
Cache-Oblivious Streaming B-trees

Michael A. Bender
Dept. of Computer Science

Stony Brook University
Stony Brook, NY 11794-4400
bender@cs.sunysb.edu

Martin Farach-Colton
Dept. of Computer Science

Rutgers University
Piscataway, NJ 08855

farach@cs.rutgers.edu

Jeremy T. Fineman
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139
jfineman@mit.edu

Yonatan R. Fogel
Dept. of Computer Science

Stony Brook University
Stony Brook, NY 11794-4400
yfogel@cs.sunysb.edu

Bradley C. Kuszmaul
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139
bradley@mit.edu

Jelani Nelson
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139
minilek@mit.edu

ABSTRACT
A streaming B-tree is a dictionary that efficiently implements in-
sertions and range queries. We present two cache-oblivious stream-
ing B-trees, theshuttle tree, and thecache-oblivious lookahead
array (COLA).

For block-transfer sizeB and onN elements, the shuttle tree im-
plements searches in optimalO

`

logB+1N
´

transfers, range queries
of L successive elements in optimalO

`

logB+1N+L/B
´

transfers,

and insertions inO

“

(logB+1N)/BΘ(1/(log logB)2) +(log2N)/B
”

transfers, which is an asymptotic speedup over traditional B-trees
if B≥ (logN)1+c/ log log log2 N for any constantc > 1.

A COLA implements searches inO(logN) transfers, range queries
in O(logN+L/B) transfers, and insertions in amortizedO((logN)/B)
transfers, matching the bounds for a (cache-aware) buffered repos-
itory tree. A partially deamortized COLA matches these bounds
but reduces the worst-case insertion cost toO(logN) if memory
sizeM = Ω(logN). We also present a cache-aware version of the
COLA, the lookahead array , which achieves the same bounds as
Brodal and Fagerberg’s (cache-aware) Bε-tree.

We compare our COLA implementation to a traditional B-tree.
Our COLA implementation runs 790 times faster for random inser-
tions, 3.1 times slower for insertions of sorted data, and 3.5 times
slower for searches.

Categories and Subject Descriptors
F.2.3 [Analysis of Algorithms and Problem Complexity]: Trade-
offs between Complexity Measures—Machine-independent com-
plexity; E.1 [Data Structures]: Trees

This research was supported by NSF grants CCF-0540897, CCF-
0541097, CCF-0541209, CCF-0621439, CCF-0621425, CCF-
0621511, CNS-0627645, CCF-0634793, and CCF-0632838; the
US Air Force; Google; and Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07,June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

General Terms
Algorithms, Performance, Design, Experimentation, Theory

Keywords
Cache-Oblivious B-Tree, Buffered Repository Tree, Cascading Ar-
ray, Shuttle Tree, Lookahead Array, Deamortized

1. INTRODUCTION
TheB-tree [4,14] is the classic external-memory-dictionary data

structure.1 The B-tree is typically analyzed in a two-level memory
model, called theDisk Access Machine (DAM) model [1]. The
DAM model assumes an internal memory of sizeM organized into
blocks of sizeB and an arbitrarily large external memory. The cost
in the model is the number of transfers of blocks between the inter-
nal and external memory.

An N-node B-tree supports searches, insertions, and deletions in
O(logB+1N) transfers and supports scans ofL contiguous elements
in O(1+ L/B) transfers. An important characteristic of the B-tree
is that it is provably optimal for searching within the DAM model.

In fact, there is a tradeoff between the cost of searching and in-
serting in external-memory dictionaries [10], and B-trees achieve
only one point on this tradeoff. Another point is achieved by the
buffered-repository tree (BRT) [12]. The BRT supports the same
operations as the B-tree, but searches useO(logN) transfers and
insertions use amortizedO((logN)/B) transfers. Thus, searches
are slower in the BRT than in the B-tree, whereas insertions are
significantly faster.

More generally, Brodal and Fagerberg’s data structure from [10],
which we call theBε-tree, spans a large range of this trade-
off: For 0≤ ε ≤ 1, the Bε-tree supports insertions in amortized
O((logBε+1N)/B1−ε) transfers and searches inO(logBε+1N) trans-
fers. Thus, whenε = 1 it matches the performance of a B-tree, and
whenε = 0, it matches the performance of a BRT. An interesting
intermediate point is whenε = 1/2; then searches are slower by a
factor of roughly 2, but insertions are faster by a factor of roughly√

B/2 when compared with a B-tree.
This paper explores this insert/search tradeoff in thecache-

oblivious (CO) model [15]. The CO model is similar to the DAM
model, except that the block sizeB is unknownto the coder or to the
algorithm and therefore cannot be used as a tuning parameter. The

1Most B-tree implementations are, in fact, B+-trees [4, 14, 17], in
which the full keys are all stored in the leaves, but for convenience
we refer to all variations as “B-trees.”



B-tree, buffered-repository tree, and Bε-tree are not cache oblivi-
ous; they are parametrized byB.

