Cache-Oblivious Streaming B-trees

Michael A. Bender
Dept. of Computer Science
Stony Brook University
Stony Brook, NY 11794-4400

bender@cs.sunysb.edu

Yonatan R. Fogel
Dept. of Computer Science
Stony Brook University
Stony Brook, NY 11794-4400
yfogel@cs.sunysb.edu

ABSTRACT

A streaming B-tree is a dictionary that efficiently implements in-

Martin Farach-Colton
Dept. of Computer Science
Rutgers University
Piscataway, NJ 08855

farach@cs.rutgers.edu

Bradley C. Kuszmaul
MIT CSAIL
32 Vassar Street
Cambridge, MA 02139

bradley@mit.edu

Jeremy T. Fineman
MIT CSAIL
32 Vassar Street
Cambridge, MA 02139

jfineman@mit.edu
Jelani Nelson
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

minilek@mit.edu

General Terms
Algorithms, Performance, Design, Experimentation, Theory

sertions and range queries. We present two cache-oblivious stream-

ing B-trees, theshuttle tree, and thecache-oblivious lookahead
array (COLA).

For block-transfer siz8 and onN elements, the shuttle tree im-
plements searches in optirma(logBH N) transfers, range queries
of L successive elements in optima(logg, ; N+ L/B) transfers,
and insertions inO((IogB+1 N)/BO(1/(loglogB)*) +(I092N)/B)
transfers, which is an asymptotic speedup over traditional B-trees
if B > (logN)1+¢/10910910¢N for any constant > 1.

A COLA implements searches ®(logN) transfers, range queries
in O(logN +L/B) transfers, and insertions in amortizé¢(logN) /B)
transfers, matching the bounds for a (cache-aware) buffereg+ep
itory tree. A partially deamortized COLA matches these bounds
but reduces the worst-case insertion cosO{dogN) if memory
sizeM = Q(logN). We also present a cache-aware version of the
COLA, thelookahead array , which achieves the same bounds as
Brodal and Fagerberg’s (cache-awaré&jtie.

We compare our COLA implementation to a traditional B-tree.
Our COLA implementation runs 790 times faster for random inser-
tions, 31 times slower for insertions of sorted data, ansl tines
slower for searches.

Categories and Subject Descriptors

F.2.3 JAnalysisof Algorithmsand Problem Complexity]: Trade-
offs between Complexity Measuresvachine-independent com-
plexity, E.1 [Data Structures]: Trees

Keywords

Cache-Oblivious B-Tree, Buffered Repository Tree, Cascading Ar
ray, Shuttle Tree, Lookahead Array, Deamortized

1. INTRODUCTION

TheB-tree [4,14] is the classic external-memory-dictionary data
structure! The B-tree is typically analyzed in a two-level memory
model, called theDisk Access Machine (DAM) model [1]. The
DAM model assumes an internal memory of side@rganized into
blocks of sizeB and an arbitrarily large external memory. The cost
in the model is the number of transfers of blocks between the inter-
nal and external memory.

An N-node B-tree supports searches, insertions, and deletions in
O(logg, 1 N) transfers and supports scand afontiguous elements
in O(1+ L/B) transfers. An important characteristic of the B-tree
is that it is provably optimal for searching within the DAM model.

In fact, there is a tradeoff between the cost of searching and in-
serting in external-memory dictionaries [10], and B-trees achieve
only one point on this tradeoff. Another point is achieved by the
buffered-repository tree (BRT) [12]. The BRT supports the same
operations as the B-tree, but searches@d8egN) transfers and
insertions use amortize@((logN)/B) transfers. Thus, searches
are slower in the BRT than in the B-tree, whereas insertions are
significantly faster.

More generally, Brodal and Fagerberg’s data structure from [10],
which we call theBé-tree, spans a large range of this trade-
off. For 0< ¢ < 1, the B-tree supports insertions in amortized

This research was supported by NSF grants CCF-0540897, CCF-O((logg: , ; N)/B'~¢) transfers and searchesQflogg:  ; N) trans-

0541097, CCF-0541209, CCF-0621439, CCF-0621425, CCF-

0621511, CNS-0627645, CCF-0634793, and CCF-0632838; the yhene —

US Air Force; Google; and Intel.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SPAA'07 June 9-11, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-667-7/07/00065.00.

fers. Thus, wher = 1 it matches the performance of a B-tree, and
0, it matches the performance of a BRT. An interesting
intermediate point is whea= 1/2; then searches are slower by a
factor of roughly 2, but insertions are faster by a factor of roughly
v/B/2 when compared with a B-tree.

This paper explores this insert/search tradeoff in ¢thehe-
oblivious (CO) model [15]. The CO model is similar to the DAM
model, except that the block siBas unknowrto the coder or to the
algorithm and therefore cannot be used as a tuning parameter. The

IMost B-tree implementations are, in fact] Brees [4, 14, 17], in
which the full keys are all stored in the leaves, but for convenience
we refer to all variations as “B-trees.”



B-tree, buffered-repository tree, and-Bee are not cache oblivi-
ous; they are parametrized By

Of the extant cache-oblivious dictionaries, the most well-studied
is the cache-oblivious B-tree [6, 7, 11], which supports searches
in O(logg, 1 N) transfers, insertions in amortized(logg, 1 N +
(log?N)/B) transfers, and range queries returninglements in
O(logg, 1N +L/B) transfers: Another cache-oblivious dictionary
is a cache-oblivious alternative to the BRT, which we call here the
lazy-search BRT [2]. Although it is useful in some contexts (such

Deamortized lookahead array

We show how to deamortize the lookahead array and the COLA
whenM = Q(logN). Thus, we obtain the first cache-oblivious al-
ternative to the BRT. There is no amortization on searches and the
worst-case cost for an insert is no more than the cost of a search.

Experiments

We next measure how fast the COLA runs in comparison to a B-
tree. We use the B-tree whose performance was described in [8].

as cache-oblivious graph traversal) the lazy-search BRT is unsatis-For out-of-core data. the COLA was 790 times faster than the B-

factory in two crucial ways: keys are assumed to be in the range
[1,N], and searches are heavily amortized, so that the whole cost of

tree for random inserts, Btimes slower for sorted inserts, ané 3
times slower for searches.

searching is charged to the cost of previous insertions. Indeed, any

given search might involve scanning the entire data structure.

Results

Map
The rest of this paper is organized as follows. In Section 2 we
present the shuttle tree. In Section 3 we present the lookahead ar-

The paper introduces several cache-oblivious dictionaries that il- ray, the cache-oblivious lookahead array, and their partial deamor-

lustrate several points in the insertion/search tradeoff.

Shuttle tree

Theshuttletree, our main result, retains the asymptotic search cost
of the CO B-tree while improving the insert cost. Specifically,
searches still tak®(logg, ; N) transfers, whereas insertions are re-
duced to amortizeai)((logBH N)/BO(1/(IoglogB)®) | (jog? N)/B)
transfers. This bound represents a speedup as lonB as
(logN)+¢/(logloglogN)? " for any constant > 1; this inequality
typically holds for external-memory applications. Range queries
returningL elements také(logg, 1 N + L/B) transfers, which is
asymptotically optimal.

This relatively complex expression for the cost of inserts can be
understood as follows: When the dominant term in the insertion
cost isoiy(logB+1 N)/B@<1/<'°g'°95)2>), insertions run a ffactor of

O(Bl/('°9'°93>2> faster in the shuttle tree than in a B-tree or CO B-

tree. Observe that this speedupBSi(1/(109109B)%) js superpolylog-
arithmic and subpolynomial iB. This speedup, while nontrivial,
is not as large as the speedup in thetie.

Lookahead array

We give another data structure, which we calbakahead array.
The lookahead array is reminiscent of static-to-dynamic transfor-
mations [9] and fractional cascading [13]. This data structure is
parametrized by growth factor. If the growth factor is chosen to
be BE, then the lookahead array is cache aware and achieves th
same amortized bounds as thetBee. If the growth factor is cho-
sen to be a constant such as 2, then the lookahead array is cach
oblivious and matches the performance of the BRT. We call this
version thecache-oblivious lookahead array (COLA). Unlike the
BRT, the COLA is amortized, and any given insertion may trigger
a rearrangement of the entire data structure.

For disk-based storage systems, range queries are likely to b

faster for a lookahead array than for a BRT because the data is

stored contiguously in arrays, taking advantage of inter-block lo-
cality,

the same reason why the cache-oblivious B-tree can support rang

queries nearly an order of magnitude faster than a traditional B-
tree; see, e.g., [8].

2In fact, by using scanning structures such as [5] and amortizing
the cost of range queries, the fog-term can be reduced or re-

e

€

€

rather than stored scattered on blocks across disk. This is X .
ethat is above threshold, then splitnto two separate nodeg, and

tizations. In Section 4 we present results from our implementation
study of lookahead arrays.

