Building Design Programming with a Functional Language *

A. Paoluzzi
Dip. di Disc. Scientifiche: Sez. Informatica, Terza Universita,Via Segre 3, 00146 Roma,, Italy

V. Pascucci
Dip. di Informatica e Sistemistica, Universita “La Sapienza”,Via Buonarroti 12, 00185 Roma,Italy

ABSTRACT: A quite complex example of building design programming is discussed in this paper. In
particular we introduce some operators which allow to easily define parametric layout plans, where both single
and grouped rooms are constrained both on their linear dimensions and on the relative positioning. Such
operators are then used to generate constraint-based models of the hierarchical set of spaces which define
a terraced building. The given PLASM description is completely coordinate free, i.e. all design parts are
intrinsically defined. The relative positioning and dimensioning of parts is obtained using constraints. The
whole set of design choices, i.e. the design knowledge, is compactly codified within the easily readable PLASM
description of each plan and section of the building. The 3D model of the building is then automatically
generated from plans and sections. The authors believe that such a natural and semantically rich description
may be very useful in the design process, mainly if coupled with a very high level (intelligent) graphical interface

(to be developed).

1 Introduction

The term “Geometric Programming” was introduced
to denote the functional approach to geometric design
programming with the language pLAsM developed by
the CAD Group at the University of Rome [7, 5]. This
language was originally developed as a language for
building design, but is being currently experimented
also as a general purpose language for modeling highly
complex geometric shapes. It can be roughly con-
sidered as a geometry-oriented extension of a subset
of the functional language FL, developed by Backus,
Williams and their group at IBM Almaden [2, 1].

In this paper we discuss the modeling of a building
design as a PLASM script. This modeling was done
starting from the original set of plans, sections and
orthographic views. The modeled project (see Fig. 6)
is a terraced housing realized in Bologna (Italy) by the
Prof. Arch. E. Zambelli at the end of seventies. The
terraced housing is composed by the aggregation of a
certain number of two-floor houses with basement.

The main steps of our design modeling can be sum-
marized as follows:

e plan analysis and definition (in 2D) for the single
housing unit;

e section analysis and definition (in 2D) for the sin-
gle housing unit;

*This work was partially supported from Italian Research
Council, with contract n. 91.03226.64, within the “PF Edilizia”
Project.

e combination of plans and sections, by using the
product operator described in [3], in order to au-
tomatically generate the volumes of the housing
units;

e staircase definition (in 3D) to be matched with
the stairwell of the housing units;

e aggregation of a set of house pairs, in order to gen-
erate the complete model of the terraced housing.

It is important to note that PLASM was developed
not as a graphic language for modeling and simula-
tion but as a true “design language”, with the aim
of supporting all kinds of designing activities, which
consist in shape analysis and synthesis, as well as of
supporting the design revision steps. In order to stress
this aspect, we choose to discuss the design synthesis
at a very high level, as the architect could do in the
initial stages of design. This results in a variational
reconstruction of a schematic model of the volumes of
the housing project. In particular, we will develop our
schematic housing model as a set of space polygons,
automatically generated starting from 2D plans and
sections, but without the opening of doors and win-
dows (at least currently). Some other simplifications
will be indicated at their place in the paper.

A more detailed model could be generated at the
price of writing much more code, with a quantity of
details which cannot be discussed in the present paper.
Our aim in developing the PLASM language was also
to allow as much as possible for automatic translation

This needs some more research and development effort
of the pLASM environment. In our current plans we
suppose to reach this major goal in two or three years.
Notice also that we developed the PLASM model
without any interaction with the designer, but only
starting from the detailed plans and sections of the
building. So, the PL.AsM code will reflect our reading of
the design, which do not necessarily coincide with the
designer view. In other terms, the design decomposi-
tion we give in the paper only reflects our reading of
the design, and corresponds to only one of the several
ways to build the geometric model of the schematic
building. Anyway, a closer interaction with the de-
signer would allow for programming his true view of
design development process, starting from the initial
ideas and “feeding back” everywhere this should be
necessary in order to satisfy some design constraint.
As the following discussion should make clear, the
language seems to have an amazing descriptive power,
and should allow the designer to implement in few lines
of (generative and variational) pLAsSM code both the
structure of the design and the internal and external
constraints acting on the geometric shape. Actually,
the designer should not be required to be also a com-
puter specialist, but the language should be embedded
into a modern interactive user interface, where all the
design intentions could be graphically captured and
automatically coded as a PLASM script.

