
@ MIT

massachusetts institute of technology — artificial intelligence laboratory

Predicate Dispatching in the
Common Lisp Object System

Aaron Mark Ucko

AI Technical Report 2001-006 June 2001

© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

Predicate Dispatching in the Common Lisp

Object System

by

Aaron Mark Ucko

S.B. in Theoretical Mathematics, S.B. in Computer Science,
both from the Massachusetts Institute of Technology (2000)

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements

for the degree of

Master of Engineering in Computer Science and
Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001

c© Massachusetts Institute of Technology 2001. All rights
reserved.

Certified by: Howard E. Shrobe
Principal Research Scientist

Thesis Supervisor

Accepted by: Arthur C. Smith
Chairman, Department Committee on Graduate Students

2

Predicate Dispatching in the Common Lisp Object
System

by
Aaron Mark Ucko

Submitted to the Department of Electrical Engineering and Computer
Science on May 11, 2001, in partial fulfillment of the requirements for

the degree of Master of Engineering in Computer Science and
Engineering

Abstract

I have added support for predicate dispatching, a powerful general-
ization of other dispatching mechanisms, to the Common Lisp Object
System (CLOS). To demonstrate its utility, I used predicate dispatching
to enhance Weyl, a computer algebra system which doubles as a CLOS
library. My result is Dispatching-Enhanced Weyl (DEW), a computer
algebra system that I have demonstrated to be well suited for both
users and programmers.

Thesis Supervisor: Howard E. Shrobe
Title: Principal Research Scientist

3

Acknowledgments

I would like to thank the MIT Artificial Intelligence Laboratory for
funding my studies and making this work possible. I would also like to
thank Gregory Sullivan and Jonathan Bachrach for helping Dr. Shrobe
supervise my project. Finally, I would like to thank John Aspinall,
Michael Ernst, Tom Knight, John Lawrence, and Gail Zacharias for
various useful suggestions.

4

Contents

1 Introduction 9
1.1 Background . 9

1.1.1 Predicate Dispatching 9
1.1.2 The Common Lisp Object System 10
1.1.3 Weyl . 11

1.2 Organization . 11

2 Related Work 13
2.1 Predicate Dispatching 13
2.2 Other Dispatching Approaches 13

3 System Specification 15
3.1 Syntax . 15
3.2 Semantics . 15
3.3 Differences from the Reference System [EKC98] 16
3.4 Other Known Issues . 16

4 Basic Examples 19

5 Design Considerations 23
5.1 General Design Principles 23
5.2 Predicates as Qualifiers 23
5.3 Syntax . 24
5.4 Modularity . 25
5.5 Ambiguity . 25
5.6 Coverage . 26
5.7 Communication via &aux Variables 26
5.8 Lazy Predicate Checking 27
5.9 Mutation and Specificity 27

5

6 Implementation 29
6.1 Overview . 29
6.2 Representations . 30
6.3 Analyzing Implication 32
6.4 Portability . 33

7 Symbolic Mathematics 35
7.1 Popular Software . 35

7.1.1 Macsyma . 35
7.1.2 Maple . 36
7.1.3 Mathematica . 36

7.2 Example: Symbolic Integration 37
7.3 Example: The Struve H Function 38
7.4 Current Limitations . 38

8 Contributions 39

9 Future Directions 41

A Base system source 43
A.1 pd-package.lisp . 43
A.2 predicate-dispatch.lisp 44
A.3 predicate-classes.lisp . 46
A.4 normalize-or.lisp . 52
A.5 pc-build.lisp . 57
A.6 xcond.lisp . 69

B Source for DEW applications 71
B.1 pd-integration.lisp . 71
B.2 struve.lisp . 75

C Other code 77
C.1 Struve.m . 77

6

List of Figures

4.1 Example hierarchy of expression types 20

6.1 Predicate class hierarchy (only the leaves are concrete) . 31
6.2 Expression analysis class hierarchy (only the leaves are

concrete) . 31

7

8

Chapter 1

Introduction

1.1 Background

1.1.1 Predicate Dispatching

Quite a few programming languages allow procedures to have multiple
implementations. In Common Lisp [Ste90]’s terminology, each imple-
mentation is a method of the same generic function, and deciding which
to use in a particular situation is dispatching. The details of dispatching
vary from language to language, but it generally involves attempting to
determine the most specific applicable method, where the definitions of
applicability and specificity depend on the language.

One traditional approach is type-based dispatching. In a system
using that approach, every method has a tuple of types; a method
applies to a tuple of arguments iff every argument is an instance of
the corresponding type (or a subtype thereof). Also, one method is
more specific than another iff its specializers are pointwise subtypes of
the other method’s. Even within this approach, there is a fair bit of
variation; for instance, some languages (such as Common Lisp [Ste90],
Dylan [App92], and Cecil [CCG98]) consider all mandatory arguments’
dynamic types, but others (including C++ [Str97] and Java [GJS96])
distinguish the first argument syntactically and semantically, consider-
ing only statically-declared types for the others. (In some cases, C++
doesn’t even look at the distinguished argument’s dynamic type.) Some
languages with better support for dynamic types extend the system fur-
ther by introducing predicate classes [Cha93], also called “modes” and
“classifiers”; in these languages, of which Cecil [CCG98] is a good exam-
ple, every object effectively has a (potentially dynamically changing)

9

set of predicate types in addition to its normal type.
In another common approach, which ML [MTH90], Haskell

[PJHA+99], and related languages use, every method has a pattern
which determines applicability, allowing relatively fine-grained control.
However, “specificity” in these languages is simply a matter of textual
ordering; a developer can inadvertently shadow a method by defining
it after another method with more general applicability.

To put it briefly, predicate dispatching [EKC98] is the best of both
worlds. Like pattern-matching, it allows fine-grained control of appli-
cability, but like type-based dispatching, it bases specificity on math-
ematical relationships rather than textual ordering. Specifically, the
idea is that every definition of a procedure has an associated predicate
expression, whose truth value can depend not just on the types of the
arguments but also on the types of their contents, and even on the
result of arbitrary boolean expressions in the base language. (Predi-
cate dispatching is more powerful than predicate classes because the
expressions can refer to multiple arguments.) It is cleaner than pat-
tern matching in that the system considers logical implication rather
than textual ordering when choosing between multiple applicable pro-
cedures. Furthermore, other techniques do not allow applicability to
depend on relationships between arguments, and lack efficient ways to
specify disjunctions of (simple or compound) tests.

1.1.2 The Common Lisp Object System

In the words of John Foderaro [Fod91], Lisp is “a programmable pro-
gramming language” in that it is extremely extensible by design. One
way in which this property manifests itself is that most popular dialects,
including ANSI Common Lisp, support a powerful macro facility. Be-
cause Lisp has such a uniform syntax, programs in such dialects can
define new special forms as easily as new functions. (By contrast, most
other languages would require modifying the implementation, making
such programs less portable and harder to build.)

ANSI Common Lisp’s macro system is by no means its only av-
enue of extensibility; the language also includes a powerful object sys-
tem, imaginatively named the Common Lisp Object System (CLOS)
[BDG+88]. Even without extensibility, CLOS is very rich; among other
things, it supports multiple inheritance, generic functions which dy-
namically dispatch on all of their arguments, dynamic class redefinition,
and several means of method combination. On top of all that, CLOS
has a Meta-Object Protocol (MOP) [KdRB91], which promotes classes,
methods, and generic functions to first-class “meta-objects,” making it

10

possible to obtain a wide range of custom behavior by subclassing the
standard meta-object classes.

1.1.3 Weyl

One interesting piece of software written in CLOS is Weyl [Zip93], a
computer algebra system that is based on the principles of category
theory and that tags every value with an appropriate domain. The
traditional design of computer algebra systems consists of a pile of
predefined code and an interface for interactive use; if users can write
additional code at all, they typically have to use a proprietary extension
language which is quirky or provides little general-purpose functional-
ity. The popular programs Mathematica [Wol99] and Maple [Kam99]
both have such extension languages.

However, Weyl’s author, Richard Zippel, wrote the base code as a
set of publically available CLOS classes and methods, providing full
Common Lisp as an extension language and allowing the system to
double as a class library for Lisp software that manipulates mathemat-
ical objects. It differs from Macsyma [Mac95], a historically important
algebra system written in Lisp, by using Lisp as its extension language
and by operating at a higher (domain-based) level having been designed
to be useful as a library.

Unfortunately, Weyl is still not quite as extensible as it could be:
many interesting operations (including, for instance, integration) have
special cases that do not correspond to a simple intersection of operand
types. As a consequence, code implementing such an operation has to
check for such cases directly, which is less than ideal as far as extensi-
bility goes: if a user of the system finds an additional case interesting,
that user has to copy the code that checks for special cases of the opera-
tion and insert a test for the relevant case. With predicate dispatching,
on the other hand, the user would simply be able to define a method
whose predicate corresponds to the case.

1.2 Organization

Chapter 2 discusses related work. Chapter 3 describes the interface to
my code. Chapter 4 presents some examples that motivate and clarify
the remaining material. Chapter 5 discusses the design issues I consid-
ered. Chapter 6 describes my implementation of predicate dispatching
in more detail. Chapter 7 discusses its application to symbolic math-
ematics. Chapter 8 lists my contributions. Chapter 9 discusses future
directions.

11

12

Chapter 2

Related Work

Discussion of other computer algebra systems appears in Section 7.1.

2.1 Predicate Dispatching

Ernst et al. [EKC98] introduce the notion of predicate dispatching; their
paper defines its semantics in terms of an abstract syntax, and demon-
strates its generality with a number of examples (whose equivalents in
my system’s syntax appear in Chapter 4). The authors also advertise
a small implementation (Güd) which supports their core syntax and
some useful syntactic sugar.

Chambers and Chen [CC99] present an algorithm for producing
efficient dispatch trees for predicate-dispatched multimethods. Their
work is in the context of the Vortex optimizing compiler for Cecil, and
takes advantage of static type information which I do not have available;
however, much is still applicable, and could be used to improve the
performance of my system.

Bachrach and Burke [BB] discuss building dispatch trees at run-
time, limiting the contents of the trees to methods which have actually
been applicable so far. Their work is also in terms of compilation, and
most relevant to the case of per-call-site dispatching trees, but could
potentially benefit my system as well.

2.2 Other Dispatching Approaches

Languages which do not support predicate dispatching may still sup-
port some other kind of dispatching; here are some of the more inter-

13

esting approaches.
CLOS [BDG+88] would have a relatively rich type-based system

even without the MOP. Unlike many popular languages, it is multiply-
dispatched, considering all mandatory arguments’ dynamic types. In
addition, it supports eql specializers, which restrict applicability to
cases where the argument in question is a particular object, and forms
of method combination that let multiple applicable methods cooperate
with each other to a limited degree.

Dylan’s [App92] actual dispatching system is purely type-based.
However, its definition of “type” is fairly broad; the language includes
a rich, but unfortunately inextensible, type system supporting multi-
ple inheritance, singleton types (akin to eql specializers), union types
(retroactive supertypes), and limited types (with constraints on range
or element type).

Cecil [CCG98] is multiply-dispatched and has a prototype-based ob-
ject system that automatically gives it something resembling eql spec-
ifiers. (It does not prevent people from extending objects used in that
fashion, though.) In addition, it supports predicate classes [Cha93],
which allow objects to have dynamically changing sets of predicate
types in addition to their static types; dispatching can consider predi-
cate types.

Mathematica [Wol99], meanwhile, is an sophisticated example of a
pattern-based language: It does not require all the patterns (and bod-
ies) to appear in the same place, so users can extend system functions.
It has an elaborate system of precedence which makes textual order
relatively unimportant (though still, alas, relevant in some cases). It
even allows users to conditionalize applicability on predicate expres-
sions. On the other hand, it does not directly support any sort of
class-based subtyping.

14

Chapter 3

System Specification

Note: Readers not already familiar with predicate dispatching may
wish to read the next chapter first.