2. SHUTTLE TREE

This section describes tlsauttle tree. We begin by describing
the overall pointer structure of the tree. We next give the cache-
oblivious layout of the shuttle tree followed by a search and space
analysis. We then describe insertions and explain how to main-
tain our cache-oblivious layout dynamically in a structure called a
packed-memory array [6]. Finally, we give an analysis of inser-
tions and their effects on the dynamic layout.

Shuttle-tree structure

A shuttle tree is astrongly weight-balanced search tree [3, 18]
(SWBST) with enhancements. In addition to the regular tree struc-
ture, each non-leaf node also points to a linked ligiudfers These
buffers are in turn recursively defined to be shuttle trees. All point-
ers in the structure are bidirectional to help the shuttle tree adjust
to changes in the memory layout.
We now introduce terminology useful for presenting SWBSTs
and shuttle trees. Theeight of a nodeu in a tree, denoted/(u),
is the total number of descendantswplus one; that isw(u) =
2 _vechildrenu) W(V) + 1, withw(u) = 1 if uis a leaf. The depth of a
nodeu is u's distance from the root. SWBSTs have leaves all at the
same depth. For such trees, we definetight of nodeu, denoted
h(u), to be the distance to a leaf plus one, itgy) = h(v) + 1 for
every childv of u, andh(u) =1 if uis a leaf.
A SWBST is a balanced search tree that maintains the following
invariant: For fanout parameter> 1 and for any node, w(v) =
é(ch(v))
This invariant determines the balancing routine for insertions and
deletions. To insert a new element, first perform a search and then
insert the element in the appropriate leaf. (Since each node has
size ©(c) the leaf node can accommodate several inserts directly

into the node before violating the balance condition.) If the leaf

is full, then split into two leaves. This split increases the weight
of all ancestor nodes in the tree. If ancestdnas weightw(v)

V', and then divide/s children to spread the weight as evenly as
possible among’ andv’. Thus,v's ancestors gain in weight by an
additional one. This splitting process may trickle up the tree until
the balance condition is satisfied at every node along the leaf-to-
root path followed. When the root node splits, a new root is added

moved. However, the details and resulting structure are not directly above the old root node, thereby increasing the height of the tree

pertinent to this paper.

by one.



There are several consequences of this invariant and balancingand the largest buffer has heig‘ﬁ}[(k) = Fk—2]'|og¢ k|- These set-

strategy. (See e.g. [3, 6] for full proofs.)

LEmMA 1. Consider an N-node weight-balanced tree with
constant balance parameter c.
(1) The degree of any node@c).
(2) For any node u and constant<d h(u), the number of descen-
dants of u that have height at leagth — d is ©(c%).
(3) Suppose that a node split has cbsThen the amortized cost to
insert into the tree is the search cost plusl®
(4) Suppose that splitting a node u cogt&™Y). Then the amor-
tized cost to insert into the tree is the search cost plUsgN).

The shuttle tree supports inserts efficiently by using the buffers.

tings mean that the parent node of a subtree containing rokghly
nodes has the largest buffer of size rougky®((10g10gk)?).

The shuttle tree as specified thus far cannot yet be analyzed in
the cache-oblivious setting. To do so, we must enforce a particular
dynamic layout in memory. We must show that the layout permits
efficient operations and can be efficiently maintained.

Shuttle-tree layout

We lay out the shuttle tree recursively in a type of “van Emde Boas
(VEB) layout” [20] that takes into account the lists of buffers and
several additional complications.

We first explain how our VEB layout would proceed on a regular

The buffers work in much the same way as in a BRT—an element tree of heighth. Let R, be the largest Fibonacci number strictly

being inserted starts at the root, follows the appropriate root-to-

smaller tharh. Then we split the tree at heighk (roughly h/¢

leaf path, but pauses at buffers along the way. The element only instead of at height/2 as in the traditional VEB layout). That is, if
gets “shuttled” down the tree when buffers overflow (and hence are b = F, is thekth Fibonacci number, then we split the tree into a root

full enough to amortize the cost of crossing block boundaries). Our
shuttle tree differs from the BRT in that it has a linked list of buffers

subtree of heighlf,_» and leaf subtrees of heigh_;, which are
recursively laid out. It is important that the split is above the half-

associated with each child pointer (rather than a single buffer as in way point, he|ghth/2’ unlike in previous cache-oblivious search

the BRT). These buffers have doubly-exponentially increasing size.

To insert into a shuttle tree, start by inserting into the root node.
To insert into a node in the tree, simply find the appropriate child
pointer and insert into the corresponding linked list of buffers by in-
serting into the smallest buffer. When a buffer “overflows” (i.e., the

height of the buffer shuttle tree exceeds the to-be-specified maxi-

mum), take each element in the buffer and insert it into the next
(larger) buffer in the lisB Once the largest buffer in the list over-

flows, insert these items into the child node in the shuttle tree.
(Thus, data items in the shuttle tree live in two possible places,
either in some buffer on a root-to-leaf path or in a leaf of the tree.)

structures [6-8, 11, 20]. Fibonacci numbers are a convenient way
to ensure this requirement because they enforce some integrality
while roughly matchindr =~ ¢K.

We now give the VEB layout of the shuttle tree, which means
also laying out the buffers; see Figure 1. Consider a (sub)tree of
heightFR, 1, with leaves of this tree having buffers of heights (ge-
ometrically increasing) up 165/ (1s 1) Think of this subtree and
these buffers as a single entity, which we calteaursive sub-
tree. When laying out this recursive subtree, we split the subtree
at heightF,. In the “left” end of memory, we store the top recur-
sive subtree of heigh&_1 (which includes leaf buffers of height

When an inserted element reaches a leaf in the shuttle tree, inseryp to F./_1)) recursively. To the right of this subtree, we store

tions work in roughly the same way as in any SWBST with splits
trickling up the tree. Note that at the time a nad®plits, the buffers
in betweeru andu’s parent have just been flushed.

LEMMA 2. When an element is inserted into a léall nodes
on the path from the root tbcan be fetched without increasing the
asymptotic complexity, as long asMQ(BlogN).

Proof. ~ The reason we insert into a leaf is because its parent’s

the heightF, leaf buffers, from left-to-right in the same order
as the leaves. To the right of these buffers, we lay out each of the
bottom recursive subtrees of height (including leaf buffers of
height up toF}[(k)) recursively. To the right of each of the bottom
recursive subtrees, we lay out that subtree’s hefight;, 1) leaf
buffers. We call the (contiguous) height-recursive subtree and
height+,/ 1) buffers (which appear immediately after the recur-
sive subtree in the layout) a (height) buffered recursive subtree.

The leaves of the shuttle tree are special in that they do not have

buffer has just overflowed, thus the grandparent buffer has just any buffers. We call a recursive subtree containing leaves of the
overflowed, and so on up the tree to the root. Thus, we just flushedtop level (i.e., entire) tree keaf recursive subtree. The recursive

buffers all the way down. If any subsequent block transfers evict

the root-to-leaf path, we can charge the cost of replacing the rele-

vant path block to the cost of evicting it in the first place. [

We base our buffer sizes on Fibonacci numbers A&t thekth
Fibonacci number. Theljy =0, F; =1, andR = R 1+ F_». For
all positive integer#, we define thé&ibonacci factor of h, denoted
by &(h), as follows. Ifhis a Fibonacci number, thef(h) = h.
Otherwise, letf be the largest Fibonacci number less thaifhen
the Fibonacci factor of is &(h) = §(h— f). The buffer sizes of
a node at heightt+ 1 depend upo@(h). In particular, consider a
nodeu at heighth+ 1 in the tree, and ldt be such thaF = &(h).
We define théuffer-height-index function #(j) = j — [2Iog¢ il,
whered ~ 1.618 is the golden ratio. Tharhas buffers with heights
Fac(i)» for each integeij, j = ©(1),...,k—1,k* In other words,

there are roughly buffers increasing geometrically in their heights,

3These items are inserted in arrival order, not smallest to largest.

4We can starj at any sufficiently large constant to help the proofs,
in particular Lemma 16.

layout of a leaf recursive subtree is the same, except that the bot-
tom recursive subtrees do not have any buffers coming out of the
leaves. For convenience, we use the terms “recursive subtree” and
“buffered recursive subtree” as generalizations of “leaf reearsi
subtree,” even though the leaves do not have buffers.

The buffer heights are carefully chosen using the Fibonacci fac-
tors to match this recursive layout. It is always the case that when
splitting a tree at the proper height, the leaf nodes of a hdigtdp
or bottom recursive subtree have a heifty, 1) buffer that can
be stored after the recursive subtree (as indicated in Figure 1). The
exception is for buffers that would have a sufficiently small con-
stant height; these buffers are omitted altogether. (The elimination
of small buffers helps the analysis in Lemma 16.)