Of the extant cache-oblivious dictionaries, the most well-studied
is the cache-oblivious B-tree [6, 7, 11], which supports searches
in O(logB+1N) transfers, insertions in amortizedO(logB+1N +

(log2N)/B) transfers, and range queries returningL elements in
O(logB+1N+L/B) transfers.2 Another cache-oblivious dictionary
is a cache-oblivious alternative to the BRT, which we call here the
lazy-search BRT [2]. Although it is useful in some contexts (such
as cache-oblivious graph traversal) the lazy-search BRT is unsatis-
factory in two crucial ways: keys are assumed to be in the range
[1,N], and searches are heavily amortized, so that the whole cost of
searching is charged to the cost of previous insertions. Indeed, any
given search might involve scanning the entire data structure.

Results
The paper introduces several cache-oblivious dictionaries that il-
lustrate several points in the insertion/search tradeoff.

Shuttle tree
Theshuttle tree, our main result, retains the asymptotic search cost
of the CO B-tree while improving the insert cost. Specifically,
searches still takeO(logB+1N) transfers, whereas insertions are re-

duced to amortizedO
“

(logB+1N)/BΘ(1/(log logB)2) +(log2N)/B
”

transfers. This bound represents a speedup as long asB ≥
(logN)1+c/(log log logN)2

, for any constantc > 1; this inequality
typically holds for external-memory applications. Range queries
returningL elements takeO(logB+1N + L/B) transfers, which is
asymptotically optimal.

This relatively complex expression for the cost of inserts can be
understood as follows: When the dominant term in the insertion
cost isO

“

(logB+1N)/BΘ(1/(log logB)2)
”

, insertions run a ffactor of

O

“

B1/(log logB)2
”

faster in the shuttle tree than in a B-tree or CO B-

tree. Observe that this speedup ofBΘ(1/(log logB)2) is superpolylog-
arithmic and subpolynomial inB. This speedup, while nontrivial,
is not as large as the speedup in the Bε-tree.

Lookahead array
We give another data structure, which we call alookahead array.
The lookahead array is reminiscent of static-to-dynamic transfor-
mations [9] and fractional cascading [13]. This data structure is
parametrized by agrowth factor. If the growth factor is chosen to
be Bε, then the lookahead array is cache aware and achieves the
same amortized bounds as the Bε-tree. If the growth factor is cho-
sen to be a constant such as 2, then the lookahead array is cache-
oblivious and matches the performance of the BRT. We call this
version thecache-oblivious lookahead array (COLA). Unlike the
BRT, the COLA is amortized, and any given insertion may trigger
a rearrangement of the entire data structure.

For disk-based storage systems, range queries are likely to be
faster for a lookahead array than for a BRT because the data is
stored contiguously in arrays, taking advantage of inter-block lo-
cality, rather than stored scattered on blocks across disk. This is
the same reason why the cache-oblivious B-tree can support range
queries nearly an order of magnitude faster than a traditional B-
tree; see, e.g., [8].

2In fact, by using scanning structures such as [5] and amortizing
the cost of range queries, the log2N-term can be reduced or re-
moved. However, the details and resulting structure are not directly
pertinent to this paper.

Deamortized lookahead array
We show how to deamortize the lookahead array and the COLA
whenM = Ω(logN). Thus, we obtain the first cache-oblivious al-
ternative to the BRT. There is no amortization on searches and the
worst-case cost for an insert is no more than the cost of a search.

Experiments
We next measure how fast the COLA runs in comparison to a B-
tree. We use the B-tree whose performance was described in [8].
For out-of-core data, the COLA was 790 times faster than the B-
tree for random inserts, 3.1 times slower for sorted inserts, and 3.5
times slower for searches.

Map
The rest of this paper is organized as follows. In Section 2 we
present the shuttle tree. In Section 3 we present the lookahead ar-
ray, the cache-oblivious lookahead array, and their partial deamor-
tizations. In Section 4 we present results from our implementation
study of lookahead arrays.

2. SHUTTLE TREE
This section describes theshuttle tree. We begin by describing

the overall pointer structure of the tree. We next give the cache-
oblivious layout of the shuttle tree followed by a search and space
analysis. We then describe insertions and explain how to main-
tain our cache-oblivious layout dynamically in a structure called a
packed-memory array [6]. Finally, we give an analysis of inser-
tions and their effects on the dynamic layout.

Shuttle-tree structure
A shuttle tree is astrongly weight-balanced search tree [3, 18]
(SWBST) with enhancements. In addition to the regular tree struc-
ture, each non-leaf node also points to a linked list ofbuffers. These
buffers are in turn recursively defined to be shuttle trees. All point-
ers in the structure are bidirectional to help the shuttle tree adjust
to changes in the memory layout.

We now introduce terminology useful for presenting SWBSTs
and shuttle trees. Theweight of a nodeu in a tree, denotedw(u),
is the total number of descendants ofu plus one; that is,w(u) =
P

v∈children(u) w(v)+1, with w(u) = 1 if u is a leaf. The depth of a
nodeu is u’s distance from the root. SWBSTs have leaves all at the
same depth. For such trees, we define theheight of nodeu, denoted
h(u), to be the distance to a leaf plus one, i.e.,h(u) = h(v)+1 for
every childv of u, andh(u) = 1 if u is a leaf.