3.1 Syntax

The syntax for methods of a predicate-dispatched generic function is
similar to that for methods of standard CLOS generic functions:

(defpdmethod name lambda-list predicates . body)

Name, lambda-list, and body are exactly as in normal defmethod; in
particular, lambda-list can contain specializers (restricting mandatory
arguments to particular types or values), which allow the system to take
advantage of native CLOS dispatch-optimizing mechanisms. Predicates
is a (possibly empty) literal list of Lisp expressions.

3.2 Semantics

The predicates are evaluated as if they appeared in the body, except
that assignment to normal arguments (as opposed to &aux variables)
leads to undefined behavior. (However, a method’s predicates effec-
tively share &aux variables with each other and its body, so assigning
to them is a valid way to pass information; see Section 5.7.)

For a predicate-dispatched method to be considered applicable to a
given vector of arguments, each of the method’s predicates must return
true (non-nil) given the argument values. The system considers a
method to be more specific than another method iff it can determine

15

that the first method’s predicates logically imply the second’s; it honors
and, or, not, eql (where one argument is constant), typep (where the
type is constant), and accessors. It considers conventionally-defined
methods less specific than methods defined with defpdmethod, which
is not necessarily correct.

The system does not guarantee when or how often it will evaluate a
method’s predicates, save that it will evaluate them in order and stop
as soon as it finds one that evaluates to nil.

3.3 Differences from the Reference System
[EKC98]

Although I based my design on Ernst et al.’s reference system, it differs
in some respects:

• My system extends an existing language (Lisp), whereas theirs
defines a new language for specifying predicates.

• My system does not check for ambiguity. (See Section 5.5.)

• My system does not ensure ahead of time that there is always an
applicable method. (See Section 5.6.)

• My system does not allow predicates to bind variables for bodies;
instead, it allows them to assign to &aux-bound variables. (See
Section 5.7.)

• My system does not (directly) handle pattern matching; how-
ever, it would be possible to add support cleanly. (Again, see
Section 5.7.)

• My system does not have named predicate types; macros can do
the same job.

3.4 Other Known Issues

• Efficiency could be better.

• The system assumes that all method definitions appear at top-
level.

• It can get specificity wrong when code mixes defmethod and def-
pdmethod, because it treats anything with a predicate as more
specific than anything without.

16

• Invoking a predicate-dispatched generic function can make CMU
Common Lisp [Mac92] repeatedly print “Note: Deleting un-
used function NEXT-METHOD-P.”

• The system does not work properly on all CLOS implementations;
see Section 6.4.

17

18

Chapter 4

Basic Examples

Except where otherwise noted, I took the examples here from [EKC98].
Here is how one might merge two lists into a list of pairs:

(defpdmethod zip (l1 l2)
((consp l1)

(consp l2))
(cons (cons (car l1) (car l2))

(zip (cdr l1) (cdr l2))))

(defpdmethod zip (l1 l2)
((or (null l1) (null l2)))
nil)

These two methods cover all possible pairs of lists with no overlap: the
first applies when neither is empty (as predicates are implicitly anded
together), and the second applies when either is.

This example is actually simple enough for standard CLOS’s mul-
tiple dispatching to be able to handle it:

(defmethod zip2 ((l1 cons) (l2 cons))
(cons (cons (car l1) (car l2))

(zip2 (cdr l1) (cdr l2))))

(defmethod zip2 (l1 l2)
nil)

(The first method is more specific, and so overrides the second when
both apply.)

19

However, CLOS’s standard dispatching cannot handle everything
predicate dispatching can. One simple case it cannot handle is dis-
patching based on parity, as in the Collatz “hailstone” function [Lag85]:

(defpdmethod hailstone (n)
((evenp n))
(/ n 2))

(defpdmethod hailstone (n)
((oddp n))
(+ (∗ n 3) 1))

(defun hsseq (n)
(if (= n 1)

’(1)
(cons n (hsseq (hailstone n)))))

(This example does not appear in [EKC98].)
In general, predicates are useful when one wants to pick a method

based on the contents of objects rather than just their types. The
following code defines a hierarchy of expression types (shown in Fig-
ure 4.1), and then defines the constant-fold operation and gives spe-
cial cases for adding and multiplying two constants:

atomic-expr

var-ref int-const

binop-expr int-plus int-mul

expr binop

Figure 4.1: Example hierarchy of expression types

(defclass expr () ())

(defclass atomic-expr (expr) ())
(defclass var-ref (atomic-expr) ()) ;; would have slots in practice.

(defclass int-const (atomic-expr)

20

((value :reader value-of)))

(defclass binop () ())
(defclass int-plus (binop) ())
(defclass int-mul (binop) ())

(defclass binop-expr (expr)
((op :reader op-of)

(arg1 :reader arg1-of)
(arg2 :reader arg2-of)))

(defpdmethod constant-fold (e)
() ;; default method.
e)

(defpdmethod constant-fold ((e binop-expr))
((typep (op-of e) ’int-plus)

(typep (arg1-of e) ’int-const)
(typep (arg2-of e) ’int-const))

(make-instance ’int-const :value (+ (value-of (arg1-of e))
(value-of (arg2-of e)))))

(defpdmethod constant-fold ((e binop-expr))
((typep (op-of e) ’int-mul)

(typep (arg1-of e) ’int-const)
(typep (arg2-of e) ’int-const))

(make-instance ’int-const :value (∗ (value-of (arg1-of e))
(value-of (arg2-of e)))))

In principle, one could also have explicit types like “sum of two con-
stants,” but that would lead to an explosion of types. Predicates make
this sort of code easier to understand and easier to extend with more
elaborate cases such as the following, which handles the case of sums
where one term is zero:

(defpdmethod constant-fold ((e binop-expr) &aux (a2 (arg2-of e)))
((typep (op-of e) ’int-plus)

(typep (arg1-of e) ’int-const)
(zerop (value-of (arg1-of e))) ;; guarded by previous check
(not (typep a2 ’int-const))) ;; avoid possible ambiguity

a2)

(defpdmethod constant-fold ((e binop-expr) &aux (a1 (arg1-of e)))

21

((typep (op-of e) ’int-plus)
(not (typep a1 ’int-const)) ;; avoid possible ambiguity
(typep (arg2-of e) ’int-const)
(zerop (value-of (arg2-of e))) ;; guarded by previous check

a1)

Note that these methods only apply when the non-zero terms are not
integer constants. (They could be variable references or compound
expressions, say.) Without this restriction, present in the original ex-
ample, there would be no unique most specific method for a sum where
one term is zero and the other term is an integer constant; zero is
more specific than some integer constant, but some integer constant is
more specific than anything. On the other hand, this is really a case
of harmless ambiguity, as both methods would give the same result on
such input; Section 5.5 discusses this issue further.

As I mentioned, predicate dispatch also generalizes pattern match-
ing. Patterns whose elements have fixed positions translate directly
into predicates, as in the above code for constant-fold. However,
the system can also accommodate patterns with variably-positioned el-
ements with a bit of external help. The following code for rewriting
products containing two sines illustrates that approach:

(defpdmethod linearize ((expr ge-times)
&aux (terms (terms-of expr)) mi)

((setf mi (match-or-nil terms ’(∗ sin? ∗ sin? ∗))))
(let ((x (arg-of (second mi))) (y (arg-of (fourth mi))))

(make-ge-times (domain-of expr)
(append (list 1/2 (− (cos (− x y))

(cos (+ x y))))
(first mi) (third mi) (fifth mi)))))

In this example, mi stands for “match information”; because it is an
&aux-bound variable, the predicate’s assignment to it is visible in the
body. (match-or-nil is a fictitious function that returns a list of subex-
pressions on success and nil on failure; I take advantage of the fact
that setf returns the last value supplied.)

22

Chapter 5

Design Considerations

5.1 General Design Principles

When developing my system, I tried to satisfy several principles, which
I list in decreasing order of priority:

• Copying Ernst et al.’s reference system [EKC98].

• Making the interface simple and consistent with the rest of CLOS.

• Making the code portable across CLOS implementations.

• Keeping the implementation simple enough to complete.

• Making the code reasonably efficient.

Unfortunately, the fact that I was dealing with an interpreted language
interfered with some of these goals; in particular, I had to give up early
detection of ambiguity or insufficient coverage.

5.2 Predicates as Qualifiers

In standard CLOS, methods have two attributes that affect dispatching:
specializers and qualifiers. Specializers are associated with mandatory
arguments and determine applicability; qualifiers are associated with
entire methods and affect method combination. (For instance, stan-
dard method combination uses the qualifiers :before, :after, and
:around.) CLOS assumes that those are the only relevant attributes;
if I define a method with the same specializers and qualifiers as another
method, the system will discard the original method.

23

Therefore, I had three options. First, I could treat predicates as spe-
cializers, which would require arbitrarily assigning them to mandatory
arguments and dealing with the one-specializer-per-argument limit. Sec-
ond, I could treat predicates as qualifiers, even though only specializers
are supposed to affect applicability. Finally, I could treat predicates as
a third distinguishing attribute, hacking everything necessary to honor
it at the inevitable cost of some portability. I chose to treat predicates
as qualifiers for the sake of simplicity; unfortunately, that approach
turned out to break on one implementation I tried.1 (It works on at
least three others, though.)

5.3 Syntax

Although the MOP is fairly versatile, it provides no hooks into def-
method that would allow qualifiers to appear after lambda lists. Be-
cause lambda lists provide useful context for predicates, I introduced
a wrapper allowing predicates to appear in between lambda lists and
bodies. Because my wrapper took a different syntax from defmethod,
a different name was in order; I chose defpdmethod, where pd of course
stands for “predicate dispatched.” (defpmethod was also a possibility,
and easier to pronounce but also easier to typo.) As for its precise
syntax, I considered supporting a new lambda-list keyword (perhaps
&when or &predicate) or a declare-like construct, but decided to take
a simpler approach because I saw no particularly compelling reason to
add another context-specific syntax extension.

In keeping with that philosophy (simplicity of interface), I also chose
to allow developers to represent predicates as arbitrary Lisp expressions
rather than making them learn a special language for predicates or deal
with syntactic restrictions; after all, Lisp already has reasonable sup-
port for type-checking, boolean combination, etc. As a side bonus, this
design made it easy to write a prototype that dealt with everything
but specificity ranking. One consequence of this decision is that the
structure of predicates is implicit rather than explicit; if the system’s
internal representation for a particular sort of test improves, developers
will not necessarily have to modify their code to take advantage of the
improvement. On the other hand, the analyzer is not especially clever,
so developers may inadvertently write code that it handles poorly. (It
may end up being unable to determine implication relations even when
they exist, whereas it would have been able to had one or both predi-
cates been written differently. Note that this issue just affects determi-

1Allegro Common Lisp 6.0 [Fra00]; see Section 6.4.

24

nation of relative specificity, which is uncomputable in the general case
anyway.)

The only other major syntactic issue is that defpdmethod takes a
list of predicates (which it implicitly intersects) rather than a single
predicate. Given that t and explicit intersection are both legal, this
is purely a surface issue; my only reason for taking a list was that
such an arrangement worked better for my prototype, which approxi-
mately judged specificity by counting predicates. (That approach was
extremely crude, but allowed me to test some parts of the system early
on.)

5.4 Modularity

In order to avoid interfering with the existing environment, I put every-
thing in its own package (predicate-dispatch). Moreover, I created
a new generic function type (gf-with-predicate-dispatching) and
a new method type (predicate-dispatched-method), and specialized
my method redefinitions on them. Because CLOS’s internals are object-
oriented, this addition took very little work; unfortunately, it requires
more of a MOP than some implementations have. (See Section 6.4
for details.) That issue does not terribly concern me, since I need to
assume a proper MOP elsewhere anyway.

5.5 Ambiguity

Ernst et al. [EKC98] ensure that there is always a unique most specific
method. In many cases, particularly in the domain of mathematics,
their concern is unwarranted. In such cases, anything that applies
is correct, and anything other than the default method is a win, so
overlapping non-default methods cause no problems. For instance, one
interesting problem is integration, a partial treatment of which appears
in Section 7.2. If the user-visible code were a generic function rather
than a wrapper and it had an additional method for integrals with
numerical limits, that method would be ambiguous with methods spe-
cialized on particular sorts of integrand; however, that would not be
a problem because the system would end up getting the same answer
either way.