Another way to interpret buffer sizes is that a node has a buffer
for every (sufficiently large) recursive subtree in which it is a leaf.
Thus, nodes that are roots of height-2 or taller recursive subtrees
(i.e., those having Fibonacci factars1) have no buffers, because
they cannot also be leaves of recursive subtrees. This notion is cap-
tured by the following lemma, which can be proved by induction.



heig_htFkH

3

AN
JT

heightF,_1

4

B2

—m eightFy/(c1

T

T B[ Bm]

Figure 1: The recursive layout of the shuttle tree. The solid triasgtncaps

ulate “recursive subtrees,” where the leavesr{da circles) of a heighfx

recursive subtree have buffers up to stzg. The dashed triangle encapsulates a “buffered recurshieesti (which contains the recursive subtree and an
additional, larger buffer for each leaf). The circles a@f leodes of the tree. They are drawn with degree two herenlfatt they (and all nodes) have degrees

that vary between two constants. The rounded rectanglestedhe heights of

various recursive subtrees. The rizeuwdsfinition is given from the top left to

the top right figure—the tree is split at the largest Fibonaamber less than the height, and the largest buffers of emmliting subtree’s leaves fall out. The

array on the bottom gives the layout—first the top recursidgtree, then the |
leaf buffers.

LeEmMA 3. Consider a node at heighthl > 1in a shuttle tree
(i.e,. a non-leaf node). This node is the leaf of some height-F
recursive subtree if and only &fh) > F.

Search analysis

We now analyze the search cost.

LEMMA 4. For a shuttle tree of heightgrand fanout ¢, which
contains N= O(c™) elements, the worst-case search cost is

O(F/logB) = O(logg N).

Proof. Without loss of generality, suppose the height of the
tree is a Fibonacci number (if not, we can round up). In particular,
suppose the height § 1, the (k+ 1)st Fibonacci number. Then
we recursively lay out the tree by splitting it into recursive subtrees
of heightR_1 (top) andF (bottom).

Let T(FR«1) be the cost to search a shuttle tree of
height Fc;1. Then we haveT(FR¢1) = T(Re1) + T(F) +
T(For) + T (Forrn) = T(Re1) + T(R) + T (Re1210g,k1) +
T(F(k+1)_(2|og¢(k+1ﬂ ). TheT(F}[(k)) andT (Fy/(ky1)) terms arise

argest leaf buffers, followed by eachdnottecursive subtree with its largest

LEMMA 5. An n-node shuttle tree usesi) space.

Proof. As an inductive hypothesis, we claim thatanode shut-
tle tree having heighf uses at mosiyjn— doc space, for some
constantsl;,d> > 0. We prove this claim by induction on height.
Consider am-node shuttle tree having height, ;. Split the
tree at height leaving a single top recursive subtree of height
F«_1 and many bottom recursive subtrees of helght_et ¢ be the
number of bottom/leaf recursive subtrees.
The top recursive subtree contai¥¢) nodes { = O(c1)
from Lemma 1), each having buffers with heights not exceeding
Far() (and hence containir@(c':ﬂ(k>) nodes). Thus, the space used

by the top recursive subtree@{/c™).

In total, thel bottom recursive subtrees uﬂ;g\ffdzc‘:ﬂ ® space
by assumption. Making large enough to dominate the constant
(hidden by the big-O) for the space used by the top recursive sub-
tree gives a total space usagedgh — /c™® . Sincel = ©(cF-1),
we are left with total spacel;n — ©(ch-tc™).  For k such
thatR_ 1 > Fg{(k> +log. dz, which is true fork larger than some

because of the cost of recursively searching the (noncontiguous)constant, we havef«1tFrw > ¢(Foo H10%:d2) +Fwi — g, 02w >
buffers. This recurrence only deals with the largest buffer at each d,c™ 1. Thus, the total space usage is at mst— doc™ k)|

level, but Lemma 3 implies that the smaller buffers are correctly
accounted for at further recursive levels. Once a recursiveesibtr
fits in O(1) blocks, the cost to search the subtre®{4) memory
transfers. Thus, we hav®(Fg(joglogs)) = O(1).

We claim thatT(F) < (1/logB)(ciF — c2F/logy F), for
some constantsy, c; > 0. This claim can be proved by induction
onk. U

Space usage

which proves the claim.

We have proven that an-node, height 1 shuttle tree uses
O(n) space. To prove the lemma, we must extend the proof to all
heightsh. This extension is similar to the above proof—it is sim-
ply a matter of recursively dividing the tree at the largest Fibonacci
number less thah. The bottom recursive subtrees use linear space,
and we amortize the additional space used by the top recursive sub-
tree against the bottom. U]

Although a full shuttle tree uses only linear spacegeursive

The following lemma claims that the space used by the shuttle tree subtreeuses super-linear space. (@af recursive subtree, on the

and all its recursive buffers is linear in the number of elements other hand, is just a shuttle tree of the same size.) To understand
stored in the shuttle tree. The main idea is that “most” of the buffers this fact, notice that the number of nodes in the recursive subtree is
in the tree are very small, so they have little impact on space. dominated by the number of leaves. Leaves of recursive subtrees



have superconstant-size buffers. The following corollary places a factor). On node creation, we allocate enough space for full buffers
weak (but sufficient) upper bound on the size of a recursive subtree and insert them in the appropriate place according to Lemma 7. As

COROLLARY 6. The total space used by a height-F buffered
recursive subtree is @).

Proof. A height+_; buffered recursive subtree contains at
most O(c™1) nodes (and leaves) according to Lemma 1. Each
of these nodes has buffers of size no larger ) The space

used by buffers is dominated by these largest buffers, which each

take O(cFH<k>) space by Lemma 5. Thus, the total space used is
O(cFi-tcfta) = O(c* +Hhleemiy — O(cF).

Maintaining layout dynamically

Insertions cause splits, which create new shuttle-tree nodes. Be-

in Corollary 9, our algorithm need not be more clever than scan-
ning the smallest buffered recursive subtree that includes afi'®f
buffers (i.e., the largest in whialp is a leaf).

When the root of the entire shuttle tree is split, a new rabts
inserted above the previous raofThis new root’ may be the leaf
of (possibly large) recursive subtrees. These recursive sstdree
conceptual and have not been filled out yet, but we still allocate all
buffers. Consider, for example, if the heightra F.. Thenr’ has
heightR, + 1 and includes buffers of height up 9 (1)- The new

rootr’ and all its buffers simply precede all other nodes and buffers
in the shulttle tree.

LeEmMA 10. The amortized cost of dynamically updating the

cause splits change the topology of the tree, they also affect thelayout due to an insertion at a leaf in a shuttle tree containing N

VEB layout. The layout described thus far for the shuttle tree gives
a total order in memory for nodes (and buffers) of the shuttle tree.
Here, we show how to update this total order dynamically. The next
subsection deals with how to make space for the new elements.

LEMMA 7. Consider a split of a node u into two nodesand
u> (where y is the newly created node). Lét, U, and U be
the largest buffered recursive subtrees for which 4,and  are
roots, respectively. Then splitting u caus@sto be replaced by
U, and Uy in the VEB layout. The new layout has the following
properties:

1. For any two nodes or bufferg w, ¢ U, the relationship
between y and » does not change in the layout.

2. For any two nodesiyv, € Uj (resp. ), the relationship
between y and v does not change in the layout.

3. All nodes and buffers ifi; immediately precede all those
in U, after the split.

4. Suppose u (and henceand w) is a leaf in a height-gre-
cursive subtree, for k ©(1).% Then y has a height-F(; 1)
buffer. This newly created buffer appears immediately after
uy's height-F/ i, 1) buffer.

Proof. These claims follow directly from the recursive definition
of the layout. The last is most surprising and follows from Lemma 3
and the fact thati; andu, are sibling leaves in all relevant recursive
subtrees. U

COROLLARY 8. Consider a split of buffered recursive subtree
U into two buffered recursive subtre€# and Us. This split can
be performed in QL) linear scans oful.

Proof.  Just do a “stable” (i.e., order-preserving) partition@f
around the root ofll.

The following corollary puts a weak upper bound on the cost of
updating the layout to include new buffers.

COROLLARY 9. Consider a split of a node u into two nodes
u; and . Suppose also that u is the leaf of a heig@hr larger
recursive subtree. Letl be the largest buffered recursive subtree
in which u (and hencejguand W) is a leaf. Then all of s newly
created buffers can be inserted witl{X) linear scans oft..

Proof.  All of up's buffers reside int, anduy’s buffers appear
immediately aften;’s buffers.

When a split causes a new nodgeto be inserted, this node has
some buffers associated with it (depending on its child’s Fibonacci

SFor smallk, there are no buffers.

items is G(logN)/B), assuming that the leaf-to-root path (and
©(1) blocks adjacent to each block on the path) are already in
memory.

Proof. There are two components to the cost. First, we examine
scans caused by splitting the appropriate subtrees. Then we analyze
scans caused by inserting buffers.