A SWBST is a balanced search tree that maintains the following
invariant: For fanout parameterc > 1 and for any nodev, w(v) =

Θ(ch(v)).
This invariant determines the balancing routine for insertions and

deletions. To insert a new element, first perform a search and then
insert the element in the appropriate leaf. (Since each node has
sizeΘ(c) the leaf node can accommodate several inserts directly
into the node before violating the balance condition.) If the leaf
is full, then split into two leaves. This split increases the weight
of all ancestor nodes in the tree. If ancestorv has weightw(v)
that is above threshold, then splitv into two separate nodes,v′ and
v′′, and then dividev’s children to spread the weight as evenly as
possible amongv′ andv′′. Thus,v’s ancestors gain in weight by an
additional one. This splitting process may trickle up the tree until
the balance condition is satisfied at every node along the leaf-to-
root path followed. When the root node splits, a new root is added
above the old root node, thereby increasing the height of the tree
by one.



There are several consequences of this invariant and balancing
strategy. (See e.g. [3,6] for full proofs.)

LEMMA 1. Consider an N-node weight-balanced tree with
constant balance parameter c.
(1) The degree of any node isΘ(c).
(2) For any node u and constant d≤ h(u), the number of descen-
dants of u that have height at least h(u)−d is Θ(cd).
(3) Suppose that a node split has cost1. Then the amortized cost to
insert into the tree is the search cost plus O(1).
(4) Suppose that splitting a node u costsΘ(ch(u)). Then the amor-
tized cost to insert into the tree is the search cost plus O(logN).

The shuttle tree supports inserts efficiently by using the buffers.
The buffers work in much the same way as in a BRT—an element
being inserted starts at the root, follows the appropriate root-to-
leaf path, but pauses at buffers along the way. The element only
gets “shuttled” down the tree when buffers overflow (and hence are
full enough to amortize the cost of crossing block boundaries). Our
shuttle tree differs from the BRT in that it has a linked list of buffers
associated with each child pointer (rather than a single buffer as in
the BRT). These buffers have doubly-exponentially increasing size.

To insert into a shuttle tree, start by inserting into the root node.
To insert into a node in the tree, simply find the appropriate child
pointer and insert into the corresponding linked list of buffers by in-
serting into the smallest buffer. When a buffer “overflows” (i.e., the
height of the buffer shuttle tree exceeds the to-be-specified maxi-
mum), take each element in the buffer and insert it into the next
(larger) buffer in the list.3 Once the largest buffer in the list over-
flows, insert these items into the child node in the shuttle tree.
(Thus, data items in the shuttle tree live in two possible places,
either in some buffer on a root-to-leaf path or in a leaf of the tree.)
When an inserted element reaches a leaf in the shuttle tree, inser-
tions work in roughly the same way as in any SWBST with splits
trickling up the tree. Note that at the time a nodeu splits, the buffers
in betweenu andu’s parent have just been flushed.

LEMMA 2. When an element is inserted into a leafℓ, all nodes
on the path from the root toℓ can be fetched without increasing the
asymptotic complexity, as long as M= Ω(BlogN).

Proof. The reason we insert into a leaf is because its parent’s
buffer has just overflowed, thus the grandparent buffer has just
overflowed, and so on up the tree to the root. Thus, we just flushed
buffers all the way down. If any subsequent block transfers evict
the root-to-leaf path, we can charge the cost of replacing the rele-
vant path block to the cost of evicting it in the first place.

We base our buffer sizes on Fibonacci numbers. LetFk be thekth
Fibonacci number. ThenF0 = 0, F1 = 1, andFk = Fk−1+Fk−2. For
all positive integersh, we define theFibonacci factor of h, denoted
by ξ(h), as follows. If h is a Fibonacci number, thenξ(h) = h.
Otherwise, letf be the largest Fibonacci number less thanh. Then
the Fibonacci factor ofh is ξ(h) = ξ(h− f ). The buffer sizes of
a node at heighth+ 1 depend uponξ(h). In particular, consider a
nodeu at heighth+1 in the tree, and letk be such thatFk = ξ(h).
We define thebuffer-height-index function H ( j) = j −⌈2logϕ j⌉,
whereϕ≈1.618 is the golden ratio. Thenuhas buffers with heights
FH ( j), for each integerj, j = Θ(1), . . . ,k−1,k.4 In other words,
there are roughlyk buffers increasing geometrically in their heights,

3These items are inserted in arrival order, not smallest to largest.
4We can startj at any sufficiently large constant to help the proofs,
in particular Lemma 16.

and the largest buffer has heightFH (k) = Fk−2⌈logϕ k⌉. These set-
tings mean that the parent node of a subtree containing roughlyK
nodes has the largest buffer of size roughlyK1/Θ((log logK)2).