On the other hand, there are also cases where ambiguity really is
a problem, so catching it can be useful. For instance, consider the
case of a generic function for transferring funds between bank accounts,
where certain types of account require special treatment. If I wanted to

25

transfer money from an account of type X to an account of type Y, then
neither a method specialized only on a source of type X nor a method
specialized only on a destination of type Y would be appropriate.

The best solution would probably be to give each predicate-
dispatched generic function a flag indicating whether it can have am-
biguous methods; for safety’s sake, they would be illegal by default.
My system performs no ambiguity checking as of yet, however.

5.6 Coverage

Ernst et al. also ensure that there is an applicable method at every call
site, which they can readily do because their system is compiler-based.
Although my system could also benefit from such checks, working them
in would be difficult; some sort of stand-alone checker that developers
could pass their code through might make more sense.

5.7 Communication via &aux Variables

Common Lisp allows programmers to replace let* around a method
body with &aux in its lambda list. I extended this feature for predicate-
dispatched methods; a method’s predicates effectively share bindings
of &aux variables with the method body and each other (but not with
other methods). I considered special-casing disjunctions à la Ernst et
al. [EKC98], but decided against it; the exception makes sense in their
system because they let predicates bind variables, whereas I merely let
them assign to (shared) variables that are already bound. One use of
this extension is for performance; binding &aux variables to expressions
which appear in multiple predicates, or in the body and some predicate,
avoids making the system recompute them.

Another, more interesting, use is communication; since the vari-
ables are shared, an assignment in one predicate is visible in later
predicates and the body. Thanks to this feature, usefully support-
ing pattern-matching (for example) would not require modifying my
system. Somebody could simply write a helper function that takes a
pattern and whatever it should match against and returns either nil
(indicating no match) or a description of the match that a predicate
could assign to an &aux variable.

26

5.8 Lazy Predicate Checking

Letting predicates pass information to their associated method bodies
led to certain architectural constraints. In particular, it made it impos-
sible for compute-applicable-methods (a MOP function I specialize)
to check predicates; my definition of compute-applicable-methods
instead sorts methods based on implication (arbitrarily ordering meth-
ods with logically independent predicates) and leaves the checking up
to the wrapper make-method-lambda uses. That arrangement turned
out to have an unexpected advantage: when the wrapper goes through
the sorted list, it can stop checking predicates as soon as it finds a
hit. (Invoking call-next-method or next-method-p within the body
would force it to resume until it found another hit, but still not neces-
sarily go all the way through the list.) In addition, it does not interfere
with applicable-method caching, so it is also a performance win in that
respect.

5.9 Mutation and Specificity

Allowing predicates to modify variables means that the implication
checker ought to consider ordering. To take a contrived example, if a
is an auxiliary variable,

(and (eq a 2) (setf a 2))

implies

(and (evenp a) (setf a 2))

but

(and (evenp a) (setf a 2))

implies

(and (setf a 2) (eq a 2)).

As it happens, my system is too conservative about predicates en-
capsulating raw code for that problem to arise; it sees no implication
relationship between any of the above predicates. A better way to
avoid having to worry about ordering would be to impose usage restric-
tions (checked at method definition time): predicates may not assign
to &aux variables which already have assignments or dereference unas-
signed &aux variables, where the default of nil does not count as an
assignment.

27

28

Chapter 6

Implementation

6.1 Overview

defpdmethod is a macro which expands into a call to defmethod, us-
ing the code in pc-build.lisp (Section A.5) to convert the supplied
specifiers and predicates into an object of class predicate-qualifier
(described in Section 6.2), which it supplies to defmethod as a qual-
ifier. It also contains some code to deal with sharing &aux variables.
Like all of the top-level code, it appears in predicate-dispatch.lisp
(Section A.2), which you can read for more details.

defmethod in turn calls down to make-method-lambda, which most-
ly generates a lot of boilerplate to check predicates; although putting
all that code in every method no doubt leads to some memory bloat,
my semantics for &aux leave little choice. As discussed in Section 5.8,
this code checks predicates on demand, so it should win on time even
if it loses on space.

Invoking a predicate-dispatched generic function triggers some other
parts of the code. First, the system calls the new definition of compute-
applicable-methods-using-classes, and perhaps also compute-
applicable-methods. Lacking places to store &aux-variable values,
neither can usefully determine eligibility; however, they still do use-
ful work by sorting the predicate-blind list of applicable methods by
implication. The system determines whether a predicate p implies a
predicate q by constructing ¬p ∨ q and using the code in normalize-
or.lisp (Section A.4) to attempt to simplify it to *true*.

Once the system has the list, it uses compute-effective-method
to turn it into an effective method form. My implementation differs
from the standard one in not supporting standard method combina-

29

tion (:around, :before, and :after), and in passing the most specific
method along with the other methods; my architecture requires the
second change so that the code make-method-lambda issues can check
its predicate.

6.2 Representations

As mentioned in Section 5.2, I turn predicates into qualifiers. Specifi-
cally, I turn them into instances of predicate-qualifier, which con-
tains an object descended from class predicate (which I shall describe
shortly) and an integer indicating how many &aux variables to allocate
space for. Class predicate is the abstract ancestor of all predicate
types; Figure 6.1 shows the entire hierarchy, which contains nine con-
crete and three abstract classes. For instance, my system would turn
the predicate in

(defpdmethod ∗test∗ ((foo standard-object) (bar standard-class))
((eql (class-of foo) bar))
t)

into the object

#<pq 0 #<and #<proj 0 #<type STANDARD-OBJECT>>
#<proj 1 #<type STANDARD-CLASS>>
#<Interpreted Function
(LAMBDA (PREDICATE-DISPATCH::AUXV

FOO BAR &REST #:G1004)
(DECLARE

(IGNORE #:G1004
PREDICATE-DISPATCH::AUXV))

(EQL (CLASS-OF FOO) BAR))
{480DBF91}>>

The code that constructs predicates from expressions starts out by
analyzing them in terms of another hierarchy, which Figure 6.2 presents.
In addition, as mentioned in Section 5.4, I subclass standard-generic-
function with gf-with-predicate-dispatching and standard-
method with predicate-dispatched-method to avoid interfering with
existing CLOS code; aside from that, I just work with standard types.
(There are some places where symbols can only take on values from a
small finite set; I’ll discuss them in the next section.)

30

test-
predicate

typecheck-
predicate

equality-
predicate

modified-
predicate

projected-
unary-

predicate

extracting-
unary-

predicate

not-
predicate

compound-
predicate

and-
predicate

or-
predicate

constant-
predicate

predicate

Figure 6.1: Predicate class hierarchy (only the leaves are concrete)

expression
-analysis

trivial
-analysis

manifest
-constant

extraction
-or-simple

-test

not
-analysis

compound
-analysis

extraction
-analysis

typecheck
-analysis

eql
-analysis

and
-analysis

or
-analysis

Figure 6.2: Expression analysis class hierarchy (only the leaves are
concrete)

31

6.3 Analyzing Implication

The above explanation should suffice for most of my code. However,
normalize-or.lisp (Section A.4) deserves additional discussion; it is
relatively complicated because it deals with implication. (p ⇒ q is
equivalent to ¬p ∨ q; proving that the latter expression is always true
allows me to conclude that the former is.)

My system starts out by rewriting the given predicate in disjunctive
normal form, which may entail duplicating some subpredicates. This
process yields a predicate with three levels: from the bottom up, the
levels are simple terms (which may be negated, but are not compound),
purely conjunctive predicates (PCPs) (conjunctions of terms), and full
predicates (disjunctions of purely conjunctive predicates).

The code, in turn, has five levels. At the top, normalize-predicate
maps full predicates to full predicates, using a loop that builds its result
up from purely conjunctive predicates. That loop, in turn, contains an
inner loop that passes the PCP to be added along with each existing
PCP to compute-safe-patch, which determines their union’s maximal
PCPs. compute-safe-patch contains more (implicit) loops that get its
information from analyze-term, which takes a simple term and a PCP
and returns an analysis (described later in this section). analyze-term
contains a final implicit loop, which passes pairs of simple terms to
compare-terms and gets back relations (also described later in this
section).

There are five possible analyses of a simple term with respect to a
PCP:

extra: Not (known to be) inconsistent or redundant with the given
PCP.

fatal-mismatch: Inconsistent with some term of the PCP, and not
(known to be) complementary with it.

match: Equivalent to some term of the PCP.

mismatch: Complementary to some term of the PCP, and not (known
to be) inconsistent with any other terms.

weak: Redundant given the PCP, but not (known to be) equivalent to
any term.

There are also seven possible relations between the simple terms p
and q: same (p ⇔ q), opposite (p ⇔ ¬q), forward (p ⇒ q), backward
(q ⇒ p), exclusive (p ⇒ ¬q), comprehensive (¬p ⇒ q), and nil (no
known relation).

32

6.4 Portability

In general, I tried to write my code so that it would work on any CLOS
implementation with support for the full MOP. However, I was only
able to get it to work on three: CMU Common Lisp [Mac92] (2.4.x
and 2.5.x), Allegro Common Lisp [Fra00] (5.0 but not 6.0), and GNU
Common Lisp [Sch01] (for which I had to build Portable Common-
Loops [BKK+86]).

Allegro Common Lisp 6.0 seems unwilling to deal with passing pred-
icates off as qualifiers: it only accepts non-standard qualifiers in con-
junction with non-standard method combinations, and I was unable to
find a usage of define-method-combination that would satisfy it. (A
method combination definition involves classifying methods into a stat-
ically defined set of groups, and Allegro objects to putting two methods
with identical specializers in the same group.)

The other two implementations I tried (CLISP 2000–03–06 [HS00]
and Poplog 15.53 [Slo90]), meanwhile, would not let me subclass stan-
dard-generic-function because it was a built-in-class rather than
a standard-class. (Neither seems to have heard of funcallable-
standard-class.)

33

34

Chapter 7

Symbolic Mathematics

One application area in which predicate dispatching can be particularly
useful is symbolic mathematics, which exhibits a lot of special cases that
do not correspond well to combinations of types.

7.1 Popular Software

The two leading programs for symbolic mathematics (as opposed to
numerical computation) are Maple [Kam99] and Mathematica [Wol99];
Macsyma [Mac95] is also historically significant. Although all three
work well for symbolic calculations, their extension languages leave
something to be desired; as such, none is a great platform for programs
that deal with mathematical objects. (As you may recall, Section 1.1.3
discusses Weyl, which takes a more balanced approach.)

7.1.1 Macsyma

Macsyma started out as part of a U.S. Department of Energy project
in the late 1960s, but has survived to this day because it continues to
be useful for many problems. It is a Lisp program, but its interface
uses a separate extension language with an infix syntax akin to typ-
ical mathematical notation. Needless to say, it supports anonymous
functions, albeit with dynamic scoping. It lacks dispatching per se, but
compensates by providing a pattern-substitution facility.

Although Macsyma is a good program, it suits users much better
than developers. For one thing, although it is written in Lisp, it pre-
dates object-oriented programming by well over a decade, so developers
cannot cleanly extend its built-in functions. (They can define pattern

35

rules, but those are somewhat arcane and serve a somewhat different
purpose. On the other hand, developers can take advantage of CLOS
when adding wholly new functions.) Also, it relies too much on global
parameters to work well as a library.

7.1.2 Maple

In the early 1980s, researchers at the University of Waterloo in Canada
set out to produce a computer algebra system that would run reason-
ably on relatively inexpensive hardware. (Previous systems effectively
required dedicated mainframes.) Its extension language is similar to
Macsyma’s, but a bit more sophisticated; it supports not only anony-
mous functions but also modules, lexical scope, and optional type-
checking. It supports dispatching only in that a few built-in functions
will dispatch on the type of a single argument; however, like Macsyma
it has a separate pattern-substitution facility.

Again like Macsyma, Maple is good for users but not all that great
for developers. Because its (C) source is not available, developers can
extend the system only in its own language, which is decent enough but
not quite the same as anything else. Also, it lacks true dispatching; the
closest it has is pattern substitution, with the caution “It is the respon-
sibility of the user to make sure that the pattern is not overlapping.”
Its effective monolinguality also detracts from its utility as a library.