Suppose that a nodeat heighth is split. Corollary 8 states that
the cost of splitting this node is just that of scannitigwhere U
is the largest recursive subtree for whielis a root. If U is a leaf
recursive subtree (i.eh is a Fibonacci number), then the size of
U is O(c") from Lemma 5. Otherwisefl has height geometri-
cally smaller tharh, and Corollary 6 states thai has sizeD(c").
(Note thattl may be much smaller thzm(c“), but we can afford to
round up.) Thus, we pay for a scan costidg c"/B|) everyQ(c")
inserts, for an amortized cost 6f(1/B) to insert belowu.® The
floor function is added because a constant number of blocks in this
region are already in memory.

When a nodaui at heighth has a split that creates new buffers,
we insert the buffers in the correct location according to Lemma 7.
Corollary 9 states that inserting these buffers involves at most a lin-
ear scan of the largest buffered recursive subtree in whigh leaf.

The size of this subtree is agad{c") from Corollary 6. We have,
therefore, that the scan from inserting buffers c@tsc"/B|) ev-
eryQ(c") inserts for an amortized cost ©{1/B) to insert beloww.

We complete the proof by observing that an insert into a leaf
inserts below®(logN) nodes in the shuttle tree, which means we
have to multiply all costs b®(logN). U

Making space for insertions

The shuttle-tree layout suggests a total order in memory, and we
maintain this layout dynamically by embedding the shuttle tree in
a packed-memory array (PMA) [6]. The PMA is simply an array
that allows for efficient insertions (amortized(log?N/B) block
transfers) by leaving gaps between elements. A nice property of
the PMA is that anyn consecutive elements use or@¢n) space,

SO we can maintain our data structure compactly in memory.

When there is no more space available for an insert, a section of
the array must beebalanced, or evenly spread out. In particular,
when there is no room for an insert, we must search for a region of
the array that is not “too dense.” Details of the density thresholds
can be found in [6].

This idea of maintaining a weight-balanced tree embedded in a
PMA was described in the original cache-oblivious B-tree (in the
conference version of [6]). The difficulty with bidirectional point-
ers is that when nodes shift around in the PMA, we have to update

6This sort of analysis is similar to that for Lemma 1.



all pointers that point to these nodes. This updating may lose datais polynomially smaller than the size of the region.) Nodes having
locality. In particular, when a node moves, it must tell its children child pointers into the region have some locality, so we can update
to update their parent pointers, and the children may not be nearbythose easily, and we do not consider them further in the lemma ar-
and may not be near each other. gument.

To minimize the parent-pointer-update cost, we take advantage
of the fact that we can be flexible in choosing the region to rebal-
ance. In particular, Katriel [16] shows that the region can grow
in either direction as long as we perform a density-threshold test
whenever the region size roughly doubles. The cache-oblivious
string B-tree [8] also leverages the flexible rebalance to deal with a
tree embedded in a PMA.

A buffer is allocated as a single chuigkin the PMA 47, i.e., all
space that the buffer will ever need is allocated at the outset. A
rebalance of a shuttle tree moves this enclosed buffer ctivadka
single unit.

Thus, the PMAA can be thought of as a PMA containing Proof. We give an algorithm for choosing a rebalance region.
variable-size elements (chunks). A PMA with variable-size ele- Property (3) is the difficult property, so we concentrate on how to
ments also occurs in the string B-tree [8], and the PMA bounds are satisfy it in particular.

LEMMA 12. There exists an algorithm for growing the rebal-
ance region such that when inserting after a node at height h, with
k such that < h < R 1, we have the following properties:

(1) The initial size of the region is (@).

(2) The initial region contains all nodes and buffers involved in the
dynamic layout changes (i.e., from Lemma 7).

(3) There are Qc™1) nodes outside the region having parent
pointers to nodes inside the region.

(4) Each time we increase the region size by a multiplicative con-
stant, we find another feasible rebalance region.

asymptotically unchanged. Suppose that we need space next to the nddehe shuttle tree
The chunkC is itself a (recursive) PMA, imposing density  (because splits intou; andup). Suppose that heightu) is not a
thresholds and rebalance regions on the elements irSpecifi- Fibonacci number, and lé&tbe such thaF < h(u) < R, 1. (Thus,

cally, when inserting into a buffer shuttle tree, the ensuing rebal- u is not the root of a leaf recursive subtree—the case when
ance touches only memory within that tree’s preallocated cliynk  the root is the easier case, which we handle later.) WUdie the
and thus never moves any nodes in the enclosing PMAThis heightF,_1 buffered recursive subtree containingandu,. (This
property that insertions into a buffer do not affect nodes in the en- subtree contains nodes of height betwé&gn- 1 andF,1). Let
closing tree is necessary for the analysis and is the reason for pre-£,, 7,. ... be U's children leaf recursive subtrees. (These subtrees
allocating buffers. U and L4, Ly, ... are contiguous in the layout.) Then we initially
There are two costs to bound when analyzing the PMA insert. select our rebalance region to inclugieand ;.
The first is the normal PMA cost for the amount of space inserted.  This initial rebalance region satisfies properties (1) through (3).
The second is the cost of parent/child pointer updates due to nodeln particular, Corollary 6 states thét useso(ch) = O(ch) space,
movement. We now bound the first cost by bounding the (amor- and Lemma 5 states thaj useso(ch) space. Thus, the size of the
tized) amount of space inserted due to a single leaf insert. Note region isO(c"), satisfying property (1).
that until an item reaches the leaf, it does not increase the amount Property (2) is satisfied because we have selected a buffered
of space used. recursive subtred! containingu; andu, for which these nodes
are not the root. This region, therefore, includes the buffered re-
LEMMA 11. Eachinsertinto the leaf of a shuttle tree increases cursive subtrees involved in the dynamic layout changes (i.e., in
the amount of space used by the shuttle tree by amortizéd O Lemma 7)!
The only nodes outside the region having parent pointers to
Proof. Consider a split of a node at heighth+ 1, letk be such nodes inside the region are the roots/@f, £3,.... All of these
that e < h < R 1, and letj be such thaf; = &(h). Then the pointers point to nodes ifil. Thus, property (3) is satisfied be-
split creates new buffers having heights ufFi@ ) < Fy ). Since causell hasO(c™ 1) nodes.
u's buffers have geometrically increasing heights, the size of the  We now show how to increase the region size (property (4))

buffers is dominated by the largest buffer, which has @Qtézmk)) while still respecting property (3). Recall that the region initially
from Lemma 5. We amortize against thec*1) items that must includesU and L;; we grow to the right to includél’s children
be inserted befora is split to get an amortized space increase of leaf recursive subtrees;, £3,.... Each time the region extends
O(CFHKFW /ch“) = O(c':k 2*h) = O(c*h/z). Taking the sum over all into the next leaf recursive subtrég, it consumes all of;. Since
heights gives a geometric sum, bounded by a constant. [ these subtrees all have si@¢c™), we can select enough of them

We now give more information about inserting extra space. A to increase the size of the rebalance region by a constant factor.

split determines how much space to insert into the PMA, specifi- Obsl‘e“f’e that each Sme theh rebalatr:ce ;eglzn grr]ow_s to include
cally the size of one node plus the size of the extra buffers inserted more leaf recursive su tres, t '€ number of nodes having parent
(which on average is constant from Lemma 11). We first insert the p0|nter§ into the rebalance region actually reduces. We, therefore,
extra space into the PMA so that the changes in the dynamic lay- maintain property (3). . . )
out (a new node and buffers) have space available to them. Once If the rebalance region grows to |nclude_all s_uqh chlldren_ sub-
there is space available, we can just do the split. It is convenient to treelel,ng,Lg,._.., thgn our \r/sbalance reglﬁn Is itself a h?'ght'
insert a large block of space in one spot in the PMA and spread it Tk+1 1€af recursive subtre€;. We now grow the re9|on to m/c uae
out with a scan. Recall that when inserting new buffers, our anal- @ neighboring helgthH leaf recursive subtree; ; or Ljq,
ysis already accounts for a scan of the buffered recursive subtreeetc. Once the region consumes all such leaf recursive subtrees
containing those new buffers (Corollary 9 and Lemma 10), so this £{, L5, ..., then we grow to include the parent heidftbuffered
“spreading out” does not asymptotically increase the cost. recursive subtre@!’. This process continues until a region meeting
The following lemma states that an algorithm for choosing a the proper density thresholds is discovered.
“good” rebalance region exists. A good region is one for which  7\gtice that this initial region may be much larger than the subtrees
there are not too many nodes outside the region having parent point-involved in the layout change. We make the initial region this large
ers into the region. (That is, the number of pointers into the region because it is simpler, and we can afford to do so.