The shuttle tree as specified thus far cannot yet be analyzed in
the cache-oblivious setting. To do so, we must enforce a particular
dynamic layout in memory. We must show that the layout permits
efficient operations and can be efficiently maintained.

Shuttle-tree layout
We lay out the shuttle tree recursively in a type of “van Emde Boas
(vEB) layout” [20] that takes into account the lists of buffers and
several additional complications.

We first explain how our vEB layout would proceed on a regular
tree of heighth. Let Fk be the largest Fibonacci number strictly
smaller thanh. Then we split the tree at heightFk (roughly h/ϕ
instead of at heighth/2 as in the traditional vEB layout). That is, if
h= Fk is thekth Fibonacci number, then we split the tree into a root
subtree of heightFk−2 and leaf subtrees of heightFk−1, which are
recursively laid out. It is important that the split is above the half-
way point, heighth/2, unlike in previous cache-oblivious search
structures [6–8, 11, 20]. Fibonacci numbers are a convenient way
to ensure this requirement because they enforce some integrality
while roughly matchingFk ≈ ϕk.

We now give the vEB layout of the shuttle tree, which means
also laying out the buffers; see Figure 1. Consider a (sub)tree of
heightFk+1, with leaves of this tree having buffers of heights (ge-
ometrically increasing) up toFH (k+1). Think of this subtree and
these buffers as a single entity, which we call arecursive sub-
tree. When laying out this recursive subtree, we split the subtree
at heightFk. In the “left” end of memory, we store the top recur-
sive subtree of heightFk−1 (which includes leaf buffers of height
up to FH (k−1)) recursively. To the right of this subtree, we store
the height-FH (k) leaf buffers, from left-to-right in the same order
as the leaves. To the right of these buffers, we lay out each of the
bottom recursive subtrees of heightFk (including leaf buffers of
height up toFH (k)) recursively. To the right of each of the bottom
recursive subtrees, we lay out that subtree’s height-FH (k+1) leaf
buffers. We call the (contiguous) height-Fk recursive subtree and
height-FH (k+1) buffers (which appear immediately after the recur-
sive subtree in the layout) a (height-Fk) buffered recursive subtree.

The leaves of the shuttle tree are special in that they do not have
any buffers. We call a recursive subtree containing leaves of the
top level (i.e., entire) tree aleaf recursive subtree. The recursive
layout of a leaf recursive subtree is the same, except that the bot-
tom recursive subtrees do not have any buffers coming out of the
leaves. For convenience, we use the terms “recursive subtree” and
“buffered recursive subtree” as generalizations of “leaf recursive
subtree,” even though the leaves do not have buffers.

The buffer heights are carefully chosen using the Fibonacci fac-
tors to match this recursive layout. It is always the case that when
splitting a tree at the proper height, the leaf nodes of a height-Fk top
or bottom recursive subtree have a height-FH (k+1) buffer that can
be stored after the recursive subtree (as indicated in Figure 1). The
exception is for buffers that would have a sufficiently small con-
stant height; these buffers are omitted altogether. (The elimination
of small buffers helps the analysis in Lemma 16.)

Another way to interpret buffer sizes is that a node has a buffer
for every (sufficiently large) recursive subtree in which it is a leaf.
Thus, nodes that are roots of height-2 or taller recursive subtrees
(i.e., those having Fibonacci factors> 1) have no buffers, because
they cannot also be leaves of recursive subtrees. This notion is cap-
tured by the following lemma, which can be proved by induction.



B1,i

Bm

Bm,2

T1 Tm

Bm, j

... ...

...

...

...

heightFH (k+1)

heightFH (k)

Bm, j

heightFk−1

heightFk

T

B1 B2 Bm

B1,1

Bm,1TmB1,iB1,1T1B1T ...... ... ...

heightFk+1

B1,2 Bm,1

Figure 1: The recursive layout of the shuttle tree. The solid triangles encapsulate “recursive subtrees,” where the leaves (drawn as circles) of a height-Fk

recursive subtree have buffers up to sizeFH (k). The dashed triangle encapsulates a “buffered recursive subtree” (which contains the recursive subtree and an
additional, larger buffer for each leaf). The circles are leaf nodes of the tree. They are drawn with degree two here, but in fact they (and all nodes) have degrees
that vary between two constants. The rounded rectangles indicate the heights of various recursive subtrees. The recursive definition is given from the top left to
the top right figure—the tree is split at the largest Fibonacci number less than the height, and the largest buffers of each resulting subtree’s leaves fall out. The
array on the bottom gives the layout—first the top recursive subtree, then the largest leaf buffers, followed by each bottom recursive subtree with its largest
leaf buffers.

LEMMA 3. Consider a node at height h+1> 1 in a shuttle tree
(i.e,. a non-leaf node). This node is the leaf of some height-Fk−1
recursive subtree if and only ifξ(h) ≥ Fk.

Search analysis
We now analyze the search cost.

LEMMA 4. For a shuttle tree of height Fk and fanout c, which
contains N= Θ(cFk) elements, the worst-case search cost is
O(Fk/ logB) = O(logBN).