7.1.3 Mathematica

Mathematica is the youngest popular program under consideration,
dating back only to the late 1980s. Whereas Macsyma and Maple both
combine pattern-matching with monolithic functions, Mathematica ex-
presses everything in terms of rewrite rules. As such, it essentially
amounts to a huge term-rewriting system, which is an interesting de-
sign choice. In order to get the most out of that design, it defines
relatively complex heuristics for ranking rules in terms of specificity,
though still does not appear to tackle actual implication.

As with Maple, Mathematica’s source is unreleased C, so the sys-
tem is extensible only in its own language and relatively unsuitable as
a library for other software. Also, its rewrite-rule-focused language,
though surprisingly versatile (and clearly Turing-complete), is not the
right tool for every problem; as such, even examples intended to show it
off resort to various kludges. (For instance, page 228 of [Mae96b] sug-
gests faking call-next-method by conditionalizing on a global variable
which the extending method temporarily sets to false.) It also suffers

36

from a lack of non-structural subtyping.

7.2 Example: Symbolic Integration

Note that all three of the above systems, despite their differences in
design, support some form of pattern matching. The reason for this is
that there are quite a few mathematical functions and operators which
have simple values only in certain special cases; a lot of the time, the
special cases correspond poorly to intersections of natural types. One
particularly good example of this phenomenon is symbolic integration.

pd-integration.lisp (Section B.1) contains my implementation
of integration in Dispatching-Enhanced Weyl (DEW). Its external in-
terface is int, which calls down to integral via either definite-
integral or indefinite-integral, depending on whether the caller
specified limits. integral does the actual work; by default, it con-
structs an object of type ge-integral (where ge is Weyl’s abbrevia-
tion for“general expression”), but there are also a number of specialized
methods which yield more useful results, such as the one that handles
exponentials with constant bases:

(defpdmethod integral ((expr ge-expt) var
&aux (base (base-of expr))
(exp (exponent-of expr)))

((free? base var)
(linear? exp var))

(if (= base 1)
(/ exp (deriv base var))
(/ (make-ge-expt (domain-of expr) base exp)

(log base) (deriv base var))))

Note that the only method here that can get by without predicates
is the one that simply distributes integration over addition:

(defpdmethod integral ((expr ge-plus) var) ()
(make-ge-plus (domain-of expr)

(mapcar (lambda (exp)
(integral exp var))

(terms-of expr))))

This issue may help explain why standard Weyl lacks support for inte-
gration.

37

7.3 Example: The Struve H Function

Programming in Mathematica [Mae96b] uses the Struve function Hν(z)
to demonstrate how to implement support for a new special function
in Mathematica (which I target because it is the most sophisticated of
the three programs discussed in Section 7.1). Maeder’s code deals with
easy-to-compute special cases, series expansion, numerical evaluation,
differentiation, and formatting. Most of this code translates well into
DEW; my translation appears in Section B.2. I had to omit symbolic
series expansion because Weyl does not (yet?) support it, and differ-
entiation and formatting because it was not always clear how to treat
symbolic functions of multiple arguments.

7.4 Current Limitations

Although DEW has the makings of an excellent computer algebra sys-
tem, it is not quite there yet. Its most serious problem is that its
mathematical library is much smaller than other systems’. Actual
pattern-matching sugar would also come in handy in some cases, such
as simplifying products where the relevant terms may be mixed be-
tween irrelevant terms. One final issue is that DEW only deals with
Lisp’s prefix syntax, which some mathematicians find awkward.

38

Chapter 8

Contributions

I have portably extended CLOS with predicate dispatching, making
its advanced functionality available to a wide range of users. I have
additionally contributed to the computer algebra community by making
this functionality available to Weyl, yielding an even more interesting
system.

39

40

Chapter 9

Future Directions

I plan to add examples and test cases to make sure my code works
in a wide range of situations, and to improve my existing examples,
particularly integration. As it happens, integration has the problem
that it is often necessary to fall back on heuristics, which may require
backtracking if chosen poorly; however, it may be possible to handle
that with judicious use of call-next-method.

If time permits, I will add other features to the general predicate
dispatch code. Here’s what I have in mind, in decreasing order of
priority:

• Write code to produce custom dispatching trees, which should
take care of the majority of the issues listed in Section 3.4. Fig-
ure out if adding new methods requires rebuilding the trees from
scratch.

• Provide a reasonable syntax for specifying predicates by means
of patterns.

• Enhance the predicate type system. (Numeric comparison could
turn out to be useful, for instance.)

I might also give DEW an alternate front-end supporting conven-
tional (infix) algebraic notion for input, since that is much more con-
ventional for mathematics.

41

42

Appendix A

Base system source

Note: The code here and in Appendix B is also available online as
http://web.mit.edu/amu/predicate-dispatching.tar.gz. Some
of the code shown here has been reformatted to fit in the margins.

A.1 pd-package.lisp

(make-package :predicate-dispatch
:use ’(:lisp

#+allegro :mop
#+(and CLOS (not POPLOG)) :clos
#+(and PCL (not CMU)) :pcl))

(in-package :predicate-dispatch)

#+CMU (shadowing-import ’(mop:compute-applicable-methods
mop:compute-applicable-methods-using-classes
mop:compute-discriminating-function
mop:compute-effective-method
mop:find-class
;;mop:find-method-combination
mop::funcallable-standard-class
mop:generic-function-method-combination
mop:generic-function-name
mop:make-method-lambda
mop:method-function
mop:method-qualifiers
mop:method-specializers))

(export ’(defpdmethod gf-with-predicate-dispatching

43

predicate-dispatched-method))

(provide ’pd-package)

A.2 predicate-dispatch.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

(require ’pc-build)

;; Known issues with this code:
;; * It’s not particularly efficient.
;; * It assumes all method definitions appear at toplevel.
;; * It has bogus semantics for specificity. (Mostly fixed, but bogus
;; behavior can still occur when code mixes defmethod and defpdmethod.)
;; * CMUCL spews ”Note: Deleting unused function NEXT-METHOD-P.”

(defclass gf-with-predicate-dispatching (standard-generic-function)
()
(:metaclass funcallable-standard-class)
(:default-initargs :method-class (find-class ’predicate-dispatched-method)))

(defmethod update-instance-for-different-class :before
(old (new gf-with-predicate-dispatching) &rest junk)
;; AFAICT, change-class ignores default initargs.
(declare (ignore junk))
(unless (slot-boundp old ’method-class)

(setf (slot-value new ’method-class)
(find-class ’predicate-dispatched-method))))

(defclass predicate-dispatched-method (standard-method)
())

;; Turn the predicate list into a qualifier. This approach has two
;; major advantages:
;; * There’s a portable way to pull the predicate list back out.
;; * It doesn’t yield ”redefinitions” with identical specializers and
;; qualifiers but different predicates.

(defmacro defpdmethod (name lambda-list pred-list &rest body)
(ensure-generic-function name

:generic-function-class
’gf-with-predicate-dispatching)

(let ((auxtail (member ’&aux lambda-list))
(pred (build-predicate lambda-list pred-list)))

(if auxtail
(do ((auxvars (cdr auxtail) (cdr auxvars))

(index 0 (1+ index))
(let-clauses nil))

44

((null auxvars)
‘(defmethod ,name ,pred ,(ldiff lambda-list auxtail)

(let ,let-clauses ,@body)))
(push ‘(,(car-or-identity (car auxvars)) (aref auxv ,index))

let-clauses))
‘(defmethod ,name ,pred ,lambda-list ,@body))))

(defmethod predicate-of ((method standard-method))
(declare (ignore method))
∗true∗)

(defmethod pq-of ((method predicate-dispatched-method))
(find-if #’predicate-qualifier? (method-qualifiers method)))

(defmethod predicate-of ((method predicate-dispatched-method))
(predicate-of (pq-of method)))

(defun sort-methods (methods)
(stable-sort (copy-list methods) #’implies? :key #’predicate-of))

(defmethod compute-applicable-methods-using-classes
((gf gf-with-predicate-dispatching) classes)
(multiple-value-bind (methods memoizable)

(call-next-method)
(values (sort-methods methods) memoizable)))

(defmethod compute-applicable-methods ((gf gf-with-predicate-dispatching) args)
(sort-methods (call-next-method)))

(defmethod make-method-lambda ((gf gf-with-predicate-dispatching)
(method predicate-dispatched-method)
lambda-expression
environment)

‘(lambda (args remaining-methods &optional auxv)
(,(call-next-method gf method

‘(lambda (&rest args)
(let ((next-auxv nil))

(labels ((find-next-method ()
(if remaining-methods

(multiple-value-bind (applies? av)
(let ((pq (pq-of

(car
remaining-methods))))

(evaluate-predicate
(predicate-of pq) args
(make-array

(auxv-count-of pq)
:initial-element nil)))

(cond (applies? (setf next-auxv av)
t)

(t (pop remaining-methods)

45

(find-next-method))))
nil)))

(cond (auxv
(apply

#’(lambda ,(cadr lambda-expression)
(labels

((next-method-p ()
(or next-auxv

(find-next-method)))
(call-next-method (&rest

cnm-args)
(unless (next-method-p)

(error
"No next method for ˜A."
’,(generic-function-name

gf)))
(funcall

(method-function
(car

remaining-methods))
(or cnm-args args)
(cdr remaining-methods)
next-auxv)))

,@(cddr lambda-expression)))
args))

((find-next-method)
(funcall

(method-function (car remaining-methods))
args (cdr remaining-methods) next-auxv))

(t (error "No applicable method for ˜A on ˜S."
’,(generic-function-name gf) args))))))

environment)
args (cdr remaining-methods))))

(defmethod compute-effective-method ((gf gf-with-predicate-dispatching)
method-combination
methods)

(declare (ignore method-combination))
‘(call-method ,(car methods) ,methods))

(provide ’predicate-dispatch)

A.3 predicate-classes.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

;; proposed schema for normalized predicates:
;;
;; full multipredicate = PCM | or(PCM{2,}) | constant

46

;; full unary predicate [predicate class] = PCU | or(PCU{2,}) | constant
;;
;; PCM = SM | and(SM{2,})
;; SM = test | not(test) | projected-unary(PCU)
;; PCU = PNU | and(PNU{2,})
;; PNU = PEU | not(PEU)
;; PEU = SU | extracting-unary(SU)
;; SU = typecheck | equality | test
;;
;; abbreviations stand for (Purely Conjunctive)/Simple Multi-arg/Unary
;; and Possibly Negated/Extracting Unary.

(defclass predicate () ; abstract
((normal? :initarg :normal?