1.1 Preliminary definitions

Every housing unit in the project contains a basement,
a first floor and a second floor. It is possible to see
that the building is made by the aggregation of a fun-
damental housing unit (see Fig. 1), which is repeated
in groups of two or four units at a time. Each group
of two or four units is obtained by one or two specular
reflection of the same basic unit. Actually, as we show
in the following, two minor variations are given of the
basic housing unit.

After a first analysis of the design layout we decided
to write a few general PLASM operators to be exten-
sively used to model the plans. Such functions of gen-
eral utility must not be written at any new project,
but can be stored into persistent files called PLASM
packages (as they constitute a sort of general design
knowledge) which are included and used in several dif-
ferent design projects. Such operators are here given
for sake of completeness.

The space element which is more frequently in-
stanced in the design is a rectangular space, which
will be denoted as 0_space and will be defined as an
alias for the primitive pLASM function CUBOID:

DEF O_space = CUBOID

In order to define space units which have a more com-
plex hierarchical shape, it is useful to have a function
which can be used to specify the relative positioning
of (hierarchical) aggregates of spaces. In particular a
binary function “~” is given which allow to match two
shapes on a specified point (see Fig. 2). Often, but
not necessarily, these points will coincide with one of

a(nw” ne)b

a(nw” sw)b(se” sw)d glue:(a(nw” sw)b(se” sw)d)

Figure 2: Matching and glue of rectangles.

the extreme “geographic” points of the containment
boxes of the two shapes to be matched. E.g., let sw,
se, nw, ne be four “geographic” functions which com-
pute the lowest left, the lowest right, the highest left
and the highest right point of a 2D shape (“polyhedral
complex” — see [6]), respectively:

DEF sw = [MIN:1, MIN:2]; % south-west %
DEF se = [MAX:1, MIN:2]; % south-east %
DEF ne = [MAX:1, MAX:2]; % north-east %
DEF nw = [MIN:1, MAX:2] % north-west %
The definition of the “~” operator will be given as

follows, where an affine transformation matrix will be
automatically included in a sequence containing the

two shapes to be matched, according to the semantics
of the ISO standard graphic system PHIGS [4]:

DEF ~ (geol,geo2::IsFun) =

STRUCT ~ [S1, (T:<1,2>) ~ parameters,S2]
WHERE

parameters = (AA:-) "TRANS™[geo1”S1,geo2752]
END

where the formal parameters geol and geo2 are usu-
ally geographic functions which compute the two
points on the argument shapes which have to coincide
in the resulting structure. The PLASM script which
codifies the matching operation described in Figure 2
will be written as follows:

DEF a = O_space:<10,20>;
DEF b = O_space:<10,15>;
a (nw "~ ne) b

In order to group three spaces a, b and d in such a
way that b is put over a and d to the bottom of a, the
following PLASM script (see Fig. 2) is defined.

DEF d = O_space:<15,20>;
a (nw - sw) b
(se ~ sw) d

To understand this example it is necessary to say
that the standard order of execution of the operations
within an expression (without parenthesis) is from left
to right. Hence, the whole group of spaces is defined in
thelocal coordinates of the first shape; then the second
shape is placed in this system; then the third shape
is matched with a geographic point computed on the

|
o | T
= y_bedl Y-PF
W || lﬁ - L Ll L ﬂ
1 n l: 1L —Ty 1 H .-
i y_plan
| ;]
x_stairweel x_bed x_bat
x-ground x_terrace . |X-balcony x_ground x_terrace xfirst
|
stair Jaunidry stair bath bedl stair beds
[] bed3
box2
living | terrace
box1 kitchen terrate bath
(a) (b) (c)

Figure 1: The three plans of type B. Basement (a), first floor (b) and second floor (c¢) and their corresponding

polyhedral approximations.

group of the first two shapes, and so on. In order to
glue the polyhedral cells of a polyhedral complex into
a single element without internal partitions, a special-
purpose glue function is defined:

DEF glue = MKPOL-[S1,S2, [FROMTO"[K:1,LEN"S2]]]

“UKPOL

This function just compute (using the primitive func-
tion UKPOL — see [6]) a symbolic description of the
polyhedral complex which it is applied to, and then
slightly modify it, in order to put together all the con-
vex cells into a single polyhedral cell, and finally com-
mits the reconstruction of the internal data structure
to the predefined function MKPOL.