Proof. Without loss of generality, suppose the height of the
tree is a Fibonacci number (if not, we can round up). In particular,
suppose the height isFk+1, the(k+ 1)st Fibonacci number. Then
we recursively lay out the tree by splitting it into recursive subtrees
of heightFk−1 (top) andFk (bottom).

Let T(Fk+1) be the cost to search a shuttle tree of
height Fk+1. Then we haveT(Fk+1) = T(Fk−1) + T(Fk) +
T(FH (k)) + T(FH (k+1)) = T(Fk−1) + T(Fk) + T(Fk−⌈2logϕ k⌉) +

T(F(k+1)−⌈2logϕ(k+1)⌉). TheT(FH (k)) andT(FH (k+1)) terms arise
because of the cost of recursively searching the (noncontiguous)
buffers. This recurrence only deals with the largest buffer at each
level, but Lemma 3 implies that the smaller buffers are correctly
accounted for at further recursive levels. Once a recursive subtree
fits in O(1) blocks, the cost to search the subtree isO(1) memory
transfers. Thus, we haveT(FΘ(log logB)) = O(1).

We claim that T(Fk) ≤ (1/ logB)(c1Fk − c2Fk/ logϕ Fk), for
some constantsc1,c2 > 0. This claim can be proved by induction
onk.

Space usage
The following lemma claims that the space used by the shuttle tree
and all its recursive buffers is linear in the number of elements
stored in the shuttle tree. The main idea is that “most” of the buffers
in the tree are very small, so they have little impact on space.

LEMMA 5. An n-node shuttle tree uses O(n) space.

Proof. As an inductive hypothesis, we claim that ann-node shut-
tle tree having heightFk uses at mostd1n−d2cFH (k) space, for some
constantsd1,d2 > 0. We prove this claim by induction on height.

Consider ann-node shuttle tree having heightFk+1. Split the
tree at heightFk leaving a single top recursive subtree of height
Fk−1 and many bottom recursive subtrees of heightFk. Let ℓ be the
number of bottom/leaf recursive subtrees.

The top recursive subtree containsO(ℓ) nodes (ℓ = Θ(cFk−1)
from Lemma 1), each having buffers with heights not exceeding
FH (k) (and hence containingO(cFH (k)) nodes). Thus, the space used

by the top recursive subtree isO(ℓcFH (k)).
In total, theℓ bottom recursive subtrees used1n−ℓd2cFH (k) space

by assumption. Makingd2 large enough to dominate the constant
(hidden by the big-O) for the space used by the top recursive sub-
tree gives a total space usage ofd1n− ℓcFH (k) . Sinceℓ = Θ(cFk−1),
we are left with total spaced1n− Θ(cFk−1cFH (k)). For k such
that Fk−1 ≥ FH (k) + logcd2, which is true fork larger than some

constant, we havecFk−1+FH (k) ≥ c(FH (k)+logc d2)+FH (k) = d2c2FH (k) ≥
d2cFH (k+1) . Thus, the total space usage is at mostd1n−d2cFH (k+1) ,
which proves the claim.

We have proven that ann-node, height-Fk+1 shuttle tree uses
O(n) space. To prove the lemma, we must extend the proof to all
heightsh. This extension is similar to the above proof—it is sim-
ply a matter of recursively dividing the tree at the largest Fibonacci
number less thanh. The bottom recursive subtrees use linear space,
and we amortize the additional space used by the top recursive sub-
tree against the bottom.

Although a full shuttle tree uses only linear space, arecursive
subtreeuses super-linear space. (Aleaf recursive subtree, on the
other hand, is just a shuttle tree of the same size.) To understand
this fact, notice that the number of nodes in the recursive subtree is
dominated by the number of leaves. Leaves of recursive subtrees



have superconstant-size buffers. The following corollary places a
weak (but sufficient) upper bound on the size of a recursive subtree.

COROLLARY 6. The total space used by a height-Fk−1 buffered
recursive subtree is O(cFk).

Proof. A height-Fk−1 buffered recursive subtree contains at
most O(cFk−1) nodes (and leaves) according to Lemma 1. Each
of these nodes has buffers of size no larger thanFH (k). The space
used by buffers is dominated by these largest buffers, which each
take O(cFH (k)) space by Lemma 5. Thus, the total space used is
O(cFk−1cFH (k)) = O(cFk−1+Fk−⌈2logϕ k⌉) = O(cFk).

Maintaining layout dynamically
Insertions cause splits, which create new shuttle-tree nodes. Be-
cause splits change the topology of the tree, they also affect the
vEB layout. The layout described thus far for the shuttle tree gives
a total order in memory for nodes (and buffers) of the shuttle tree.
Here, we show how to update this total order dynamically. The next
subsection deals with how to make space for the new elements.