:reader normal?
:initform nil)))

(defclass test-predicate (predicate)
((test :initarg :test

:reader test-of)
(pass-auxv :initarg :pass-auxv

:reader pass-auxv?
:initform t)))

(defclass constant-predicate (predicate)
((value :initarg :value

:reader value-of)))

(defclass typecheck-predicate (predicate)
((target-type :initarg :target

:reader target-of)))

(defclass equality-predicate (predicate)
((target-value :initarg :target

:reader target-of)))

(defclass modified-predicate (predicate) ; abstract
((base-predicate :initarg :base

:reader base-of)))

(defclass projected-unary-predicate (modified-predicate)
((argument-index :initarg :index

:reader index-of)))

(defclass extracting-unary-predicate (modified-predicate)

47

((accessor-chain :initarg :accessors
:reader accessors-of)))

(defclass not-predicate (modified-predicate)
())

(defclass compound-predicate (predicate) ; abstract
((subpreds :initarg :subpreds

:reader subpreds-of)))

(defclass and-predicate (compound-predicate)
())

(defclass or-predicate (compound-predicate)
())

(defclass predicate-qualifier ()
((predicate :initarg :predicate

:reader predicate-of)
(auxv-count :initarg :auxv-count

:reader auxv-count-of)))

(defun predicate-qualifier? (x)
(typep x ’predicate-qualifier))

(defconstant ∗true∗ (make-instance ’constant-predicate :value t))
(defconstant ∗false∗ (make-instance ’constant-predicate :value nil))

(defmethod evaluate-predicate ((predicate test-predicate) args auxv)
(values (apply (test-of predicate)

(if (pass-auxv? predicate) (cons auxv args) args))
auxv))

(defmethod evaluate-predicate ((predicate constant-predicate) args auxv)
(declare (ignore args))
(values (value-of predicate) auxv))

(defmethod evaluate-predicate ((predicate typecheck-predicate) args auxv)
(values (typep (car args) (target-of predicate)) auxv))

(defmethod evaluate-predicate ((predicate equality-predicate) args auxv)
(values (eql (car args) (target-of predicate)) auxv))

(defmethod evaluate-predicate ((predicate projected-unary-predicate) args
auxv)

48

(evaluate-predicate (base-of predicate)
(list (nth (index-of predicate) args)) auxv))

(defmethod evaluate-predicate ((predicate extracting-unary-predicate) args
auxv)

(do ((arg (car args) (funcall (car accessors) arg))
(accessors (accessors-of predicate) (cdr accessors)))

((null accessors) (evaluate-predicate (base-of predicate)
(list arg) auxv))))

(defmethod evaluate-predicate ((predicate and-predicate) args auxv)
(values (every #’(lambda (subpred)

(evaluate-predicate subpred args auxv))
(subpreds-of predicate))

auxv))

(defmethod evaluate-predicate ((predicate or-predicate) args auxv)
(values (some #’(lambda (subpred) (evaluate-predicate subpred args

;(copy-seq auxv)
auxv))

(subpreds-of predicate))
auxv))

(defmethod evaluate-predicate ((predicate not-predicate) args auxv)
(values (not (evaluate-predicate (base-of predicate) args auxv)) auxv))

(defun make-or (subpreds &optional normal?)
(make-instance ’or-predicate :subpreds subpreds :normal? normal?))

(defun make-and (subpreds &optional normal?)
(make-instance ’and-predicate :subpreds subpreds :normal? normal?))

(defun make-not (base &optional normal?)
(make-instance ’not-predicate :base base :normal? normal?))

(defun constant-predicate? (predicate)
(typep predicate ’constant-predicate))

(defun or-predicate? (predicate)
(typep predicate ’or-predicate))

(defmethod normalize-predicate (predicate)
predicate)

(defmethod normalize-predicate ((predicate not-predicate))

49

(if (normal? predicate)
predicate
(normalize-predicate

(let ((base (normalize-predicate (base-of predicate))))
(typecase base

(not-predicate (base-of base))
(and-predicate (make-or (mapcar #’make-not

(subpreds-of base))))
(or-predicate (make-and (mapcar #’make-not

(subpreds-of base))))
(projected-unary-predicate (make-instance

’projected-unary-predicate
:index (index-of base)
:base (make-not (base-of

base))))
(constant-predicate (make-instance

’constant-predicate
:value (not (value-of base))))

(otherwise (make-not base t)))))))

(require ’normalize-or) ;; split off due to size

(defun flattened-and-subpredicates (p)
(if (typep p ’and-predicate)

(apply #’append (mapcar #’flattened-and-subpredicates
(subpreds-of p)))

(list p)))

(defun safe-index-of (p)
(and (typep p ’projected-unary-predicate)

(index-of p)))

(defmethod normalize-predicate ((predicate and-predicate))
(cond ((normal? predicate) predicate)

((null (subpreds-of predicate)) ∗true∗)
((null (cdr (subpreds-of predicate)))

(normalize-predicate (car (subpreds-of predicate))))
(t (let ((subpreds (mapcar #’normalize-predicate

(flattened-and-subpredicates
predicate))))

(let ((first-or (find-if #’or-predicate? subpreds)))
(if first-or ;; distribute!

(normalize-predicate
(make-or

(mapcar #’(lambda (x)
(make-and

50

(substitute x first-or subpreds
:count 1)))

(subpreds-of first-or))))
(do ((ht (make-hash-table))

(rsp (reverse subpreds) (cdr rsp)))
((null rsp)

(let ((terms (gethash nil ht)))
(maphash

#’(lambda (index preds)
(if index

(push
(make-instance

’projected-unary-predicate
:base (normalize-predicate

(make-and preds))
:index index)

terms)))
ht)

(make-and terms t)))
(if (typep (car rsp) ’projected-unary-predicate)

(push (base-of (car rsp))
(gethash (index-of (car rsp)) ht))

(push (car rsp) (gethash nil ht))))))))))

(defmethod normalize-predicate ((predicate projected-unary-predicate))
(if (normal? predicate)

predicate
(flet ((make-cousin (new-base &optional normal?)

(make-instance ’projected-unary-predicate
:base new-base
:index (index-of predicate)
:normal? normal?)))

(let ((base (normalize-predicate (base-of predicate))))
(typecase base

(or-predicate (normalize-predicate
(make-or (mapcar #’make-cousin

(subpreds-of base)))))
(constant-predicate base)
(otherwise (make-cousin base t)))))))

(defmethod normalize-predicate ((predicate extracting-unary-predicate))
(if (normal? predicate)

predicate
(normalize-predicate

(flet ((make-cousin (new-base &optional normal?)
(make-instance ’extracting-unary-predicate

51

:base new-base
:accessors (accessors-of

predicate)
:normal? normal?)))

(let ((base (normalize-predicate (base-of predicate))))
(typecase base

(or-predicate (make-or
(mapcar #’make-cousin

(subpreds-of base))))
(and-predicate (make-and

(mapcar #’make-cousin
(subpreds-of base))))

(constant-predicate base)
(not-predicate (make-not (make-cousin

(base-of base))))
(otherwise (make-cousin base t))))))))

(defmethod implies? (pred1 pred2)
;; takes advantage of simplification done in normalize-or.lisp
(let ((norm (normalize-predicate (make-or (make-not pred1) pred2))))

(and (constant-predicate? norm) (value-of norm))))

(provide ’predicate-classes)

A.4 normalize-or.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

;; Abstract transformations:
;; * p v ˜p -> *true*
;; * (p+ ˆ q*) v p+ -> p+
;; * (p ˆ q+) v (˜p ˆ q+) -> q+
;; * (p ˆ q* ˆ r+) v (˜p ˆ q*) -> (q* ˆ r+) v (˜p ˆ q*)
;; * (p ˆ q* ˆ r+) v (˜p ˆ q* ˆ s+)
;; -> (q* ˆ r+ ˆ s+) v (p ˆ q* ˆ r+) v (˜p ˆ q* ˆ s+)
;; [may be useful in setting the stage for other transformations]

;; prove complete?

;; interesting test cases:
;; * (p ˆ q) v (p ˆ ˜q) v (˜p ˆ q) v (˜p ˆ ˜q)
;; * (p ˆ q ˆ r) v ˜p v ˜q v ˜r
;; * (p ˆ q) v (˜q ˆ r) v (˜r ˆ ˜p) v (p ˆ ˜q ˆ ˜r) v (˜p ˆ q ˆ r)

(defun flattened-or-subpredicates (p)

52

(if (typep p ’or-predicate)
(apply #’append

(mapcar #’flattened-or-subpredicates (subpreds-of p)))
(list p)))

(defun extra-flattened-and-subpredicates (p)
(cond ((typep p ’and-predicate)

(apply #’append (mapcar #’extra-flattened-and-subpredicates
(subpreds-of p))))

((and (typep p ’projected-unary-predicate)
(typep (base-of p) ’and-predicate))

(mapcar #’(lambda (x)
(make-instance ’projected-unary-predicate

:base x :index (index-of p)))
(subpreds-of (base-of p))))

(t (list p))))

(defun maybe-make-eup (base accessors)
(if accessors (make-instance ’extracting-unary-predicate

:base base :accessors accessors)
base))

(defun maybe-flip (orig pairs flip?)
(if flip?

(or (cdr (assoc orig pairs))
(car (rassoc orig pairs)))

orig))

(defun adjust-comparison (orig neg-x neg-y)
(maybe-flip (maybe-flip orig

’((same . opposite)
(forward . comprehensive)
(backward . exclusive))

neg-x)
’((same . opposite)

(forward . exclusive)
(backward . comprehensive))

neg-y))

(defun compare-terms (x y &optional neg-x neg-y)
(adjust-comparison

(cond ((typep x ’projected-unary-predicate)
(and (typep y ’projected-unary-predicate)

(= (index-of x) (index-of y))
(compare-terms (base-of x) (base-of y) neg-x neg-y)))

((typep y ’projected-unary-predicate) nil)

53

;;
((and (typep x ’equality-predicate)

(typep y ’equality-predicate))
(if (eql (target-of x) (target-of y)) ’same ’exclusive))

;; no appropriate auxv...pass nil instead, and ignore errors.
((typep x ’equality-predicate)

(ignore-errors
(if (evaluate-predicate y (target-of x) nil)

’forward
’exclusive)))

((typep y ’equality-predicate)
(ignore-errors

(if (evaluate-predicate x (target-of y) nil)
’backward
’exclusive)))

;;
((typep x ’not-predicate)

(compare-terms (base-of x) y (not neg-x) neg-y))
((typep y ’not-predicate)

(compare-terms x (base-of y) neg-x (not neg-y)))
;;
((and (typep x ’extracting-unary-predicate)

(typep y ’extracting-unary-predicate))
(do ((x-acc (accessors-of x) (cdr x-acc))

(y-acc (accessors-of y) (cdr y-acc)))
((or (null x-acc) (null y-acc)

(not (eql (car x-acc) (car y-acc))))
(and (or (null x-acc) (null y-acc))

(compare-terms
(maybe-make-eup (base-of x) x-acc)
(maybe-make-eup (base-of y) y-acc)
neg-x neg-y)))))

;;
((and (typep x ’typecheck-predicate)

(typep y ’typecheck-predicate))
(let ((tx (target-of x))

(ty (target-of y)))
;; In a more static environment, we’d want to compare
;; the sets of concrete subtypes. As it is, we have to be
;; conservative.
(cond ((eql tx ty) ’same)

((subtypep tx ty) ’forward)
((subtypep ty tx) ’backward)
(t nil))))

;;
((and (typep x ’test-predicate)

54

(typep y ’test-predicate))
(if (eql (test-of x) (test-of y))

’same
nil))

;;
(t nil))

neg-x neg-y))

(defun analyze-term (x yy)
(let ((comparisons (remove nil (mapcar #’(lambda (y)

(compare-terms x y))
yy))))

(cond ((null comparisons) ’extra)
((member ’exclusive comparisons) ’fatal-mismatch)
((member ’opposite comparisons) ’mismatch)
((member ’same comparisons) ’match)
;; ((member ’forward comparisons) ’match)
((member ’backward comparisons) ’weak)
;; ”comprehensive” and ”forward” don’t help us.
(t ’extra))))

(defun annotate-term (x yy)
(cons x (analyze-term x yy)))

(defun keep? (x y)
(or (member ’extra y :key #’cdr)

(member ’weak x :key #’cdr)))

(defun compute-safe-patch (left right)
;; Return values:
;; (1) Safe patch if appropriate (single mismatch), nil otherwise.
;; (2) Does left cover any extra territory?
;; (3) Does right?
(let∗ ((fleft (extra-flattened-and-subpredicates left))

(fright (extra-flattened-and-subpredicates right))
(xleft (mapcar #’(lambda (l) (annotate-term l fright)) fleft))
(mismatches (count ’mismatch xleft :key #’cdr)))

(if (or (member ’fatal-mismatch xleft :key #’cdr)
(> mismatches 1))

(values nil t t) ;; We lose.
(let∗ ((xright (mapcar #’(lambda (r) (annotate-term r fleft))

fright))
(keep-right (keep? xright xleft)))

(if (zerop mismatches)
(values nil

(or (not keep-right)

55

(keep? xleft xright))
keep-right)

(values
;; Merge useful terms into a patch. Keep weak
;; terms on the left despite their redundancy
;; because something may depend on them wrt
;; short-circuiting.
;; Return t instead of an empty patch.
(or (mapcar #’car

(delete ’mismatch
(nconc xleft

(delete-if
#’(lambda (x)

(member
(cdr x)
’(match weak)))

xright))
:key #’cdr))

t)
(keep? xleft xright)
keep-right))))))

(defmethod normalize-predicate ((predicate or-predicate))
(cond ((normal? predicate) predicate)

((null (subpreds-of predicate)) ∗false∗)
(t

(let ((subpreds (mapcar #’normalize-predicate
(flattened-or-subpredicates predicate))))

(if (some #’value-of
(remove-if-not #’constant-predicate? subpreds))

∗true∗
;; can mutate here because nothing else refers to
;; subpreds.
(do ((queue (delete-if #’constant-predicate? subpreds)

(cdr queue))
(new-subpreds nil

(if insert-head
(cons (car queue) survivors)
survivors))

(survivors nil nil)
(insert-head t (and (not insert-head)

(null survivors))))
((null queue) (if (cdr new-subpreds)

(make-or new-subpreds t)
(car new-subpreds)))

;; (format t ”Queue:˜:W˜%NewS: ˜:W˜%”

56

;; queue new-subpreds)
(dolist (subpred new-subpreds)

(multiple-value-bind
(patch keep-left keep-right)
(compute-safe-patch (car queue)

subpred)
;; (format t
;; ”Pat:˜:W˜%KpL:˜:W˜%KpR:˜:W˜%”
;; patch keep-left keep-right)
(if patch

(if (eq patch t)
(return-from normalize-predicate

∗true∗) ;; we win!
(push (normalize-predicate

(make-and patch))
(cdr queue))))

(if keep-left
(setf insert-head t))

(if keep-right
(push subpred survivors))))))))))

(provide ’normalize-or)

A.5 pc-build.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

(require ’predicate-classes)
(require ’xcond)

;; I’d love to use macroexpand-all from the walker bundled with PCL,
;; but it’s not completely safe. (Tagbody’s tags *cannot* result from
;; macro expansion.)