Once the rebalance region consists of only leaf recursive sub- We first bound the cost of making space in the PMA. Lemma 11
trees, there are no nodes outside the region having parent pointersays that the average amount of space insert€i$ so making
into the region, and thus property (3) is trivially satisfied. As the re- space amortizes t@(logZN/B) per insert. In fact, we choose a
gion grows, notice that it always consists of leaf recursive subtrees. larger initial rebalance region than the PMA dictates. This addi-

We now handle the case whbfu) = F for somek. We initially tional cost is amortized against the layout update.
choose a rebalance region to include the hefghlieaf recursive We now bound the cost updating the dynamic layout. Lemma 10
subtrees rooted at; andup. When this region needs to grow, it states that the cost of splitting nodes and inserting buffers amortizes
grows similarly, and there are no parent pointers into the regibn.  to O(logN/B).

We now analyze the cost of updating pointers in the shuttle tree. ~ Finally, we bound the cost of parent-pointer updates. Lemma 13

Note that pointer updates in the contiguous region being rebalancedstates that the cost of updating Pl%em pointers outside the rebal-
can be resolved in a constant number of scans, and hence are amo@nced region amortizes @logN/B*/~). Updating parent pointers

tized against the cost of making space in the PMA. within a rebalance region comes for free with a constant number of
Instead, we examine the cost of updating parent pointers outsideScans. _
the rebalance region (pointing into it). Adding all these costs together gives the lemma. 0

The next lemma bounds the number of buffers of each size along
a root-to-leaf path in the shuttle tree. We then apply this lemma to
show that the cost of recursively inserting into all of these buffers
is small.

LEMMA 13. Consider a rebalance of a region in the PMA due
to an insert at the leaf of an N-element shuttle tree. Assume that the
leaf-to-root path (andd(1) blocks adjacent to each block on the
path) are already in memory. Then the amortized cost per insert of
updating parent pointers from nodes outside the region pointingto  LEMMA 15. Consider the nodes along a root-to-leaf path of a
nodes inside the region is(@ogN)/BY/3). height-F shuttle tree. At mostE j. > of these nodes have height-

. Fy iy (or larger) buffers.
Proof. = Lemma 12 states that the maximum number of parent (1) ( ger)

pointers (outside the region) to update when splitting a node at Proof. We count the number of nodesalong a root-to-leaf path
height fc < h < Feyq is O(c™1). We amortize these updates  with E(h(u)—1) > Fj.
against theQ(c") inserts that must be performed below a height- A node only has a heiglfts;;, buffer if its child has Fibonacci
h node between splits, which gives an amortized co(af«1~") factor at leasF;. Thus, the number of nodes with Fibonacci factor
parent-pointer updates per insert. at leastr; is an upper bound on the number of nodes with height-
Suppose that™ = Q(B). Then the leaf recursive subtrees do Fyy ) buffers.
not fitin a block, and we must pay a block transfer for each parent- | et N(k, j) be the number of nodes along the root-to-leaf path of
pointer up'c!katti.hThls CaFSke [%’f'uns in ?Q/gggg'zed meﬁk%y-transfera heightR, shuttle tree such that the nodes have Fibonacci factor at
cost ofO(c*171) = O(c™*17") = O(c ) =0(c™/®) = leastF;. We claim thatN(k, j) = Fc_j.2, and we prove this claim
O(B~1/3) per insert (forkk > 4). by induction ork.
Suppose that™ = O(B). Thus, a leaf recursive subtree whose The claim is true fok = 3 andj with 1 < j < k—the tree has
parent pointer must be updated fits in a block. In particular, heightFs = 2. Forj = 3, Fs3_j+2 = R = lindicates that one node

@(B/CFk) such subtrees fiti®(1) blocks, and we gEB/CFK > B/Ch (the root) has Fibonacci factor at le&st= 2. Forj = 2, Faji2=
parent-pointer updates per block transfer. We thus have an amor-F; = 2 indicates that two nodes (the root and leaf) have Fibonacci
tized cost of0(cP-1-"/(B/c")) = O(c1/B) = O(c(?/3F /B) = factorF = 1.
O(B?%3/B) = O(B~1/3) per insert (fork > 4). Suppose that the claim is true for Eli< k and allj < k. Notice

Since an insert into a leaf inserts bel@{@ogN) nodes, we mul- thatN(k, k) = 1 = F_k,2 because only the root of a heighttree
tiply our bound by lodN to complete the proof. [ has Fibonacci factdfc. For j =k—1, only R (_1y4» = 2 nodes

] have Fibonacci factor at leaBt_;. For j < k— 2, observe that for

Insert analyss any nodeu with heighth(u) > R4, §(h(u)) = &(h(u) — R_1) (by

the definition of Fibonacci factor). Thus, the nodes of these height
have exactly the same Fibonacci factors as the nodes in a height-

We first bound the total amortized cost of an insert into a leaf node
of the shuttle tree (i.e., the split cost and PMA inserts). Then we
bound cost to recursively insert into the leaves of all (shuttle-tree) Fk-2 subtree. _ _
buffers. Finally, we bound insert cost to “shuttle” down a root-to- _ 1hUS, by inductive assumption on the valueskaind j < k—
leaf path. We conclude the analysis with the full insert cost. 2, we obtain the recurrendé(k, j) = N(k—1,j) + N(k—2,]) =
The following lemma bounds the cost to insert at a leaf. We Fk-1)-j+2tFr-2)-j+2 = R j+2- u
assume that the memory is large enough to store a root-to-leaf path  We now bound the cost to insert inédi leaves, including those
(i.e.,M =Q(BlogN)). in the (recursive) shuttle-tree buffers. Note that this lemma does not
) ) o account for bringing the root-to-leaf path of the shuttle tree (or the

~LEmmA 14. The amortized cost of Inserting into a leaf of & recursive shuttle-tree buffers) into memory. The cost of trarisfgrr

size-N shuittle tree is @ogN)/BY/3+ (log?N)/B). these blocks will be accounted for in Theorem 17.

Proof.  Inserting into a leaf that has room for more keys is s- | eywa 16, The amortized cost of (recursively) inserting into

sentially free (i.e., only the block containing the leaf must be in {he |eaves of all shuttle-tree buffers along the root-to-leaf path of a
memory). There is only an extra cost when nodes split. Note that gj;o_N shuttle tree is @IogN)/Bl/3+ (I092 N)/B)

at the time of an insert into the leaf, Lemma 2 states that the leaf-
to-root path (and a constant number of neighboring blocks) is in Proof. Without loss of generality, suppose that the height of the
memory. tree is the Fibonacci numbeg, giving N = O(c™).

The costs incurred by an insert are the costs of updating the lay- Let T(F) be the amortized cost of inserting into the leaf of
out (i.e, splitting nodes and inserting new buffers), finding space in a heightk, shuttle-tree and all leaves of shuttle-tree buffers (re-
the PMA, and updating pointers. cursively) along the root-to-leaf-path. LE(F,) < c;(F/BY3 +



FkZ/B) be the cost of inserting into the leaves of a particular height-
F¢ shuttle tree (not counting the cost to recursively insert into
buffers—this cost is bounded in Lemma 14).

Applying Lemma 15 gives the recurrencdl (Fy) <
C(F) + le(:b F—j+2T (Fyy(jy), whereb = ©(1) is the small-
est buffer-height index.  Thus, we have(F) < C(K) +

k k—b
2 i=b P j+2T (Fagjy) = C(R) + 270 P jr2-bT (Fog(j4m)) <

Kk—
C(R) + X" 8 (Re1/Fi—3+0) T (Forj 1 ))-

We make the inductive hypothesis tHatR) < cp(F/BY3 +
F?2/B) for all i < k, which can be proved by substitution into the
summation. U

The next theorem bounds the total cost of an insert into the shut-
tle tree. The main idea of this theorem is that whengever an item
moves from one block to another, at le@R(1/(109109B)%) jtems

provide better worst-case bounds. We explain the deamortization
in two steps, showing first the basic idea, and then dealing with the
full complexity of the data structure. We conclude this section with
a discussion of the tradeoff between updates and queries.

COLA structure and amortized analysis

The cache-oblivious lookahead array (COLA) is similar to the bi-
nomial list structure [9] of Bentley and Saxe. It consist$lof, N
arrays, orlevels, each of which is either completely full or com-
pletely empty. Theth array is of size ®and the arrays are stored
contiguously in memory. The COLA maintains the following in-
variants:

1. Thekth array contains items if and only if theh least sig-

nificant bit of the binary representation Nfis a 1.
2. Each array contains its items in ascending order by key.

also move, and we can amortize against these to get a small cost ofrg maintain these invariants, when a new item is inserted we effec-

moving down the tree.

THEOREM 17. The amortized cost of an insert into the shuttle
tree of size N is Qlogg N)/BO((1/109109B)) 1 (1og2N)/B).

Proof. The full insert cost has two contributors: the cost of

letting an item move toward the leaves in the tree(s), and the cost

of inserting into the leaves. The latter is bounded by Lemma 16.