LEMMA 7. Consider a split of a node u into two nodes u1 and
u2 (where u2 is the newly created node). LetU, U1, and U2 be
the largest buffered recursive subtrees for which u, u1, and u2 are
roots, respectively. Then splitting u causesU to be replaced by
U1 and U2 in the vEB layout. The new layout has the following
properties:

1. For any two nodes or buffers v1,v2 6∈ U, the relationship
between v1 and v2 does not change in the layout.

2. For any two nodes v1,v2 ∈ U1 (resp.U2), the relationship
between v1 and v2 does not change in the layout.

3. All nodes and buffers inU1 immediately precede all those
in U2 after the split.

4. Suppose u (and hence u1 and u2) is a leaf in a height-Fk re-
cursive subtree, for k≥Θ(1).5 Then u2 has a height-FH (k+1)
buffer. This newly created buffer appears immediately after
u1’s height-FH (k+1) buffer.

Proof. These claims follow directly from the recursive definition
of the layout. The last is most surprising and follows from Lemma 3
and the fact thatu1 andu2 are sibling leaves in all relevant recursive
subtrees.

COROLLARY 8. Consider a split of buffered recursive subtree
U into two buffered recursive subtreesU1 andU2. This split can
be performed in O(1) linear scans ofU.

Proof. Just do a “stable” (i.e., order-preserving) partition ofU

around the root ofU2.

The following corollary puts a weak upper bound on the cost of
updating the layout to include new buffers.

COROLLARY 9. Consider a split of a node u into two nodes
u1 and u2. Suppose also that u is the leaf of a height-2 or larger
recursive subtree. LetU be the largest buffered recursive subtree
in which u (and hence u1 and u2) is a leaf. Then all of u2’s newly
created buffers can be inserted with O(1) linear scans ofU.

Proof. All of u1’s buffers reside inU, andu2’s buffers appear
immediately afteru1’s buffers.

When a split causes a new nodeu2 to be inserted, this node has
some buffers associated with it (depending on its child’s Fibonacci
5For smallk, there are no buffers.

factor). On node creation, we allocate enough space for full buffers,
and insert them in the appropriate place according to Lemma 7. As
in Corollary 9, our algorithm need not be more clever than scan-
ning the smallest buffered recursive subtree that includes all ofu2’s
buffers (i.e., the largest in whichu2 is a leaf).

When the rootr of the entire shuttle tree is split, a new rootr ′ is
inserted above the previous rootr. This new rootr ′ may be the leaf
of (possibly large) recursive subtrees. These recursive subtrees are
conceptual and have not been filled out yet, but we still allocate all
buffers. Consider, for example, if the height ofr is Fk. Thenr ′ has
heightFk +1 and includes buffers of height up toFH (k). The new
root r ′ and all its buffers simply precede all other nodes and buffers
in the shuttle tree.

LEMMA 10. The amortized cost of dynamically updating the
layout due to an insertion at a leaf in a shuttle tree containing N
items is O((logN)/B), assuming that the leaf-to-root path (and
Θ(1) blocks adjacent to each block on the path) are already in
memory.

Proof. There are two components to the cost. First, we examine
scans caused by splitting the appropriate subtrees. Then we analyze
scans caused by inserting buffers.

Suppose that a nodeu at heighth is split. Corollary 8 states that
the cost of splitting this node is just that of scanningU, whereU

is the largest recursive subtree for whichu is a root. IfU is a leaf
recursive subtree (i.e.,h is a Fibonacci number), then the size of
U is O(ch) from Lemma 5. Otherwise,U has height geometri-
cally smaller thanh, and Corollary 6 states thatU has sizeO(ch).
(Note thatU may be much smaller thanO(ch), but we can afford to
round up.) Thus, we pay for a scan costingO(⌊ch/B⌋) everyΩ(ch)
inserts, for an amortized cost ofO(1/B) to insert belowu.6 The
floor function is added because a constant number of blocks in this
region are already in memory.

When a nodeu at heighth has a split that creates new buffers,
we insert the buffers in the correct location according to Lemma 7.
Corollary 9 states that inserting these buffers involves at most a lin-
ear scan of the largest buffered recursive subtree in whichu is a leaf.
The size of this subtree is againO(ch) from Corollary 6. We have,
therefore, that the scan from inserting buffers costsO(⌊ch/B⌋) ev-
eryΩ(ch) inserts for an amortized cost ofO(1/B) to insert belowu.

We complete the proof by observing that an insert into a leaf
inserts belowΘ(logN) nodes in the shuttle tree, which means we
have to multiply all costs byΘ(logN).

Making space for insertions
The shuttle-tree layout suggests a total order in memory, and we
maintain this layout dynamically by embedding the shuttle tree in
a packed-memory array (PMA) [6]. The PMA is simply an array
that allows for efficient insertions (amortizedO(log2N/B) block
transfers) by leaving gaps between elements. A nice property of
the PMA is that anyn consecutive elements use onlyΘ(n) space,
so we can maintain our data structure compactly in memory.

When there is no more space available for an insert, a section of
the array must berebalanced, or evenly spread out. In particular,
when there is no room for an insert, we must search for a region of
the array that is not “too dense.” Details of the density thresholds
can be found in [6].