(defun build-predicate (lambda-list predicate-bodies)
(multiple-value-bind (ll-analysis ll-predicates auxv-count)

(analyze-lambda-list-for-analysis lambda-list)
(make-instance ’predicate-qualifier

:predicate (normalize-predicate
(make-and

(append ll-predicates
(mapcar

#’(lambda (body)
(build-pred-internal

57

(analyze-expr
body ll-analysis)

lambda-list))
predicate-bodies))))

:auxv-count auxv-count)))

(defclass expression-analysis ()
((arguments-used :initarg :args-used

:reader args-used)))

(defclass trivial-analysis (expression-analysis)
((code :initarg :code

:reader code-of)
(substitute? :initarg :substitute?

:reader substitute?
:initform nil)))

(defclass manifest-constant (expression-analysis)
((value :initarg :value

:reader value-of)
(arguments-used :initform nil)))

(defclass extraction-or-simple-test (expression-analysis)
((argument-index :initarg :index

:reader index-of)
(unary-chain :initarg :chain

:reader chain-of)))

(defclass extraction-analysis (extraction-or-simple-test)
())

(defclass typecheck-analysis (extraction-or-simple-test)
((target-type :initarg :target

:reader target-of)))

(defclass eql-analysis (extraction-or-simple-test)
((target-value :initarg :target

:reader target-of)))

(defclass not-analysis (expression-analysis)
((base-analysis :initarg :base

:reader base-of)))

(defclass compound-analysis (expression-analysis)
((terms :initarg :terms

58

:reader terms-of)))

(defclass and-analysis (compound-analysis)
())

(defclass or-analysis (compound-analysis)
())

(defun mkxtriv (analysis var code)
(make-instance ’trivial-analysis

:args-used (adjoin var (args-used analysis))
:code code))

(defun mktriventry (arg)
(cons arg (make-instance ’trivial-analysis :args-used (list arg) :code arg)))

(defun null-triv (expr)
(make-instance ’trivial-analysis :args-used nil :code expr))

(defun car-or-identity (x)
(if (consp x)

(car x)
x))

(defun extract-arg-name (ll-term key?)
(cond ((atom ll-term) ll-term)

((and (consp (car ll-term)) key?) (second ll-term))
(t (car ll-term))))

(defun analyze-lambda-list-for-analysis (lambda-list)
(do ((ll lambda-list (cdr ll))

(index 0 (1+ index))
(partial-result (list (mktriventry ’auxv)))
(ll-predicates nil)
(auxv-count 0)
(last-key nil))

((null ll) (values partial-result (reverse ll-predicates) auxv-count))
(let∗ ((carll (car ll))

(arg (extract-arg-name carll (eq last-key ’&key))))
(assert (symbolp arg))
(cond ((eq carll ’&allow-other-keys) nil) ; do nothing

((member carll ’(&optional &rest &key &aux))
(setf last-key carll))

((member carll lambda-list-keywords)
(error "Unsupported lambda list keyword ˜S" carll))

59

((null last-key)
(push (cons arg (make-instance ’extraction-analysis

:index index :chain nil
:args-used (list arg)))

partial-result)
(if (and (consp carll) (cdr carll))

(push (build-pred-internal
(analyze-specializer (second carll) arg

index partial-result)
lambda-list)

ll-predicates)))
((eq last-key ’&rest)

(push (mktriventry arg) partial-result))
((eq last-key ’&aux)

(if (consp carll)
(push (build-pred-internal

(analyze-expr
‘(progn (setf (aref auxv ,auxv-count)

,(second carll))
t)

partial-result)
lambda-list)

ll-predicates))
(push (cons arg (make-instance

’trivial-analysis
:args-used ‘(auxv ,arg)
:code ‘(aref auxv ,auxv-count)
:substitute? t))

partial-result)
(incf auxv-count))

(t ; &optional or &key
(if (or (atom carll) (null (cdr carll)))

(push (mktriventry arg) partial-result)
(let ((analysis (analyze-expr (second carll)

partial-result)))
(push (cons arg (mkxtriv analysis arg

‘(or ,arg ,(second
carll))))

partial-result)
(if (cddr carll)

(push (mktriventry (third carll))
partial-result)))))))))

(defun analyze-specializer (specializer arg index ll-analysis)
(cond ((symbolp specializer) (make-instance ’typecheck-analysis

:index index :chain nil

60

:target specializer
:args-used (list arg)))

((and (listp specializer)
(= (length specializer) 2)
(eq (car specializer) ’eql))

(analyze-expr ‘(eql ,arg ,(cadr specializer)) ll-analysis))
(t (error "Unsupported specializer ˜S for ˜S" specializer arg))))

(defun analyze-expr (expr ll-analysis &optional macros symbol-macros)
(multiple-value-bind (expansion expanded?)

(macroexpand-1 expr)
(xcond ((assoc expr symbol-macros)

=> #’(lambda (a) (analyze-expr (cdr a) ll-analysis macros
symbol-macros)))

((and (consp expr)
(assoc (car expr) macros))

=> #’(lambda (a) (analyze-expr (apply (cdr a) (cdr expr))
ll-analysis macros
symbol-macros)))

((and expanded?
(or (atom expr)

(not (or (special-operator-p (car expr))
(member (car expr)

’(and eql not or typep))))))
(analyze-expr expansion ll-analysis macros

symbol-macros))
((assoc expr ll-analysis) => #’cdr)
((constantp expr) (make-instance ’manifest-constant

:value (eval expr)))
((atom expr) (null-triv expr))
((consp (car expr));; must be a lambda form

(analyze-exprs expr ll-analysis macros symbol-macros))
((assoc (car expr) ∗analysis-helpers∗)

=> #’(lambda (a) (funcall (cdr a) expr ll-analysis macros
symbol-macros)))

(t (let∗ ((aa (mapcar
#’(lambda (x) (analyze-expr x ll-analysis

macros
symbol-macros))

(cdr expr)))
(aa1 (car aa)))

(if (or (cdr aa)
(special-operator-p (car expr))
(not (typep aa1 ’extraction-analysis)))

(make-instance ’trivial-analysis :code expr
:args-used

61

(reduce #’union aa
:key #’args-used))

(make-instance ’extraction-analysis
:index (index-of aa1)
:chain (cons (symbol-function

(car expr))
(chain-of aa1))

:args-used (args-used aa1))))))))

(defun analyze-exprs (ee l m s &optional whole (force-trivial? t))
(if (or force-trivial? (cdr ee))

(make-instance ’trivial-analysis
:args-used (reduce #’union ee

:key #’(lambda (e)
(args-used (analyze-expr

e l m s))))
:code whole)

(analyze-expr (car ee) l m s)))

;; force trivial analysis
(defun analyze-first-arg (e l m s)

(analyze-exprs (list (second e)) l m s e))

(defun analyze-second-arg (e l m s)
(analyze-exprs (list (third e)) l m s e))

(defun analyze-block (e l m s)
(analyze-exprs (cddr e) l m s e))

(defun analyze-eval-when (e l m s)
(analyze-exprs (cddr e) l m s e))

(defun analyze-flet/labels (e l m s)
(let∗ ((function-names (mapcar #’car (second e)))

(m2 (remove-if #’(lambda (x)
(member (car x) function-names))

m))
(m-for-functions (case (car e)

(flet m)
(labels m2)))

(functions-analysis (analyze-exprs (mapcar
#’(lambda (x)

‘(lambda ,@(cdr x)))
(second e))

l m-for-functions s))
(body-analysis (analyze-locally ‘(locally ,@(cddr e)) l m2 s)))

62

(make-instance ’trivial-analysis
:args-used (union (args-used functions-analysis)

(args-used body-analysis))
:code e)))

(defun analyze-function (e l m s)
(if (and (consp (cadr e))

(eq (caadr e) ’lambda))
(analyze-lambda (cadr e) l m s)
(null-triv e)))

(defun analyze-lambda (e l m s)
(let ((new-bound-vars (mapcar #’car (analyze-lambda-list-for-analysis

(second e)))))
(flet ((shadowed? (a) (member (car a) new-bound-vars)))

(analyze-locally (if (stringp (third e))
(cdddr e)
(cddr e))

(remove-if #’shadowed? l)
m
(remove-if #’shadowed? s)
e))))

(defun analyze-let/let∗ (e l m s)
(let ((new-bound-vars (mapcar #’car-or-identity (second e))))

(flet ((shadowed? (a) (member (car a) new-bound-vars))
(for-bindings (x x∗) (case (car e)

(let x)
(let∗ x∗))))

(let∗ ((l2 (remove-if #’shadowed? l))
(s2 (remove-if #’shadowed? s))
(bindings-analysis (analyze-exprs

(apply #’append
(mapcar

#’cdr
(remove-if #’atom

(second e))))
(for-bindings l l2) m
(for-bindings s s2)))

(body-analysis (analyze-locally ‘(locally ,@(cddr e))
l2 m s2)))

(make-instance ’trivial-analysis
:args-used (union (args-used

bindings-analysis)
(args-used body-analysis))

:code e)))))

63

(defun analyze-locally (e l m s &optional (whole e) (force-trivial? t))
;; deal with ”special” declarations
(do ((exprs (cdr e) (cdr exprs))

(specials nil)
(l2 l)
(s2 s))

((or (null exprs)
(atom (car exprs))
(not (eq (caar exprs) ’declare)))

(flet ((shadowed? (a) (member (car a) specials)))
(analyze-exprs exprs

(remove-if #’shadowed? l2)
m
(remove-if #’shadowed? s2)
whole
force-trivial?)))