Here we analyze the cost of moving down the tree. This cost
follows a similar recurrence to that in Lemma 4’s proof. In partic-
ular, we letT (Fx. 1) be the cost to move an item through a height-
Fxi1 shuttle tree. Then we have(R 1) = T(F1) + T(F) +
T(F}[(k)) + T(F}[(k+1))

This proof differs from that in Lemma 4 because of a different
base case. Once we recurse down to buffered recursive subfrees
size roughlyB, we have a subtree with leaves containing buffers
of size roughlyB®(1/(109109B)) ' The only reason an item being in-
serted enters a new block is if it overflows from one of these buffers
in a previous block. Thus, we can amortize the cost of this move
to get a base case f(Foiogioge)) = O(1/BO(1/(°91098)%))  The
recurrence solves in the same way as in the proof of Lemnia 4.

Scanning

We conclude this section by analyzing the scan cost.

THEOREM 18. Suppose that M= Q(BlogN). Suppose also
that we just performed a search on an element x. Then a range
query starting at x that returns L elements in sorted order makes
O(L/B) memory transfers.

Proof.  Finding the successor of an elemargntails findingx's
successor in the shuttle tree and recursively in all the buffers along
the root-to-leaf path in the shuttle tree. Assuming all (recursive)

tively perform a carry. That is, we create a list of length one with
the new item, and as long as there are two lists of the same length,
we merge them into the next bigger size.

LEMMA 19. Insertion into the COLA incurs an amortized
O((logN)/B) block transfers.

Proof. Once an item has been involved@flogN) merges, it is

in the last array. The first Igd moves incur no cost because these
arrays fit into a constant number of blocks, which we can assume
are always kept in memory. After this, the arrays being merged
have length at lea&. Thus, the cost of merging two such arrays of
lengthk is O(k/B). The amortized cost of one merged¢l/B) per
item, and so the total amortized merge cogDiglogN)/B) block
transfers. J

Naively, searches can be implemented by binary searching sep-
arately in each of th@(logN) levels for a total complexity of
O(log®N). We call this first data structure thesic COLA.

We speed up searches by fractional cascading [13]. Every eighth
element in thgk+ 1)st array also appears in thé array, with a
real lookahead pointer to its location in thek+ 1)st array. Each
fourth cell in thekth array is reserved for duplicate lookahead
pointer, which holds pointers to the nearest real lookahead pointer
to its left and right. Thus, every level uses half its space for actual
items and half for lookahead pointers.

LEMMA 20. COLA searches incur @QogN) block transfers.

Proof.  To simplify the proof, on each level storec and+co in
the first and last cell and give them real lookahead pointers.
We prove inductively that a search for kelpoks at at most eight
contiguous items in each level and thas greater than or equal to
the smallest of these and less than or equal to the largest of these.

root-to-leaf paths are in memory, a successor query is free. A new This induction will establish both the time bound and correctness

block must only be brought in evefy(B) successor queries, for an
amortized cost 00(1/B).

Lemma 4 states that a search caS{$ogg N) block transfers.
Thus, assuming memory has sie= Q(BloggN), all (recursive)

root-to-leaf paths are in memory. Finding a successor is, therefore,

amortized toO(1/B). U
3. CACHE-OBLIVIOUS
ARRAY (COLA)

This section describes theache-oblivious lookahead array
(COLA). We begin by describing the structure of the COLA with an
amortized analysis. Then we show how to deamortize the COLA to

LOOKAHEAD

of the search procedure.

The claim is true in the first three levels, because each has size
at most eight (even with thec and-+co pointers added). Suppose
the claim is true at thkth level, wherek > 3, and the search in this
level looked at contiguous items with keys< ro < ... < rgand
thatrq <r <rg.

Let ¢ be such thaty <r <ry;1. If ry =r then we have found the
target element or lookahead pointers that lead to the target element.
In this first case the induction goes through trivially for all remain-
ing levels. Otherwiser, < r. In this second case we restrict our
search on the next level to those keys between the elements pointed
to by two lookahead pointers, the two lookahead pointers whose
key values are the maximum belawand the minimum above.



We can find both lookahead pointers quickly using the duplicate
lookahead pointers. |

Lookahead pointers can also be used to achi@ilegN) block
transfers for predecessor and successor queriec®@dogN +L /B)
block transfers for range queries, whérés the number of items
reported.

Deamortization of basic COLA

As a first step, we show how to partially deamortize the ba-
sic COLA (which includes no lookahead pointers) whigh=
Q(logN). We improve the worst-case bound fro®(N/B) to

THEOREM 22. The basic COLA can be deamortized to per-
form O(logN) block transfers per insertion in the worst case and
O((logN)/B) amortized block transfers per insertion as long as
M = Q(logN).

Proof. The worst-case bound follows immediately from
Lemma 21 sincé& = O(logN).

For the amortized bound, the argument is similar to that for
the amortized COLA. The difference is that now when we incur
a block transfer at a level beyond tlleg, B)th level, that block
may be evicted due to previous levels becoming unsafe before we
get a chance to mov8 items. We charge such an eviction to the

O(logN). We ignore the issue of deamortizing global rebuilding - pjock that is brought in. Since unsafe levels are processed from
after the data structure doubles in size because this can be handlegss; 1o right, there can be no cycles in blocks charging one another

using standard methods [19, Ch. 5].
The idea is as follows. In levet of the lookahead array we
maintain two arrays each of siz&.2Whenever a level contains

for evictions. Furthermore, if a blook evicts a blockD from a
later level then is evicted itself before completing the merge it was
brought in for, wherC is later brought back into memory it must

items in both of its arrays, we begin merging those two arrays into pe pecause a block at an earlier level finished participation in its
an empty array in the next level. Each level is said to be either merge;C can take that block’s space in memory. Thus, a block

safe or unsafe. Informally, a level is unsafe during merging. More
formally, initially all levels are safe, levéd become unsafe once
it contains exactly ¥1 items, and an unsafe level becomes safe
when both of its arrays become empty.

brought into memory during a merge is only charged for evicting
at most one other block. This guarantees that the amortized cost of
moving one item is still 1B.

Furthermore, sincé = Q(logN), we can assume the three ar-

We place newly inserted items into level 0. We then scan the 4y keeping track of merge information are always in memory, so

levels from left to right, merging from unsafe levels to the next

level, stopping when we have either run out out of unsafe levels or pjace without incurring extra transfers.

moved a total ofn items, whichever comes firsin(to be chosen
later). We keep three arrays of sideg, N|. One array keeps track
of which levels are safe. The other two arraki entries hold the
indices we are at in the merge of the two arrays at lkvel

the insertion algorithm can determine which merges need to take
O

Deamortization of COLA
The introduction of lookahead pointers complicates COLA

The biggem, the more aggressively we merge. We need to make deamortization since we must maintain the pointers in the middle
sure we merge aggressively enough to guarantee that whenever w@f merges to keep queries fast. Since the deamortized structure is
merge from a level there is at least one free array in the next level, only allowed to perform a small amount of work per update, it is

which would be implied by the next level being safe. The insertion
worst-case bound is cleary(m), so we wanim as small as possi-

not clear how this can be done. We show how to extend the deamor-
tization technique for the basic COLA to the COLA in such a way

ble while still keeping us aggressive enough. Lemma 21 shows thatas to completely hide the details of the deamortization from the

a fairly low setting ofm suffices.

LEMMA 21. Ifalookahead array contains k levels, settingsm

queries; from the viewpoint of a query, no level will appear to be in
the middle of a merge. The precise description and proofs follow.
At level k we now maintain three arrays, each of sife/t least

2k+ 2 guarantees that two adjacent levels are never simultaneously one array is ahadow array and at least one is\asible array (un-

unsafe.

Proof. By induction on levels we show that levelandi + 1 are
never simultaneously unsafe. FHoe O there are at least 2 levels,
som > 6 and we can afford to perform an entire merge from level 1

less levek is beyond the levels being used by the data structure yet,
in which case all three arrays are considered shadow). Query algo-
rithms ignore the shadow arrays. This labeling of shadow versus
visible is non-constant throughout time; during updates a shadow
array may become visible, and vice versa. Items in visible arrays

to 2 whenever level 1 becomes unsafe. Thus level 1 never remainsnever appear to be in the middle of a merge from a query’s view-

unsafe, showing the base case.

We show that if level is unsafe, it becomes safe before level
¢ —1 becomes unsafe. When levdbecomes unsafe, level-1 is
empty. Furthermore, for us to have moved items from lével to

point, so the data structure induced by only looking at visible ar-
rays appears almost exactly as the amortized COLA with looka-
head pointers. The key difference from the deamortization method
of the previous section is that when ledebecomes unsafe, we

level ¢, all previous levels had to have been safe since we processdo not move items from levéd to k+ 1; we insteaccopythem to

unsafe levels from left to right. Therefore, levels O¢te 2 hold a
total of at mosth;% 2l = 20=1 _ 1 items, and for level — 1 to

become unsafe again there must be at le&st 2 1 inserts. We
show that levell becomes safe after at most2 inserts. After
2-1inserts, we have accumulated at lea£2’~1 moves, and no
move will go unused as long as levek unsafe.