It is so possible to easily define a new parametric
function L_space which compute the geometric model
of a 2D L-shaped space starting from the lateral di-
mensions, according to the generative scheme of Fig-
ure 2, which we have just discussed.

DEF L_space (x1,x2,y1,y2::IsReal)=
glue: (O_space:<x1,y1> (se ~ sw) O_space:<x2,yi>
(nw ~ sw) O_space:<x1,y2>)
The last 2D shape of Figure 2 can be so computed by
evaluating the PLASM expression:
L_space:<10,15,20,15>

1.2 Schematic layout plans

First of all, we define a set of numeric parameters,
to be used for common dimensioning reference of the
design elements of a single housing unit (see Fig. 1):

DEF y_plan 802.5 % lenght of plans (y axis)¥%;
DEF x_ground = 920 Y%width of ground floor (x) %;
DEF x_terrace = 260 % width of terrace %;
DEF x_balcony = 350 % distance first floor -
center of balcony %;
DEF y_bedl = y_plan * 2/5 % lenght of bedroom Y%;
DEF x_bedl = y_bedl * 3/2 % bed aspect ratio %;
DEF x_stairwell = y_plan / 3% stairwell lenght %

Then two global variables are defined which state the
width of passage spaces (passage) and a “small” di-
mension (delta) with respect to the sizes of the design
spaces:

DEF passage 100 ;

DEF delta 1

The 3D staircase of the whole housing unit will be de-
fined later on in the paper. At this point, i.e. while
defining the plan layouts, it is sufficient to leave an
empty space within the 2D schematic floors. So, a
geometric function floor_base is defined which re-
turns a 2D polyhedral complex, with an empty cell
corresponding to the stairwell. This floor_base will
be used to compute by intersection the true geometric
shapes of the floors at the various levels in the housing
unit.

DEF floor_base = (glue”STRUCT):
<QUOTE:<x_balcony+delta,-:(x_stairwell-delta),
x_ground> *
QUOTE:<y_plan-y_bedl,y_bedl-delta,delta>,
QUOTE:<-:(x_balcony+delta),x_stairwell-delta>*
QUOTE:<y_plan-y_bedl,-:(y_bedi-delta),delta>>

Notice that the empty space corresponding to the
staircase is defined smaller (of delta) than the ac-
tual dimensions of the staircase, in order to mark its
perimeter. By using the design elements defined at
this point, it is now possible to give the layout plan of
the first floor:

DEF first_floor =
floor (se ~ se) (bath (ne ~ nw) bed
(se ~ ne) living)

(sw ~ sw) kitchen
(se ~ sw) terrace
WHERE
floor = floor_base & T:1:x_balcony:
(O_space:<x_ground,y_plan>),
bath = S:2:-1:(L_space:

<x_ground-x_bedl-x_stairwell-passage,
passage,y_bedl-passage,passage>),

living = S:1:-1:(L_space:<x_bedl,passage*2/3,
y_bedl,y_plan-(2+y_bedl)>),
kitchen = L_space:<x_stairwell,
x_ground-x_stairwell-x_bedl-(passage/3),
y_bedl,passage/3>,
terrace = O_space:<x_terrace,y_plan /2>
END

The plan of the first floor is made by four spaces: bed,
living, bath and kitchen. The first only is defined as
a 0_space, whereas the others are defined as L_space.
The bath is obtained by reflection of the prototype
shape with respect to the first axis (s:2:-1). Analo-
gously, the 1iving is obtained by reflection of the pro-
totype shape with respect to the second axis (s:1:-1).
Notice that (s:1:-1) is the scaling on the first coor-
dinate for the scaling parameter —1, which results in
the appropriate reflection. The geometric model cor-
responding to the generated shape (see Fig.1) can be
obtained by evaluating the expression:

first_floor

At the same way can be defined the layout plan of the
basement of the housing unit (see Fig. 1).