This idea of maintaining a weight-balanced tree embedded in a
PMA was described in the original cache-oblivious B-tree (in the
conference version of [6]). The difficulty with bidirectional point-
ers is that when nodes shift around in the PMA, we have to update
6This sort of analysis is similar to that for Lemma 1.



all pointers that point to these nodes. This updating may lose data
locality. In particular, when a node moves, it must tell its children
to update their parent pointers, and the children may not be nearby
and may not be near each other.

To minimize the parent-pointer-update cost, we take advantage
of the fact that we can be flexible in choosing the region to rebal-
ance. In particular, Katriel [16] shows that the region can grow
in either direction as long as we perform a density-threshold test
whenever the region size roughly doubles. The cache-oblivious
string B-tree [8] also leverages the flexible rebalance to deal with a
tree embedded in a PMA.

A buffer is allocated as a single chunkC in the PMAA , i.e., all
space that the buffer will ever need is allocated at the outset. A
rebalance of a shuttle tree moves this enclosed buffer chunkC as a
single unit.

Thus, the PMAA can be thought of as a PMA containing
variable-size elements (chunks). A PMA with variable-size ele-
ments also occurs in the string B-tree [8], and the PMA bounds are
asymptotically unchanged.

The chunkC is itself a (recursive) PMA, imposing density
thresholds and rebalance regions on the elements inC . Specifi-
cally, when inserting into a buffer shuttle tree, the ensuing rebal-
ance touches only memory within that tree’s preallocated chunkC ,
and thus never moves any nodes in the enclosing PMAA . This
property that insertions into a buffer do not affect nodes in the en-
closing tree is necessary for the analysis and is the reason for pre-
allocating buffers.

There are two costs to bound when analyzing the PMA insert.
The first is the normal PMA cost for the amount of space inserted.
The second is the cost of parent/child pointer updates due to node
movement. We now bound the first cost by bounding the (amor-
tized) amount of space inserted due to a single leaf insert. Note
that until an item reaches the leaf, it does not increase the amount
of space used.

LEMMA 11. Each insert into the leaf of a shuttle tree increases
the amount of space used by the shuttle tree by amortized O(1).

Proof. Consider a split of a nodeu at heighth+1, letk be such
that Fk ≤ h < Fk+1, and let j be such thatFj = ξ(h). Then the
split creates new buffers having heights up toFH ( j) ≤ FH (k). Since
u’s buffers have geometrically increasing heights, the size of the
buffers is dominated by the largest buffer, which has sizeO(cFH (k))
from Lemma 5. We amortize against theΩ(ch+1) items that must
be inserted beforeu is split to get an amortized space increase of
O(cFH (Fk)/ch+1) = O(cFk−2−h) = O(c−h/2). Taking the sum over all
heights gives a geometric sum, bounded by a constant.

We now give more information about inserting extra space. A
split determines how much space to insert into the PMA, specifi-
cally the size of one node plus the size of the extra buffers inserted
(which on average is constant from Lemma 11). We first insert the
extra space into the PMA so that the changes in the dynamic lay-
out (a new node and buffers) have space available to them. Once
there is space available, we can just do the split. It is convenient to
insert a large block of space in one spot in the PMA and spread it
out with a scan. Recall that when inserting new buffers, our anal-
ysis already accounts for a scan of the buffered recursive subtree
containing those new buffers (Corollary 9 and Lemma 10), so this
“spreading out” does not asymptotically increase the cost.

The following lemma states that an algorithm for choosing a
“good” rebalance region exists. A good region is one for which
there are not too many nodes outside the region having parent point-
ers into the region. (That is, the number of pointers into the region

is polynomially smaller than the size of the region.) Nodes having
child pointers into the region have some locality, so we can update
those easily, and we do not consider them further in the lemma ar-
gument.

LEMMA 12. There exists an algorithm for growing the rebal-
ance region such that when inserting after a node at height h, with
k such that Fk < h≤ Fk+1, we have the following properties:
(1) The initial size of the region is O(ch).
(2) The initial region contains all nodes and buffers involved in the
dynamic layout changes (i.e., from Lemma 7).
(3) There are O(cFk−1) nodes outside the region having parent
pointers to nodes inside the region.
(4) Each time we increase the region size by a multiplicative con-
stant, we find another feasible rebalance region.

Proof. We give an algorithm for choosing a rebalance region.
Property (3) is the difficult property, so we concentrate on how to
satisfy it in particular.

Suppose that we need space next to the nodeu in the shuttle tree
(becauseu splits intou1 andu2). Suppose that heighth(u) is not a
Fibonacci number, and letk be such thatFk < h(u) < Fk+1. (Thus,
u is not the root of a leaf recursive subtree—the case whenu is
the root is the easier case, which we handle later.) LetU be the
height-Fk−1 buffered recursive subtree containingu1 andu2. (This
subtree contains nodes of height betweenFk + 1 andFk+1). Let
L1,L2, . . . beU’s children leaf recursive subtrees. (These subtrees
U andL1,L2, . . . are contiguous in the layout.) Then we initially
select our rebalance region to includeU andL1.