After 2~ 1 insertions there can be at moét-21 items in levels
¢ —1 and below, and each one could have used at me& moves
to get to its level. Thus, items below lewetould have used a total
of at most(¢ — 2)(2’ — 1) moves. We want at least 2! moves
available to move all the items from leveto the next level, so we
wantm2/~1 > (£ —2)(2¢ — 1) 4+ 2+, which holds fom > 2¢. [J

a shadow array of levéd+ 1. Thus, from the point of view of a
query, no arrays appear to be in the middle of a merge.

All levels start as being safe and all arrays start as being shadow
arrays. Levek becomes unsafe once two of its arrays become full.
Two full arrays at an unsafe level must be merged into any shadow
array A of level k+ 1. If there is more than one shadow array in
levelk+ 1, preference is given to one already containing lookahead
pointers. After the merge, lookahead pointers are copied #om
into an empty shadow array at leviel We restrict ourselves to
having a total combined number of copied lookahead pointers and
merged items to being at most during each insertionn to be
chosen later. Levek becomes safe once both the merge iAto
and the placement of lookahead pointers frénnto level k are



complete. At this point we say the array in leethat received the nearest real lookahead pointers to their left and right in each of

lookahead pointers frorA becomedinked to A. the main and secondary arrays of leiket 1. Queries then search
We now discuss the transition from shadow to visible and vice both arrays at a level in parallel.

versa. Level 0 only contains two arrays, both of which are always

visible. A shadow array becomes visible when there is a sequencecaChe'aware update/query tradeoff

array becomes visible there are two cases. If there are two other vis-cache-aware and achie@logg: .1 N) block transfers per query

ible arrays in that level, their statuses are both changed to shadow, 4 O((logg 1N)/Blfe) block transfers per insertion for any
et

and both arrays are then considered_em_p?y. Otherwise, if there are; [0, 1], matching the bound of the*Brree [10]. Instead of having

0 or 1 other visible arrays, they remain visible. the array at levek be twice as big as the array at lekel 1, we can
have it grow in size by some arbitrary multiplicative factowhich

we call thegrowth factor, e.g.g = 2 yields the COLA. We discuss
settingg = ©(BE). Instead of every eighth element of levealso
appearing in levek — 1, every®(Bf)th element will appear as a
Proof. We prove the claim by induction on level. If we merge lookahead pointer in the previous level. During queries we must

LEMMA 23. Suppose level k becomes unsafe and merges into
a shadow array A at level k 1. Then, A becomes visible before
another merge into level+k 1 occurs.

from level 0 to an array\ at level 1, the arrayA becomes imme-  look through®(B®) instead 0f9(1) cells of each array, bud(B*)
diately visible since an array at level 0 then becomes linkefl.to  cells still fit in at most 2 blocks implying a constant number of
Now, suppose we just merged two arrays from ldviglto arrayA block transfers per level. When performing an insertion, the level

at levelk+ 1. At the end of the merge, levklhas two arrays with being merged into may not be empty and we thus have to merge
items (the arrays that engaged in the merge) and one shadow arraghe pre-existing items with the ones from the previous level. Since
Bthat is linked toA. Since there are never two adjacent unsafe lev- the sum of the sizes of the firkt- 1 levels is at least af(1/B?)

els,B has received all its lookahead pointers frarbefore a merge fraction of the size of théth level, a level is merged into at most
into levelk can occur. When a merge into levetioes occur, it is B¢ times before its items participate in a merge into a future level.
into B, and the other two arrays at levethen become shadow. For ~ This fact, together with there being at ma3tlogg: , 1 N) levels,
another merge into levéeh- 1 to occur, there must be another merge  gives the amortize®((logg: , 1 N)/B1~#) insertion bound.

into levelk after the merge int® in order to make levek unsafe. The deamortization technique of the last section can be adjusted
By our induction hypothesi®d becomes visible by this time, and  to reduce the worst-case insertion complexity of this cache-aware
thus so doed sinceB is linked toA. U lookahead array t®(logg: ;1 N). The main differences are that

we need to moveéd(B*logg: 1 N) items per insertion instead of
THEOREM 24. The COLA with lookahead pointers can be O(logN) items, and that we need an extra array per level to provide
deamortized to perform @gN) block transfers per insertion in space for holding the result of merges into non-empty arrays.
the worst case and @ogN)/B) amortized block transfers per in-

sertion as long as M= Q(logN). 4. COLA: EXPERIMENTAL RESULTS

Proof.  Safeness of a level is similar to safeness in the basic  This section presents an experimental evaluation of the COLA.
COLA. In both scenarios, if levelt is unsafe then we must scan  We compared COLAs with B-trees as well as the impact of in-
(2% items before levek becomes safe again (note that placing sertion order on performance. First we describe our implementa-
lookahead pointers in the previous level after a merge can be donetion, then the experiments, and present our results showing that the
by two simultaneous scans). Thus, we can use the proof idea of COLA can be orders of magnitude faster than traditional B-trees
Lemma 21 to state that two adjacent levels are never unsafe if wewithout sacrificing much performance on searches.

choose to mov®(logN) items per insertion. By Lemma 23, three .

arrays per level suffice to guarantee that for any unsafe level therel Mplementation

is at least one shadow array in the next level to merge into. The restqere we describe the implementation details of the amortized
of the argument follows that of the proof of Theorem 22. [ COLA from, parametrized by growth factgr(g-COLA for short)

We discuss how to slightly modify the query algorithms to work andpointer density p. For pointer density, each level includes
when the COLA has two arrays at each level. As with the basic an additional 2p(g—1)g‘~1| redundant elements (real lookahead
COLA, each levek will actually have at most two arrays in use at  pointers). We sep = 0.1 in all our experiments. For g COLA,
any given time. At least one of these arrays will bertiregn array. a level receivegy— 1 merges before being merged into a higher
Should there only be one array in use at leelve consider that level. Therefore level has size 1 for = 0 and size 2g— 1)g’~*
array to be the main array. Otherwise, the array merged into leastfor ¢ > 0. When a level is not completely full (e.g., when it contains
recently is the main array and the othesésondary. only redundant elements or has received fewer tharl merges)

The main array contains lookahead pointers into both the main we maintain the elements right justified in their array. Elements
and secondary arrays of the next level, and the secondary arraycomprise key/value pairs, where keys and values each are of size
if it exists, contains no lookahead pointers. We only use half the 64 bits. We pad the elements to a total size of 32 bytes. Instead
space of the secondary array to maintain that every array is exactlyusing of duplicate lookahead pointers, each real element uses 64 of
half-full with real items. When merging into what will become its padding bits to hold a copy of the closest real lookahead pointer
the main array of levek+ 1, every eighth element in this main  to its left. Redundant elements use 64 of their padding bits to hold
array appears as a lookahead pointer in an array of levélhen the real lookahead pointer. When performing merges, we merge
merging into what will become the secondary array of ldvell, the 2 smallest levels at a time as in the last paragraph of the proof
every sixteenth element of each of the main and secondary arraysof Lemma 19. We alternate placing the result of the merge at the
of levelk+ 1 appears as a lookahead pointer in an array at level  beginning of the target level and at the newly freed space at the
Thus, main arrays always contain exactly half real items and half beginning of the data structure, thus requiring space for only 1 ad-
lookahead pointers. Duplicate lookahead pointers at lepeint to ditional element during merges.



7 COLA vs B-tree (Random Inserts) 2 COLA vs B-tree (Random Searches)
10 T T T T T T T 10 T T T T T T T
2-COLA —
4-COLA ———-
2 Mins 8-COLA - -
10° - B-tree -------
2 61 Mins s
o o
(=] Q
g 2
210° 9
2 .1
[}
é § 10
0104 F i n
g g
g ©
z z
10° F2-coLA £
4-COLA ———-
8-COLA ---- “14 Days
B-tree --—------
102 1 1 1 1 1 1 1 1 1 100 1 1 1 1 1 1 1
220 521 522 523 524 525 526 927 528 529 530 20 22 24 26 28 510 12 14
Number of Inserts (N) Number of Searches

Figure2: Data s inserted in random order. The 4-COLAis 790 time®fast  Figure4: WhenN = 230 — 1, the 4-COLA performs ¥ searches 3 times
than the B-tree foN = (256 2%°) — 1 (the largesN tested). Structuresno  slower than the B-tree. Initial searches are slow due to #uhe being

longer fit in main memory wheN ~ 2%". empty. The source data was created from the test in Figure 3.
7 COLA vs B-tree (Sorted Inserts) 7 Ascending vs Descending vs Random Inserts
10 T T T T T T T T T 10 T T T T T T 7 T
2-COLA 4-COLA (Ascending) ———
4-COLA ———- 4-COLA (Descending) ———-
8-COLA ---- 4-COLA (Random) - - - -
B-tree --------

Average Inserts / second
5
[=2]
Average Inserts / second
=)
o

105 1 1 1 1 1 1 1 1 1 105 1 1 | | | 1 1 1 1
220 221 222 223 224 225 226 227 228 229 230 220 221 222 223 224 225 226 227 228 229 230

Number of Inserts (N) Number of Inserts (N)

Figure 3: Data is inserted in sorted order, which gives best-castoper Figure 5: We measured the time to insert into COLAs for ascending, de-

mance for the B-tree. The 4-COLA isBtimes slower than the B-tree for ~ scending, and random keys. Insertintf 2 1 keys sorted in descending

N=230_17, order is 11 times faster than inserting in ascending order, ardtiines
faster than inserting in random order.