DEF basement_floor =floor(sw sw)internal_spaces
WHERE
floor = floor_base &
T:1:x_balcony: (L_space:<x_ground,
X_terrace,y_plan/2,y_plan/2>),
internal_spaces = boxl (nw ~ sw) box2

(ne ~ k:<y_plan/4,x_stairwell/2>) laundry,

box1 = O_space:<x_ground,x_stairwell> ,
box2 = O_space:<y_plan * 2/3 ,x_stairwell >,
laundry = O_space:<y_plan/4,y_plan/2 >

END

In the last definition the dimensions of the base-
ment have been constrained to those of the first floor,
by making use of the same variables. In particu-
lar, it has been stated that the two plans have the
same length (y_plan), whereas the basement width
will be obtained by adding x_terrace to that of the
first floor, i.e. it is defined as L_space:<x_ground,
x_terrace, ...>. The two basement boxes and the
stairwell have the same length, as it was stated that
x_stairwell = y_plan/3. Also, another constraint
states that box1 has the same width of first_floor.
The whole geometric model of this layout can be ob-
tained by evaluating the expression:

basement_floor

We remember that the whole terraced building is ob-
tained by starting from only two housing units, in the
following denoted by A and B. The two units only dif-
fer for their second floors, where the unit type A do
not contains the room bed3. This room instead is
used by the designer to make a sort of bridge over the
balcony when the units type B are used. First some
reference variables are defined which are constrained
to the values bounded to the variables used for the
lower floors. Then two alternative layouts for the sec-
ond floor are given, denoted as second_floor_A and
second_floor_B, respectively:

DEF x_first 945 ;
DEF x_bed3 x_balcony H

v
DEF x_bath
DEF y_bath

Before defining the first floors it is useful to take
into consideration the flat floor under the roof, named
roof _floor_A and roof_floor_B, which are two ap-
propriately positioned instances of L_space:
DEF roof_floor_A =
(T:<1,2>:<x_first,y_plan>~R:<1,2>:PI"L_space):
<x_bath,x_stairwell,y_bed3, y_bath >;
DEF roof_floor_B =
glue: (roof_floor_A(nw ~

v =1l v

x_first - x_bed3 - x_stairwell ;
y_plan - y_bed3

ne)bed3)

So, we can define the second_floor_A layout plan as
follows:
DEF second_floor_A = floor (se ~ se) bath

(ne ~ ne) bed2

(se ~ sw) terrace

WHERE
floor = floor_base & roof_floor_A,
bath = L_space:<passage , x_bath - passage,

y_bath - passage , passage>,
bed2 =(R:<1,2>:pi"L_space):<x_bath - passage,
passage,y_bedl,y_bed3-y_bedl+passage>,
terrace = O_space:<x_ground+x_balcony-x_first,
y_plan - y_bedl>
END
Notice that floor is obtained by intersecting
roof_floor_A with floor_base. In order to define
the layout plans of type “B” of first floor, it is then
sufficient to add an instance of bed3 to roof _floor_A:
DEF bed3 = O_space:<x_bed3,y_bed3>;
DEF second_floor_B =second_floor_A (nw ~ ne) bed3

1.3 Schematic layout sections

The 3D models of both type A and type B housing
units are quite difficult to generate, mainly because
(a) both 3D models contain several different sections
and (b) such sections do not necessarily change in cor-
respondence with internal partitions, so inducing very
complex space models.

Hence, in order to automatically produce the set of
space polygons which define the 3D schematic models
of our housing units, in this paper a new generative
method which starts from ordered sets of plans and
sections is described. This method is derived by the
intersection of extrusions, special case of the general-
ized product operation described in [3]. In that refer-
ence it is shown that the geometric model of the class
of buildings with constant plan and section can be gen-
erated by pairwise intersecting all the cells of the 3D
complexes produced by extruding both the plan and
the section (2D complexes), after a proper embedding
of them onto two coordinate subspaces of 3.