(dolist (decl (cdar exprs))
(if (eq (car decl) ’special)

(mapc #’(lambda (v) (pushnew v specials))
(cdr decl))))))

(defun analyze-macrolet (e l m s)
;; loses on &environment. Eit.
(do ((m2 m)

(clauses (second e) (cdr clauses)))
((null clauses) (analyze-locally ‘(locally ,@(cddr e)) l m2 s e nil))
(let∗ ((clause (car clauses))

(name (first clause))
(ll (second clause))
(body (cddr clause))
(qargs (gensym)))

(push (cons name (eval ‘(lambda (&rest ,qargs)
(destructuring-bind

,(cons (gensym) ll)
(cons ,name ,qargs)

,@body))))
m2))))

(defun analyze-setq (e l m s)
(labels ((every-other (l)

(if (and (consp l) (consp (cdr l)))
(cons (cadr l) (every-other (cddr l)))
nil)))

(analyze-exprs (every-other (cdr e)) l m s) e))

(defun analyze-symbol-macrolet (e l m s)

64

(do ((s2 s)
(clauses (second e) (cdr clauses)))

((null clauses) (analyze-locally ‘(locally ,@(cddr e))
(set-difference l s2 :key #’car)
m s2 e nil))

(let∗ ((clause (car clauses))
(name (first clause))
(expansion (second clause)))

(push (cons name expansion) s2))))

(defun analyze-tagbody (e l m s)
(analyze-exprs (remove-if #’atom (cdr e)) l m s e))

;;;

(defun analyze-and/or (e l m s)
(let ((subanalyses (mapcar #’(lambda (x) (analyze-expr x l m s))

(cdr e))))
(make-instance (case (car e)

(and ’and-analysis)
(or ’or-analysis))

:terms subanalyses
:args-used (reduce #’union subanalyses

:key #’args-used))))

(defun analyze-eql (e l m s)
(flet ((make-eql (ea mc)

(make-instance ’eql-analysis
:index (index-of ea)
:chain (chain-of ea)
:args-used (args-used ea)
:target (value-of mc))))

(let∗ ((subanalyses (mapcar #’(lambda (x) (analyze-expr x l m s))
(cdr e)))

(types (mapcar #’type-of subanalyses)))
(cond ((equal types ’(extraction-analysis manifest-constant))

(make-eql (first subanalyses) (second subanalyses)))
((equal types ’(manifest-constant extraction-analysis))

(make-eql (second subanalyses) (first subanalyses)))
(t (make-instance ’trivial-analysis

:args-used (reduce #’union subanalyses
:key #’args-used)

:code e))))))

(defun analyze-not (e l m s)
(let ((base (analyze-expr (second e) l m s)))

65

(if (typep base ’extraction-analysis)
(make-instance ’extraction-analysis

:index (index-of base)
:chain (cons #’not (chain-of base))
:args-used (args-used base))

(make-instance ’not-analysis
:base base))))

(defun analyze-typep (e l m s)
(let ((subanalyses (mapcar #’(lambda (x) (analyze-expr x l m s))

(cdr e))))
(if (and (typep (first subanalyses) ’extraction-analysis)

(typep (second subanalyses) ’manifest-constant))
(make-instance ’typecheck-analysis

:index (index-of (first subanalyses))
:chain (chain-of (first subanalyses))
:args-used (args-used (first subanalyses))
:target (value-of (second subanalyses)))

(make-instance ’trivial-analysis
:args-used (reduce #’union subanalyses

:key #’args-used)
:code e))))

(defconstant ∗analysis-helpers∗
;; omitted (potentially evaluate any ”argument”):
;; catch, if, multiple-value-{call,prog1}, progn, progv, throw,
;; unwind-protect
;; quote is also omitted because constantp takes care of it.
‘((block . ,#’analyze-block)

(eval-when . ,#’analyze-eval-when)
(flet . ,#’analyze-flet/labels)
(function . ,#’analyze-function)
(go . ,#’(lambda (e l m s) (declare (ignore l m s)) (null-triv e)))
(labels . ,#’analyze-flet/labels)
(lambda . ,#’analyze-lambda)
(let . ,#’analyze-let/let∗)
(let∗ . ,#’analyze-let/let∗)
(load-time-value . ,#’analyze-first-arg)
(locally . ,#’analyze-locally)
(macrolet . ,#’analyze-macrolet)
(return-from . ,#’analyze-second-arg)
(setq . ,#’analyze-setq)
(symbol-macrolet . ,#’analyze-symbol-macrolet)
(tagbody . ,#’analyze-tagbody)
(the . ,#’analyze-second-arg)
;;

66

(and . ,#’analyze-and/or)
(eql . ,#’analyze-eql)
(not . ,#’analyze-not)
(or . ,#’analyze-and/or)
(typep . ,#’analyze-typep)))

(defmethod build-pred-internal ((analysis trivial-analysis) lambda-list)
(do ((ll (cons ’auxv lambda-list) (cdr ll))

(used (args-used analysis))
(code (code-of analysis))
(index −1 (1+ index)) ;; starts at -1 to account for auxv.
(auxv-count 0)
rnorm ropt rest rkey ignores last-ll-key remaining-optionals
smlcl)

((null ll) (if (and (not rest) (null rkey))
(setf rest (gensym)

ignores (cons rest ignores)))
(make-instance ’test-predicate

:test (eval
‘(lambda (,@(reverse rnorm)

,@(and ropt
(cons ’&optional

(reverse ropt)))
,@(and rest ‘(&rest ,rest))
,@(and rkey

‘(&key
,@(reverse rkey)
&allow-other-keys)))

,@(and ignores
‘((declare (ignore ,@ignores))))

,(if smlcl
‘(symbol-macrolet ,smlcl ,code)
code)))))

(let∗ ((carll (car ll))
(arg (extract-arg-name carll (eq last-ll-key ’&key)))
(used? (member arg used))
(arg2 (and (consp carll) (third carll)))
(used2? (member arg2 used)))

(cond ((eq carll ’&allow-other-keys) nil) ; ignore (on anyway)
((member carll ’(&optional &rest &key &aux))

(setf last-ll-key carll)
(if (eq carll ’&optional)

(setf remaining-optionals (cdr ll))))
((member carll lambda-list-keywords)

(error "Unsupported lambda list keyword ˜S" carll))
((and (null last-ll-key) (null (cdr used))

67

(eq arg (car used)) (>= index 0))
(return-from build-pred-internal

(make-instance ’projected-unary-predicate
:index index
:base (make-instance

’test-predicate
:test (eval ‘(lambda (,arg)

,(code-of
analysis)))

:pass-auxv nil))))
((null last-ll-key)

(push arg rnorm) ; don’t want specializer!
(if (not used?) (push arg ignores)))

((and (eq last-ll-key ’&rest) used?) (setf rest arg))
((eq last-ll-key ’&aux)

(if used? (push ‘(,arg (aref auxv ,auxv-count)) smlcl))
(incf auxv-count))

((and (eq last-ll-key ’&key) (or used? used2?))
(if used2? (progn (push carll rkey)

(if (not used?) (push arg ignores)))
(push (list arg (second carll)) rkey)))

((and (eq last-ll-key ’&optional) (or used? used2?))
(mapc #’(lambda (x) (push (car-or-identity x) ropt))

(ldiff remaining-optionals ll))
(setf remaining-optionals (cdr ll))
(if used2? (progn (push carll ropt)

(if (not used?) (push arg ignores)))
(push (list arg (second carll)) ropt)))))))

(defmethod build-pred-internal ((analysis manifest-constant) ll)
(declare (ignore ll))
(make-instance ’constant-predicate :value (value-of analysis)))

(defmethod build-pred-internal ((analysis extraction-analysis) ll)
(declare (ignore ll))
(let∗ ((chain0 (chain-of analysis))

(not? (eql (car chain0) #’not))
(chain (if not? (cdr chain0) chain0))
(test (make-instance ’test-predicate

:test (or (car chain) #’identity)
:pass-auxv nil))

(subbase (cond ((null chain) test)
((null (cdr chain)) test)
(t (make-instance ’extracting-unary-predicate

:accessors (cdr chain)
:base test))))

68

(base (make-instance ’projected-unary-predicate
:index (index-of analysis)
:base subbase)))

(if not?
(make-instance ’not-predicate :base base)
base)))

(defmethod build-pred-internal ((analysis extraction-or-simple-test) ll)
(declare (ignore ll))
(let ((base (make-instance (if (typep analysis ’typecheck-analysis)

’typecheck-predicate
’equality-predicate)

:target (target-of analysis)))
(chain (chain-of analysis)))

(make-instance ’projected-unary-predicate
:index (index-of analysis)
:base (if chain

(make-instance ’extracting-unary-predicate
:accessors chain :base base)

base))))

(defmethod build-pred-internal ((analysis not-analysis) ll)
(make-not (build-pred-internal (base-of analysis) ll)))

(defmethod build-pred-internal ((analysis compound-analysis) ll)
(funcall (typecase analysis

(and-analysis #’make-and)
(or-analysis #’make-or))

(mapcar #’(lambda (a) (build-pred-internal a ll))
(terms-of analysis))))

(provide ’pc-build)

A.6 xcond.lisp

(require ’pd-package)
(in-package :predicate-dispatch)

;; supports => a la Scheme cond.
(defmacro xcond (&rest forms)

(and forms
(let ((form (car forms)))

(cond ((atom form) (error "Bad cond form ˜A" form))
((null (cdr form))

(let ((fresh-sym (gensym)))

69

‘(let ((,fresh-sym ,(car form)))
(if ,fresh-sym

,fresh-sym
(xcond ,@(cdr forms))))))

((and (= (length form) 3) (eq (second form) ’=>))
(let ((fresh-sym (gensym)))

‘(let ((,fresh-sym ,(car form)))
(if ,fresh-sym

(funcall ,(third form) ,fresh-sym)
(xcond ,@(cdr forms))))))

(t ‘(if ,(car form)
(progn ,@(cdr form))
(xcond ,@(cdr forms))))))))

(provide ’xcond)

70

Appendix B

Source for DEW
applications

B.1 pd-integration.lisp

(in-package :weyli)
(require ’predicate-dispatch)
(use-package ’predicate-dispatch)

(defclass ge-integral (general-expression)
((expr :initarg :expr

:accessor expression-of)
(var :initarg :var

:accessor variable-of)
(lower :initarg :lower

:initform nil
:accessor lower-bound-of)

(upper :initarg :upper
:initform nil
:accessor upper-bound-of)))

(defmethod print-object ((int ge-integral) stream)
(format stream "int ˜A d˜A" (expression-of int) (variable-of int))
(if (lower-bound-of int)

(format stream " from ˜A to ˜A" (lower-bound-of int)
(upper-bound-of int))))

(defpdmethod integral (expr var) ()
(let ((d (typecase expr

71

(domain-element (domain-of expr))
(t ∗general∗))))

(make-instance ’ge-integral :expr expr :var var :domain d)))

(defun definite-integral (expr var lower upper)
(let∗ ((ge-var (coerce var ∗general∗))

(indef (integral expr ge-var)))
(if (typep indef ’ge-integral)

(make-instance ’ge-integral :expr expr :var var
:domain (domain-of indef)
:lower lower :upper upper)

(− (substitute (coerce upper ∗general∗) ge-var indef)
(substitute (coerce lower ∗general∗) ge-var indef)))))

(defun constant-of-integration ()
(coerce (gensym "C") ∗general∗))

(defun indefinite-integral (expr var)
(+ (integral expr (coerce var ∗general∗))

(constant-of-integration)))

(defun first-domain (&rest args)
(cond ((null args) nil)

((typep (car args) ’domain-element)
(domain-of (car args)))

(t (apply #’first-domain (cdr args)))))

(defun int (expr var &optional lower upper)
(if lower

(weyli::definite-integral expr var lower upper)
(weyli::indefinite-integral expr var)))

(defmethod symbol-of ((sym symbol))
sym)

(defun free? (expr var)
;;(zerop (deriv expr var))
(not (depends-on? expr var))
)

(defun make-free-in? (var)
(lambda (expr) (free? expr var)))

;; useful for a limited version of the chain rule
(defun linear? (expr var)

72

(let ((d (deriv expr var)))
(and (not (zerop d))

(free? d var))))

(defun same-var? (var1 var2)
(and (or (symbolp var1) (typep var1 ’ge-variable))

(or (symbolp var2) (typep var2 ’ge-variable))
(eq (symbol-of var1) (symbol-of var2))))

(export ’int)

;;; useful specializations follow

(defpdmethod integral (expr var)
((free? expr var))
(∗ expr var))

(defpdmethod integral (expr var)
((same-var? expr var))
(∗ 1/2 expr expr))

(defpdmethod integral ((expr ge-plus) var) ()
(make-ge-plus (domain-of expr)

(mapcar (lambda (exp)
(integral exp var))

(terms-of expr))))

(defpdmethod integral ((expr ge-times) var
&aux (free? (make-free-in? var))
(terms (terms-of expr)))

((member-if free? terms))
(let ((domain (domain-of expr)))