This merge pattern requir€xk) CPU time andD(k/B) memory )
transfers to merge a total &fitems across any number of levels. ~ All experiments were performed on a dual Xeo2BHz ma-
When distributing lookahead pointers after a merge we proceed chine with 2MiB of L2 Cache, 4GiB RAM and two 250GB Maxtor

level by level. The target level is scanned to copy pointers down 7L25080 SATA drives using software RAID-0 with 64KiB stripe

one level, the next largest level is scanned to copy pointers down toWidth, running Linux 26.12-10-amd64-xeon in 64-bit mode.

the next level, and so on. We perform searches as in the proof of .

Lemma 20, except that we compute right-hand lookahead pointers EXpe”mentS

on the fly by scanning subsequent levels. When performing the experiments we measured the time once ev-
Our B-tree implementation employs blocks of size 4KiB. Key ery 20 inserts. We measured user CPU timéernel CPU timék,

and value sizes were each 64 bits to match our COLA implemen- and elapsed time since start of testWe estimated disk timd as

tation. Both data structures access external memory via memoryd = w— u—k. The RAID array contains only the memory-mapped

mapping. As a sanity check, we compared the performance of ourfile. Before measuring any times, we first created a large enough

traditional B-Tree to the Berkeley DB [21], a high-quality commer- file to hold the entire experiment. We measured raw disk bandwidth

cially available B-tree. Berkeley DB supports variable-sized keys, of 120MiB/s by timing the write of 3’ bytes to the RAID array. We

crash recovery, and very large databases, none of which our imple-remounted the RAID array’s file system before every insertion test

mentation supports. The Berkeley DB with the default buffer-pool to clear the file cache.

allocation is much slower than our implementation, but is com-  In all figures resulting from experiments, insert performance of

parable once the parameters are tuned, and logging is turned offthe COLA appears to be periodic when plotted on a logarithmic

suggesting that we did a reasonable job implementing our B-tree. scale because there is a merge'oéments after every‘anserts.



We compared the B-tree to the COLA as follows. Fog 230 —
1weinserted keyfN—1,...,0] into a B-tree. We next attempted to
insert(256x 229) — 1 random elements into a new B-tree, stopping
after 87 hours at about?® insertions. We repeated the tests for
a 2-, 4-, and 8-COLA, and completed the random insertion test
of N elements. We were able to complete the insertions for the
COLAs. After remounting the RAID array, we next searched in the
g-COLAs and B-tree for ¥ random elements, measuring the time
after search number*20 < x < 15. (To construct the complete
B-tree we first sorted thsl random elements then inserted them,
since directly inserting the elements would have taken too long.)

As shown in Figure 2, the 4-COLA is 790 times faster than
the B-tree for random inserts. Figure 3 shows that the 4-cola is
3.1 times slower for insertions where the insertions are performed
in descending, rather than random, order. Figure 4 shows that the
4-cola is 35 times slower for searches.

We believe that the B-tree performs faster for sorted data be-
cause it only uses the leftmost root-to-leaf path, which can stay
in memory. For random inserts, the B-tree loses the advantage
of keeping its insertion path in memory. For random inserts, se-
quential prefetching of more than one block does not significantly
help B-trees, but significantly helps COLAs. The 4-COLA i 1
times faster than the 2-COLA for random insertd], fimes faster
for sorted inserts, and.4 times faster for searches. The 4-COLA
is 1.4 times faster than the 8-COLA for random insert§ times
faster for sorted inserts, and2ltimes slower for searches. Given
the superior tradeoff of the 4-COLAs, we use them for all subse-
guent experiments.

We next performed an experiment to measure COLA perfor-
mance for different insertion patterns. Foe= 230 — 1 we inserted
[N—1,...,0]intoa COLA,[0,...,N—1] into a second COLA, and
N random elements into a third COLA. Figure 5 shows that insert-
ing keys sorted in descending order i& fimes faster than inserting
keys sorted in ascending order, and fimes faster than inserting
random keys. Inserting keys sorted in ascending order w@3 1
times faster than inserting random keys.

We believe inserting keys in descending order is faster due to the
final merge. The number of elements we merge at each level grows
geometrically. The last merge, into the target level, is the largest.
When inserting in descending order, elements already in the target|
level do not move, whereas when inserting in ascending order, all
elements in the target level move to make room for elements from
smaller levels.

Acknowledgments

We gratefully acknowledge Christopher Wright for his help in im-
plementing, testing, and running experiments ongt@OLA.

5. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output complexity of

sorting and related problemSommun. ACM
31(9):1116-1127, Sept. 1988.

L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley,
and J. I. Munro. Cache-oblivious priority queue and graph
algorithm applications. IiProceedings of the 34th Annual
ACM Symposium on Theory of Computing (STQ@pes
268-276, Monteal, Canada, G@bec, Canada, May 2002.
L. Arge and J. S. Vitter. Optimal external memory interval
managemenSIAM Journal on Computing
32(6):1488-1508, 2003.

R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered index&sta Inf,
1(3):173-189, Feb. 1972.

(2]

(3]

(4]

[5] M. A. Bender, R. Cole, E. D. Demaine, and

M. Farach-Colton. Scanning and traversing: Maintaining

data for traversals in a memory hierarchyHroc. 10th

Annual European Symp. on Algorithms (ES#gges

139-151, Rome, Italy, Sept. 2002.

M. A. Bender, E. D. Demaine, and M. Farach-Colton.

Cache-oblivious B-tree$SIAM J. Comput.35(2):341-358,

2005. An earlier version of this paper appeared in Proc. 41st

Annual Symp. on Foundations of Computer Science (FOCS),

pages 399-409, Redondo Beach, California, 2000.

M. A. Bender, Z. Duan, J. lacono, and J. Wu. A

locality-preserving cache-oblivious dynamic dictionaly.

Algorithms 3(2):115-136, 2004.

M. A. Bender, M. Farach-Colton, and B. Kuszmaul.

Cache-oblivious string B-trees. Froc. 25th Symposium on

Principles of Database Systems (POD&)ges 233-242,

Chicago, Illinois, June 2006.

J. L. Bentley and J. B. Saxe. Decomposable searching

problems i: Static-to-dynamic transformatian Algorithms

1(4):301-358, 1980.

G. S. Brodal and R. Fagerberg. Lower bounds for external

memory dictionaries. liProceedings of the 14th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA)

pages 546-554, Baltimore, Maryland, May 2003.

G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious

search trees via binary trees of small height?taceedings

of the 13th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA)pages 39-48, San Francisco, California,

Jan. 2002.

A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,

and J. R. Westbrook. On external memory graph traversal. In

Proceedings of the 11th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODApages 859-860, San Francisco,

California, Jan. 2000.

[13] B. Chazelle and L. J. Guibas. Fractional cascading: |. a data
structuring techniquelgorithmicg 1(2):133-162, 1986.

[14] D. Comer. The ubiquitous B-treACM Comput. Sury.
11(2):121-137, June 1979.

[15] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. IRroc. 40th Annual Symp. on
Foundations of Computer Science (FOQ®ges 285-297,
New York, New York, Oct. 1999.

[16] I. Katriel. Implicit data structures based on local
reorganizations. Master's thesis, Technion, Israel Inst. of
Tech., Haifa, May 2002.

[17] D. E. Knuth.Sorting and Searchingolume 3 ofThe Art of
Computer ProgrammingAddison-Wesley, Reading,
Massachusetts, 1973.

[18] J. 1. Munro, T. Papadakis, and R. Sedgewick. Deterministic
skip lists. InProceedings of the 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODpgges 367-375,
Orlando, Florida, January 1992.

[19] M. H. OvermarsThe Design of Dynamic Data Structures
Springer, 1983.

[20] H. Prokop. Cache-oblivious algorithms. Master’s thesis,
Department of Electrical Engineering and Computer
Science, Massachusetts Inst. of Tech., June 1999.

[21] Sleepycat Software. The Berkeley Database.
http://ww. sl eepycat. com 2005.

(6]

(7]

(8]

(9]

(10]

[11]

[12]