In the case here discussed, we conversely have to
combine an ordered set { Py, ..., Py} of plans and an
ordered set {57,...,5,} of sections (see Fig. 3). The
solution is found by computing m X n pairwise intersec-
tions of extrusions between an open subset of a plan
and an open subset of a section. More formally, we
can write that the result is generated as:

m n

U U®n0)) && (5;n0)

i=17=1

AN

Figure 3: Plans and section of the building unit B,
properly embedded in R>.

where O;, O; denote the open stripe of “constant sec-
tion” §; and of “constant plan” P;, respectively, and
where && denotes the intersection of extrusions oper-
ator.

So, from the analysis of lateral views and sections of
the building units, four zones “with constant section”
are characterized, as it is shown in Figure 4. Such four
sections have a similar structure and, if superimposed
to the lateral view, lead to a partitioning in the regular
cellular complex shown in Figure 5). The dimensions
which define the grid underlying such a cellular decom-
position are defined using the same variables which
constraint the sizes of the plan elements, according to
the following scheme:

DEF z_floor =300 %first and second floor heigth;
DEF z_basement =z_floor*0.9 %basement heigth %;

DEF hs = hO-z_basement % level of basement %;
DEF hO = 0 % level of first floor %;
DEF hl = hO+z_floor % level of second floor %;
DEF h2=h1+((h3-h1)*(15-14)/(15-13))%constraints%;
DEF h3=h1 + z_floor % for the %;
DEF h4=h1+((h3-h1)*(15-12)/(15-13))%roof slope %;

DEF 10 = 0 ;

DEF 11 10 + x_bed3 ;

DEF 12 11 + x_stairwell ;

DEF 13 = 10 + x_first ;
+
+

DEF 14 = 11 + x_ground ;

DEF 15 = 11 + x_ground + x_terrace

According to the defined dimensions, the grid points
used as reference for the sections can be computed
by row starting from bottom, by using the function
section_grid:

DEF section_grid =

CAT:<<11,14,15> add_coord hs ,

<11,14,15> add_coord hO ,
<10,11,12,13,14,15> add_coord hil ,
<12,13,14> add_coord h2 ,
<10,12,13> add_coord h3 ,
<12> add_coord h4 >

where the binary function add_coord, which adds the
y coordinate to a sequence of real numbers to be in-
terpreted as x coordinates of an aligned subset of grid
points, is defined as follows:

m

section_1

— It
SeCtl(s)gct%on 34?4?

section_4
“with constant section”.

Figure 4: Zones

DEF add_coord (xx::IsSeq; y::IsReal) =

AA: (ART[[ID],K:y]1):xx
Notice that, e.g.

<11,14,15> add_coord hs=<<l1,hs>,<14,hs>,<15,hs>>

Starting from the given set of grid points, the four
sections of the housing unit can then be defined simply
by (a) selecting for each section the appropriate subset
of grid points and (b) grouping the subset of points in
order to the define the convex cells of the section and
(c) grouping the convex cells to define some polyhedral
cells (only when this is necessary), according to the
usual semantics of the primitive function MKPOL (see

Reference [6]):

DEF section_1 =

MKPOL:<section_grid,
<<1,3,4,6>, % basement %
<4,6,8,11>,<6,11,15,12>,<8,9,13>,%first floor%
<9,11,15,18,17>, % second floor %
<17,18,19>>, % roof %
<<1>,<2,3>,<4>,<5>,<6>>>

DEF section_2 = CAT_POL:<section_terr,
MKPOL:<section_grid,

<<1,3,4,6>, % basement %
<4,5,8,11>,<8,9,13>, % first floor Y%
<9,10,18,17>, % second floor %
<17,18,19>>, % roof %

<<1>,<2,38>,<4>,<E>>>>

DEF section_3 = CAT_POL:<section_terr,

MKPOL:<section_grid,
<<1,3,4,6>,
<4,5,8,11>,

% basement %
% first floor Y%

h3
\ 12
| 74 h1
_¥ ho
“/ L774 hs
10 711712 13 "14 715

Figure 5: Basic grid of the sections definition.