(make-ge-times domain
(cons (integral (make-ge-times domain

(remove-if free?
terms))

var)
(remove-if-not free? terms)))))

(defpdmethod integral ((expr ge-times) var)
((= (length (terms-of expr)) 1))
(integral (car (terms-of expr)) var))

(defpdmethod integral ((expr ge-expt) var
&aux (base (base-of expr))

73

(exp (exponent-of expr)))
((free? exp var)

(linear? base var))
(let ((exp1 (+ exp 1)))

(if (zerop exp1)
;; XXX – should take absolute value of log.
(/ (make-ge-log (domain-of expr) base) (deriv base var))
(/ (make-ge-expt (domain-of expr) base exp1)

exp1 (deriv base var)))))

(defpdmethod integral ((expr ge-expt) var
&aux (base (base-of expr))
(exp (exponent-of expr)))

((free? base var)
(linear? exp var))

(if (= base 1)
(/ exp (deriv base var))
(/ (make-ge-expt (domain-of expr) base exp)

(log base) (deriv base var))))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "sin")
(linear? first-arg var))

(− (/ (make-ge-cos (domain-of expr) first-arg) (deriv first-arg var))))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "cos")
(linear? first-arg var))

(/ (make-ge-sin (domain-of expr) first-arg) (deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "tan")
(linear? first-arg var))

(− (/ (make-ge-log (domain-of expr)
(make-ge-cos (domain-of expr) first-arg))

(deriv first-arg var))))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "log")
(linear? first-arg var))

(/ (− (∗ first-arg (make-ge-log (domain-of expr) first-arg))
first-arg)

74

(deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "sinh")
(linear? first-arg var))

(/ (make-ge-cosh (domain-of expr) first-arg) (deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "cosh")
(linear? first-arg var))

(/ (make-ge-sinh (domain-of expr) first-arg) (deriv first-arg var)))

(defpdmethod integral ((expr ge-application) var
&aux (first-arg (first (args-of expr))))

((equal (name-of (funct-of expr)) "tanh")
(linear? first-arg var))

(/ (make-ge-log (domain-of expr)
(make-ge-cosh (domain-of expr) first-arg))

(deriv first-arg var)))

;; ...

B.2 struve.lisp

(in-package :weyl)
(require ’predicate-dispatch)
(use-package ’predicate-dispatch)

;; This code assumes that the Bessel and gamma functions have been
;; defined.

(defpdmethod struve-h (r z)
(let ((d (or (first-domain r z) ∗general∗)))

(make-ge-funct d (make-function d ’struve-h 2) r z)))

(defpdmethod struve-h ((r ratio) z)
((> r 0)

(not (zerop z))
(= (denominator r) 2))

;; Weyl doesn’t support symbolic sums. :-/
(do ((m 0 (1+ m))

(sum 0 (+ sum (/ (∗ (gamma (+ m 1/2))
(expt (/ z 2) (+ (∗ −2 m) r −1)))

75

(gamma (+ r 1/2 (∗ −1 m)))))))
((> m r) (+ (bessel-y r z) (/ sum pi)))))

(defpdmethod struve-h ((r ratio) z)
((< r 0)

(not (zerop z))
(= (denominator r) 2))

(∗ (expt −1 (− −1/2 r)) (bessel-j (− r) z)))

(defpdmethod struve-h (nu z)
((zerop z))
0)

(defpdmethod struve-h ((nu number) (z number))
((or (floatp nu) (floatp z)))
;; don’t give inexact results for exact inputs.
(do ((s 0 (+ s (/ zf g1 g2)))

(so −1 s)
(z2 (− (expt (/ z 2) 2)))
(k1 3/2 (1+ k1))
(k2 (+ nu 3/2) (1+ k2))
(g1 (gamma 3/2) (∗ g1 k1))
(g2 (gamma (+ nu 3/2)) (∗ g2 k2))
(zf ((expt (/ z 2)) (+ nu 1)) (∗ zf z2)))

((= s so) s))
)

;; not sure how to work derivative or print form in, given issues with
;; mixing defmethod and defpdmethod. :-/ (Subclassing ge-application
;; also seems to be out, given Weyl’s treatment of it.)

76

Appendix C

Other code

C.1 Struve.m
(* :Title: Struve *)

(* :Context: ProgrammingInMathematica‘Struve‘ *)

(* :Author: Roman E. Maeder *)

(* :Summary:
Definitions for the Struve functions

*)

(* :Copyright: c© 1989-1996 by Roman E. Maeder *)

(* :Package Version: 2.0 *)

(* :Mathematica Version: 3.0 *)

(* :History:
2.0 for Programming in Mathematica, 3rd ed.
1.1 for Programming in Mathematica, 2nd ed.
1.0 for Programming in Mathematica, 1st ed.

*)

(* :Keywords: Struve *)

(* :Sources:
Roman E. Maeder. Programming in Mathematica, 3rd ed. Addison-Wesley, 1996.

*)

(* :Discussion:
See Section 8.4 of "Programming in Mathematica"

*)

BeginPackage["ProgrammingInMathematica‘Struve‘"]

StruveH::usage = "StruveH[nu, z] gives the Struve function."

Begin["‘Private‘"]

77

SetAttributes[StruveH, {NumericFunction, Listable}]

(* special values *)

StruveH[r_Rational?Positive, z_] /; Denominator[r] == 2 :=
BesselY[r, z] +
Sum[Gamma[m + 1/2] (z/2)^(-2m + r - 1)/Gamma[r + 1/2 - m], {m, 0, r-1/2}]/Pi

StruveH[r_Rational?Negative, z_] /; Denominator[r] == 2 :=
(-1)^(-r-1/2) BesselJ[-r, z]

(* Series expansion *)

StruveH/: Series[StruveH[nu_?NumberQ, z_], {z_, 0, ord_Integer}] :=
(z/2)^(nu + 1) Sum[(-1)^m (z/2)^(2m)/Gamma[m + 3/2]/Gamma[m + nu + 3/2],

{m, 0, (ord-nu-1)/2}] + O[z]^(ord+1)

(* numerical evaluation *)

StruveH[_, 0] := 0

StruveH[nu_?NumericQ, z_?NumericQ] /; Precision[{nu, z}] < Infinity :=
Module[{s = 0, so = -1, z2 = -(z/2)^2, k1 = 3/2, k2 = nu + 3/2, g1, g2, zf},

zf = (z/2)^(nu+1); g1 = Gamma[k1]; g2 = Gamma[k2];
While[so != s,

so = s; s += zf/g1/g2;
g1 *= k1; g2 *= k2; zf *= z2; k1++; k2++

]; s
]

(* derivatives *)

StruveH/: Derivative[0, n_Integer?Positive][StruveH] :=
Function[{nu, z},
D[(StruveH[nu-1, z] - StruveH[nu+1, z] + (z/2)^nu/Sqrt[Pi]/Gamma[nu + 3/2])/2,

{z, n-1}]
]

(* interpretation and formatting for traditional form *)

StruveH/:
MakeBoxes[StruveH[nu_, z_], form:TraditionalForm] :=

RowBox[{SubscriptBox["H", MakeBoxes[nu, form]], "(", MakeBoxes[z, form], ")"}]

MakeExpression[RowBox[{SubscriptBox["H", nu_], "(", z_, ")"}],
form:TraditionalForm] :=

MakeExpression[RowBox[{"StruveH", "[", RowBox[{nu, ",", z}], "]"}], form]

End[]

Protect[StruveH]

EndPackage[]

78

Bibliography

[App92] Apple Computer. Dylan, an Object-Oriented Dynamic
Language, April 1992.

[BB] Jonathan Bachrach and Glenn Burke. Partial dis-
patch: Optimizing dynamically-dispatched multimethod
calls with compile-time types and runtime feedback. Work
in progress.

[BDG+88] Daniel Gureasko Bobrow, L. G. DeMichiel, R. P. Gabriel,
S. E. Keene, G. Kiczales, and D. A. Moon. Common Lisp
Object System specification: X3J13 document 88-002R,
volume 23 of ACM SIGPLAN Notices. ACM Press, New
York, NY, September 1988.

[BKK+86] D[aniel] G[ureasko] Bobrow, K. Kahn, G. Kiczales, L. Mas-
inter, M. Stefik, and F. Zdybel. Common Loops, merging
Lisp and object-oriented programming. ACM SIGPLAN
Notices, 21(11):17–29, November 1986.

[CC99] Craig Chambers and Weimin Chen. Efficient multiple and
predicate dispatching. In Proceedings of the 1999 ACM
Conference on Object-Oriented Programming Languages,
Systems, and Applications (OOPSLA ’99), Denver, CO,
November 1999.

[CCG98] Craig Chambers and the Cecil Group. The Cecil Language:
Specification and Rationale. University of Washington De-
partment of Computer Science, Seattle, WA, December
1998. Version 3.0.

[Cha93] Craig Chambers. Predicate classes. In ECOOP ’93 Confer-
ence Proceedings, pages 268–296, Kaiserslautern, Germany,
July 1993.

79

[EKC98] Michael Ernst, Craig Kaplan, and Craig Chambers. Predi-
cate dispatching: A unified theory of dispatch. In ECOOP
’98, the 12th European Conference on Object-Oriented Pro-
gramming, pages 186–211, Brussels, Belgium, July 1998.

[Fod91] John K. Foderaro. Introduction to the special Lisp section.
Communications of the ACM, 34(9):27, September 1991.
As quoted by Paul Graham.

[Fra00] Franz Inc., Berkeley, CA. Allegro CL user guide, version
6.0 edition, 2000.

[GJS96] James Gosling, Bill Joy, and Guy L. Steele. The Java
Language Specification. The Java Series. Addison-Wesley,
Reading, MA, 1996.

[HS00] Bruno Haible and Michael Stoll. clisp — Common Lisp
language interpreter and compiler, March 2000.

[Kam99] Ernic Kamerich. A Guide to Maple. Springer-Verlag, 1999.

[KdRB91] Gregor Kiczales, James des Rivières, and Daniel G. Bo-
brow. The Art of the Meta-Object Protocol. MIT Press,
Cambridge, MA, 1991.

[Lag85] Jeffrey C. Lagarias. The 3x + 1 problem and its general-
izations. The American Mathematical Monthly, 92:3–23,
1985.

[Mac92] Robert A. MacLachlan, editor. CMU Common Lisp
user’s manual. Technical Report CMU-CS-92-161, School
of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, July 1992. October 31, 1997 Net Version.

[Mac95] Macsyma, Inc. Macsyma mathematics and system refer-
ence manual. Macsyma, Inc., Arlington, MA, fifteenth edi-
tion, 1995.

[Mae96a] Roman E. Maeder. The Mathematica Programmer II. Aca-
demic Press, New York, NY, 1996.

[Mae96b] Roman E. Maeder. Programming in Mathematica. Addison
Wesley, Reading, MA, third edition, 1996.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Defi-
nition of Standard ML. MIT Press, Cambridge, MA, 1990.

80

[PJHA+99] Simon Peyton Jones, John Hughes, Lennart Augustsson,
Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, Thomas Johns-
son, Mark Jones, John Launchbury, Erik Meijer, John Pe-
terson, Alastair Reid, Colin Runciman, and Philip Wadler.
Haskell 98: A Non-strict, Purely Functional Language,
February 1999.

[Sch01] William Schelter. GNU Common Lisp 2.3.8, January 2001.

[Slo90] A. Sloman. The Sussex University POPLOG System. Uni-
versity of Sussex, Sussex, England, June 1990.

[Ste90] Guy L. Steele, Jr. Common Lisp: the Language. Digital
Press, Bedford, MA, second edition, 1990.

[Str97] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, Reading, MA, third edition, 1997.

[Wol99] Stephen Wolfram. The Mathematica Book. Cambridge
University Press and Wolfram Research, Inc., New York,
NY, and Champaign, IL, fourth edition, 1999.

[Zip93] Richard Zippel. The Weyl computer algebra substrate.
In Alfonso Miola, editor, Design and Implementation of
Symbolic Computation Systems, International Symposium,
DISCO ’93, volume 722 of Lecture Notes in Computer Sci-
ence, pages 303–318, Gmunden, Austria, September 1993.
Springer.

81

