attack
Given $y$,
find $x$ such that $H(x)=y$


Collision attack
Find $x_{1}, x_{2}$
such that $H\left(x_{1}\right)=H\left(x_{2}\right)$


## Preimage attacks on reduced MD5



THE most ever studied hash function
Internet standard, designed in 1992
Collision attacks found in 2005
No preimage attack known


Important legal information - please read Products and services in these webpage sales restrictions relating to the service it Independent, third party research on cer UBS in the United States at no cost. Customers can access this research at $h$ to request that a copy of this research be OUBS 1998-2009. All rights reserved. Privacy Policy

## $\bigcirc \bigcirc$ Page Info - https://ebanking1.ubs.com/en/OGJNCMHIFJJEIBAKJBDHLMBJFEL.

This certificate has been verified for the following uses:
SSL Server Certificate
Issued To
Common Name (CN) ebankingl.ubs.com
Organization (O) UBS AG
Organizational Unit (OU) FCEXTIIZurich 1232009
Serial Number $\quad$ 54:C8:BF:D5:5B:EF:5C:48:48:C2:F6:74:6C:58:2F:D9
Issued By
Common Name (CN) VeriSign Class 3 Extended Validation SSL SGC CA
Organization (O) VeriSign, Inc.
Organizational Unit (OU) VeriSign Trust Network
Validity

| Issued On | $3 / 12 / 09$ |
| :--- | :--- |
| Expires On | $5 / 29 / 11$ |

Fingerprints
SHA1 Fingerprint
MD5 Fingerprint

512911
5/29/11

E8:7D:FF:2E:21:B1:FF:8F:74:14:45:C2:AD:25:22:AF:FE:B6:AB:EF B0:40:D1:1A:AE:52:6E:CE:81:9C:98:47:FC:F0:F0:86
//Note: All variables are unsigned 32 bits and wrap modulo $2^{\wedge} 32$ when calculating
var int [64] 1 , $k$
/II specifies the per-round shift amounts
$r[0,15]:=\{7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22\}$
$r[16, .31]:=\{5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20\}$
$r[32,47]:=(4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23\}$
$r[48, .63]:=\{6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21\}$
//Use binary integer part of the sines of integers (Radians) as constants:
for i from 0 to 63
$k[i]:=$ floor $(a b s(\sin (i+1)) \times(2$ pow 32))
//Initialize variables:
var int ho $:=0 \times 67452301$
var int h1 := 0xEFCDAR89
var int h2 $:=0 \times 98 \mathrm{BADCFE}$
var int h3 $:=0 \times 10325476$
//Pre proceooing:
append " 1 " bit to message
append "0" bits until nessage length in bits $\equiv 448(\bmod 512)$
append bit /* bit, not byte */ length of unpadded message as 64-bit little-endian integer to message
//Process the message in successive 512 -bit chunks:
for each 512 -bit chunk of message
break chunk into sixteen 32 -bit little-endian words w[i], $0 \leq i \leq 15$
//Initialize haoh value for this chunk:
var int $\mathrm{a}:=\mathrm{h} 0$
var int $b:=h 1$
var int $c:=h 2$
var int $d:-h 3$
//Main loop:
for i from 0 to 63
if $0 \leq 1 \leq 15$ then
f : = (b and c) or ( not b) and d)
g $:=1$
else if $16 \leq i \leq 31$
$\mathrm{f}:=(\mathrm{d}$ and b) or ( not d$]$ and $c$ ) g : $-(5 \times i+1) \bmod 16$
else if $32 \leq 1 \leq 47$
$\mathrm{f}:=\mathrm{b}$ xor c xor d
$g:=(3 \times i+5)$ mod 16
lse if $48 \leq i \leq 63$
f :=c xor (b or (not d))
g $:=(7 \times i) \bmod 16$
ternp := d
$\mathrm{d}:=c$
c : $=\mathrm{b}$
$b:=b+\operatorname{leftrotate}((a+f+k[i]+w[g]), r[i])$
a := temp
/ Add this chunk's hash to result so far:
h0 $:=$ h0 $+a$
h1 $:=h 1+b$
$\mathrm{n} 2:=\mathrm{n} 2+\mathrm{c}$
h3 $:=h 3+d$
var int digest $:=h 0$ append $h 1$ append h 2 append $\mathrm{h} 3 / /($ expressed as little-endian)