<7,10,18,16>, % second floor %
<16,18,19>>, % roof %
<<1>,<2>,<3>,<4>>>>

DEF section_4 =
MKPOL:<section_grid,

<<1,3,4,6>, % basement %
<4,5,8,11>,<10,11,14>, Y% first floor Y%
<7,10,18,16>, % second floor %
<16,18,19>>, % roof %
<<1>,<2,3>,<4>,<E>>>

The section of terraces, denoted as section_terr, is
separately defined by making use of partially open
rectangular polyhedra generated by the predefined
function OCUBOID. In this way it is specified that
the terraces are open spaces which are only partially
bounded by polygons:

DEF section_terr =
STRUCT:<T:<1,2>:<13,h1>:
(OCUBOID:<<1,1>,<1,0>>:<14-13,h2-h1>),
T:<1,2>:<14,h0>:
(OCUBOID:<<1,1>,<1,0>>:<15-14,h2-h1>)>

The 0CUBOID predefined function is applied first to a
sequence of binary pairs, then to a sequence of equal
length of reals. The length of both pairs defines the
intrinsic dimension of the generated hypercuboid; the
sequence of binary pairs defines which facets of such
object must be closed and which must be open. E.g.,
OCUBOID:<<1,1>,<1,0>>:<a,b> defines a 2D rectan-
gle (with area a * b) which is closed on all sides but
the one defined by the highest value of the second co-
ordinate.

1.4 Combination of plans and sections

In order to combine plans and sections, it is necessary
to explicitly indicate what “zone” of each plan must
be combined with a “zone” of a section. Consider,
e.g., the layout plan of first floor. The various zones
which interact with the four sections are selected by
intersection with properly positioned open rectangular
stripes. So, the widths of the various plan zones are
defined according to the following variables:

-:delta ;

190 :

x_stairwell ;

DEF y_section_0O
DEF y_section_1
DEF y_section_2

DEF &_section_4 = &_%lan + aelta

The functions sel_section_1, sel_section_2,
sel_section_3 and sel_section_4, which respec-
tively select the part (zone) of a plan to be combined
with the sections section_1, section_2, section_3
and section_4, are defined as follows:

DEF sel_section_1 =

& “[k:(stripe:<y_section_0,y_section_1>),id];
DEF sel_section_2 =

& “[k:(stripe:<y_section_1,y_section_2>),id];
DEF sel_section_3 =

& “[k:(stripe:<y_section_2,y_section_3>),id];
DEF sel_section_4 =

& “[k:(stripe:<y_section_3,y_section_4>),1id]

where the function stripe, which returns the generic
open stripe is given as:

DEF stripe (y1,y2::IsReal) =
(T:2:y1:(0CUBOID:<<1,1>,<0,0>>:<10000,y2-y1>))

Analogously, some other functions must be defined
which select the part of a section to be combined
with a particular layout plan. With reference to the
grid of Figure 5, it is easily verified that the sec-
tion zone corresponding to the basement is constituted
(sel_included_pol) by the elements between the y
values hs and hO:

DEF sel_basement = sel_included_pol:<2,hs,h0>

At the same way it is possible to select the zones as-
sociated to the first floor (between hO and h2) and to
the roof (between h3 and h4):

DEF sel_first = sel_included_pol:<2,h0,h2> ;
DEF sel_roof = sel_included_pol:<2,h3,h4>

In order to select the zone corresponding to the second
floor it is instead necessary to use a different function
(sel_including_pol), which select only the elements
of a 2D section which contain the y stripe between h2
and h3:

DEF sel_second = sel_including_pol:<2,h2,h3>

The two functions to select polyhedra which respec-
tively are contained within or contain a stripe zone
between min_val and max_val, with respect to the
coord reference axis, are defined as follows:

DEF sel_including_pol (coord::IsIntPos;
min_val,max_val::IsReal)=
(CATAA: (IF:<AND" [LE:min_val™min:coord~ [ID],
GE:max_val~max:coord~ [IDI],
[id] , X:<>>))

DEF sel_included_pol (coord::IsIntPos;
min_val,max_val::IsReal) =
(CATAA: (IF:<AND" [GE:min_val™min:coord~ [ID],
LE:max_val “max:coord” [ID]],
[ID] , K:<>>))

Finally, the “generalized product” (see Refer-
ence [3]) && is specialized as the function sel_prod,
to be used to combine a zone of a plan with a zone of
a section, where the two zones are selected by using
the four functions previously discussed. Notice that
sel_prod first by executing a generalized product of
plans and sections properly embedded in R3, then
extract the 2D skeleton (@2), i.e. the set of boundary

s o =~ Y/

complex:

D e o D

DEF sel_prod (plan,sect::IsPair) =
sl:sect:(s2:plan)
(027&&:<<1,2,0>,<1,0,2>>) si:plan:(s2:sect)

So, in order to combine the first floor plan with the
first section we have to evaluate the PLASM expression:

<sel_first,first_floor>
sel_prod <sel_section_1,section_1>

Since several pairs (plan, section) must be combined
using the sel_prod operator, it may be convenient to
define a new higher-level function, which systemati-
cally applies sel_prod to the proper argument pairs:

DEF combine_plans_sections =
(STRUCT"AA:sel_prod~CAT AA:DISTL"DISTR)

In this way the 3D models of two housing units type
A and B which constitute (together with their reflected
images) the whole building, are then given as

DEF unit_A = combine_plans_sections:
<<<sel_basement,basement_floor>,

<sel_first,first_floor> ,
<sel_second,second_floor_4> ,
<sel_roof,roof_floor_A> >,

<<sel_section_1,section_1>,
<sel_section_2,section_2>,
<sel_section_3,section_3>,
<sel_section_4,section_4>>>;

DEF unit_B = combine_plans_sections:
<<<sel_basement,basement_floor>,

<sel_first,first_floor> s
<sel_second,second_floor_B> ,
<sel_roof,roof_floor_B> >,

<<sel_section_1,section_1>,
<sel_section_2,section_2>,
<sel_section_3,section_3>,
<sel_section_4,section_4>>>

1.5 Definition of the staircase

In this section the staircase structure is defined to
be exactly positioned and matched with the empty
space (stairwell) produced together to the automati-
cally generated 3D models of the housing units.

The basic elements are a straight flight of stairs and
a spiral stair with squared base. In order to define the
first it is sufficient to put together a set of properly
translated rectangular steps. To define the second we
need to give also a triangular step, as well to connect
the various steps with rotations and translations.

DEF S_flight (x,y,z::IsReal; n_steps::IsInt) =
(STRUCT ##:n_steps):
<((T:3:z"EMBED:1): (CUBOID:<x,y>)
STRUCT (R:<2,3>:(PI/2) EMBED:1):
(CUBOID:<x,z>)),T:<2,3>:<y,z>> ;

DEF L_flight (x,y,z::IsReal;n_turns::IsIntPos) =

(STRUCT ##:n_turns):

<step1,T:3:z, step2,T:3:z, R:<1,2>:(PI/2)>
WHERE
stepl = (S:1:-1"T:1:(-:x)"T:3:2z"EMBED:1
“S:<1,2>:<x,y>) : (SIMPLEX:2)
STRUCT (R:<2,3>:(PI/2) EMBED:1)
: (CUBOID:<x,z>),

B TR S T T T T T T T T T T T T

o R R
"S:<1,2>:<x,y>) : (SIMPLEX:2)
STRUCT (S:<1,2>:<sqr2,sqr2>"R:<1,2>:(PI/4)
“R:<2,3>:(PI/2) EMBED:1)

: (CUBOID:<x,z>),

R N

sqr2 = 2 **x 0.5
END

The stairs from basement to first floor
(basement_stair) and from first floor to second
floor (first_stair), will be constructed by the basic
elements so defined:

DEF basement_stair (x,z::IsReal) =
(@2"STRUCT) :<T:<1,2>:<X_step,Z_step+X_step>
,R:<1,2>:(pi/-2),final_step,
(T:<1,2>:<dd,dd>"STRUCT ##:3) :
<T:<1,2,3>:<dd,dd,Z_step>:flat,
T:<1,2>:<dd,-:dd>:
(S_flight:<X_step,Z_step,Z_step,1>),
T:3:(3*Z_step) ,R:<1,2>:(pi/2)>,
T:3:(z-delta):final_step>
WHERE
X_step = (x - Z_step)/ 2 ,
Z_step=2z/9,
dd = Z_step / 2,
final_step = S:2:-1:(EMBED:1:
(CUBOID:<X_step+Z_step,X_step>)) ,
flat = L_flight:<X_step,X_step,Z_step,1>
END;

DEF first_stair(x,y,z::IsReal;n_steps::IsIntPos)=
(@2"STRUCT) :<T:1:X_step,flight
align:<<3,max,min>,<2,max,min>>turn,
T:3:z:(EMBED:1: (CUBOID:<X_step,y>)),
T:<1,3>:<-:X_step,z>,5:3:-1, flight>
WHERE
n_step_flight = (n_steps - 4) / 2 ,
X_step =x/ 2,
Y_step = (y - X_step) / n_step_flight ,
Z_step = z / n_steps ,

flight = S_flight:<X_step,Y_step,Z_step,
n_step_flight>,
turn = L_flight:<X_step,X_step,Z_step,2>
END

The total dimensions of each stair are given
as input parameters x, y and z in their function
definition. Notice that y is not given in the def-
inition of basement_stair because it equates x.
Notice also that a single STRUCT construct in the
staircase definition put the first_stair above the
basement_stair:

DEF staircase = STRUCT:
<T:<1,2>:<x_bed3,y_plan-y_bedl>:
(first_stair:<x_stairwell,y_bedl,z_floor,16>),

T:<1,2,3>:<x_bed3,y_plan-x_stairwell,
—:z_basement>:
(basement_stair:<x_stairwell,z_basement>) >

At this point both the basic housing units can be
completed by matching the staircase to the rest of the
models: their generative functions can then be defined
as follows:

DEF housing_unit_A = staircase STRUCT unit_4 ;
DEF housing_unit_B = staircase STRUCT unit_B

Figure 6: Complete terraced housing.

1.6 Terraced building definition

Now, starting from housing_unit_A and
housing_unit_B, two groups of four instances
of each unit are built, specularly reflected with
respect to the axis 2 and y. So, the function
make_group is defined to make such an arrangement.
Also a global variable DeltaY is defined to furtherly
aggregate such groups of buildings:

DEF DeltaY = 2 * y_plan;
DEF make_group = STRUCT"[ID,T:2:Delta¥~S:2:-1]
“STRUCT~ [ID,S:1:-1]

Finally, in order to generate the models of the such
groups of four houses, it is sufficient to apply the func-
tion make_group to the two housing units:

DEF group_A
DEF group_B

make_group:housing_unit_A ;
make_group:housing_unit_B

The terraced building as a whole will then be given
as an alternate series of instances of group_A and
group_B (see Fig. 6) and of translations with param-
eter DeltaY:

DEF terraced_housing = STRUCT:
< group_A,T:2:Deltay,
group_B,T:2:Deltay,
group_A,T:2:(DeltaY + 360),
group_B,t:2:Deltay,
group_A >

References

[1] Backus, J., Williams, J.H. & Wimmers, E.L., 1990.
An Introduction to the Programming Language
FL. In Research Topics in Functional Programming,

D.A. Turner (Ed.), Addison-Wesley, Reading.

[2] Backus, J., Williams, J.H., Wimmers, E.L., Lucas,
P. & Aiken, A., 1989. FIL Language Manual, Parts
1 and 2. IBM Research Report RJ 7100 (67163).

[3] Bernardini, F., Ferrucci, V., Paoluzzi, A. & Pas-
cucci, V. 1993. A product operator on cell com-
plexes. Proc. ACM/IEEE 2™ Symposium on Solid

Modeling and Applications, J. Rossignac, J. Turner
and G. Allen (Eds.), ACM Press, pp. 43-52.

[4] Howard,T.L.J., Hewitt,W.T., Hubbold, R.J. &
Wyrwas, K.M., 1991. A Practical Introduction to
PHIGS and PHIGS PLUS. Addison-Wesley, Read-
ing, MA.

[5] Paoluzzi, A., Bernardini, F., Cattani, C. & Fer-
rucci, V., 1993. Dimension-Independent Modeling
with Simplicial Complexes. ACM Transactions on
Graphics 12:56-102.

[6] Paoluzzi, A., Pascucci, V. & Vicentino, M.,
1995. Geometric Programming. A Programming
Approach to Geometric Design. Accepted for pub-
blication on ACM Transactions on Graphics.

[7] Paoluzzi, A. & Sansoni, C., 1992. Programming
Language for Solid Variational Geometry. Computer
Aided Design, 24:349-366.