## Attack strategy: birthday paradox



In a group of at least 23 random people, there is more than $50 \%$ probability that some pair of them will have the same birthday

Idea: $(23 \times 22) / 2=253$ possible pairs...

## Summary and impact

First preimage attacks on (reduced) MD5
Introduce new cryptanalysis techniques

- Neutral words
- Local collisions

Techniques generalized and refined to attack full MD5


## Other attacks found

| Hash name | Type of attack | Broken |
| :---: | :---: | :---: |
| CHI | collision | S |
| Codefish | preimage | -8 |
| Dynamic SHA2 | collision | 國 |
| ESSENCE | collision | \% |
| Hamsi | dist. | ? |
| HAVAL | preimage | -8 |
| MCSSHA | preimage | \% |
| Shabal | dist. | ? |
| Skein | dist. | ? |
| Vortex | collision | \% |

## Details on the SHA-hash competition

- 64 designs submitted (academia, Intel, IBM, etc.)
- 51 selected for the "first round" (Dec 08)
- 14 selected for the "second round" (Jul 09)
- 5 finalists (2010)

The winner will be...

- A worldwide standard
- Implemented in all computers
- Supported for decades (ideally)



## Our candidate: BLAKE

Design started in 2007, with as goals

- As simple as possible, but not simpler
- Stand on the shoulders of previous cryptographers
- Fast in software and hardware
- Secure against classical and quantum attacks

$\Rightarrow$ need good tradeoff speed/security


## BLAKE's core algorithm

$$
\begin{aligned}
& \mathrm{a}+=\mathrm{m}_{i} \oplus \mathrm{k}_{i} \\
& \mathrm{a}+=\mathrm{b} \\
& \mathrm{~d}=(\mathrm{a} \oplus \mathrm{~d}) \ggg 16 \\
& \mathrm{c}+=\mathrm{d} \\
& \mathrm{~b}=(\mathrm{b} \oplus \mathrm{c}) \ggg 12 \\
& \mathrm{a}+=\mathrm{m}_{j} \oplus \mathrm{k}_{j} \\
& \mathrm{a}+=\mathrm{b} \\
& \mathrm{~d}=(\mathrm{a} \oplus \mathrm{~d}) \ggg 8 \\
& \mathrm{c}+=\mathrm{d} \\
& \mathrm{~b}=(\mathrm{b} \oplus \mathrm{c}) \ggg 7
\end{aligned}
$$

## BLAKE's performance

Simple to implement, and fast on all platforms

- $450 \mathrm{Mb} / \mathbf{s e c}$ in a PC
- $20 \mathrm{~Gb} / \mathbf{s e c}$ in integrated circuits



## BLAKE in the SHA-3 competition

One of the 14 second round candidates
Researchers from Austria, Canada, Germany, Japan, Netherlands, and Portugal worked on efficient implementation of BLAKE (HW \& SW)
Researchers from all over the world tried to attack BLAKE (without success so far)
"The best results against BLAKE (...) appear to pose no threat to the design" (NIST)

Final decision: 2012

## Conclusion

## Summary of contributions

New cryptanalytic techniques
Attacks on several ciphers and hash functions
Design of second round SHA-3 hash function candidate
Better understanding of symmetric crypto algorithms?
Dissemination of research results:

- Peer-reviewed articles
- Contributed talks in conferences
- Invited talks in seminars


## Thanks to my co-authors from. . .



# Thanks for your attention! 

## Questions?