This initial rebalance region satisfies properties (1) through (3).
In particular, Corollary 6 states thatU usesO(cFk) = O(ch) space,
and Lemma 5 states thatL1 usesO(ch) space. Thus, the size of the
region isO(ch), satisfying property (1).

Property (2) is satisfied because we have selected a buffered
recursive subtreeU containingu1 and u2 for which these nodes
are not the root. This region, therefore, includes the buffered re-
cursive subtrees involved in the dynamic layout changes (i.e., in
Lemma 7).7

The only nodes outside the region having parent pointers to
nodes inside the region are the roots ofL2,L3, . . .. All of these
pointers point to nodes inU. Thus, property (3) is satisfied be-
causeU hasO(cFk−1) nodes.

We now show how to increase the region size (property (4))
while still respecting property (3). Recall that the region initially
includesU andL1; we grow to the right to includeU’s children
leaf recursive subtreesL2,L3, . . .. Each time the region extends
into the next leaf recursive subtreeLi , it consumes all ofLi . Since
these subtrees all have sizeΘ(cFk), we can select enough of them
to increase the size of the rebalance region by a constant factor.

Observe that each time the rebalance region grows to include
more leaf recursive subtreesLi , the number of nodes having parent
pointers into the rebalance region actually reduces. We, therefore,
maintain property (3).

If the rebalance region grows to include all such children sub-
treesL1,L2,L3, . . ., then our rebalance region is itself a height-
Fk+1 leaf recursive subtreeL ′

j . We now grow the region to include
a neighboring height-Fk+1 leaf recursive subtreeL ′

j−1 or L ′
j+1,

etc. Once the region consumes all such leaf recursive subtrees
L ′

1,L
′
2, . . ., then we grow to include the parent height-Fk buffered

recursive subtreeU′. This process continues until a region meeting
the proper density thresholds is discovered.
7Notice that this initial region may be much larger than the subtrees
involved in the layout change. We make the initial region this large
because it is simpler, and we can afford to do so.



Once the rebalance region consists of only leaf recursive sub-
trees, there are no nodes outside the region having parent pointers
into the region, and thus property (3) is trivially satisfied. As the re-
gion grows, notice that it always consists of leaf recursive subtrees.

We now handle the case whenh(u) = Fk for somek. We initially
choose a rebalance region to include the height-Fk leaf recursive
subtrees rooted atu1 andu2. When this region needs to grow, it
grows similarly, and there are no parent pointers into the region.

We now analyze the cost of updating pointers in the shuttle tree.
Note that pointer updates in the contiguous region being rebalanced
can be resolved in a constant number of scans, and hence are amor-
tized against the cost of making space in the PMA.

Instead, we examine the cost of updating parent pointers outside
the rebalance region (pointing into it).

LEMMA 13. Consider a rebalance of a region in the PMA due
to an insert at the leaf of an N-element shuttle tree. Assume that the
leaf-to-root path (andΘ(1) blocks adjacent to each block on the
path) are already in memory. Then the amortized cost per insert of
updating parent pointers from nodes outside the region pointing to
nodes inside the region is O((logN)/B1/3).

Proof. Lemma 12 states that the maximum number of parent
pointers (outside the region) to update when splitting a node at
height Fk < h ≤ Fk+1 is O(cFk−1). We amortize these updates
against theΩ(ch) inserts that must be performed below a height-
h node between splits, which gives an amortized cost ofO(cFk−1−h)
parent-pointer updates per insert.

Suppose thatcFk = Ω(B). Then the leaf recursive subtrees do
not fit in a block, and we must pay a block transfer for each parent-
pointer update. This case results in an amortized memory-transfer
cost ofO(cFk−1−h) = O(cFk−1−Fk) = O(c(2/3)Fk−Fk) = O(c−Fk/3) =

O(B−1/3) per insert (fork≥ 4).
Suppose thatcFk = O(B). Thus, a leaf recursive subtree whose

parent pointer must be updated fits in a block. In particular,
Θ(B/cFk) such subtrees fit inΘ(1) blocks, and we getB/cFk ≥B/ch

parent-pointer updates per block transfer. We thus have an amor-
tized cost ofO(cFk−1−h/(B/ch)) = O(cFk−1/B) = O(c(2/3)Fk/B) =

O(B2/3/B) = O(B−1/3) per insert (fork≥ 4).
Since an insert into a leaf inserts belowΘ(logN) nodes, we mul-

tiply our bound by logN to complete the proof.

Insert analysis
We first bound the total amortized cost of an insert into a leaf node
of the shuttle tree (i.e., the split cost and PMA inserts). Then we
bound cost to recursively insert into the leaves of all (shuttle-tree)
buffers. Finally, we bound insert cost to “shuttle” down a root-to-
leaf path. We conclude the analysis with the full insert cost.

The following lemma bounds the cost to insert at a leaf. We
assume that the memory is large enough to store a root-to-leaf path
(i.e.,M = Ω(BlogN)).

LEMMA 14. The amortized cost of inserting into a leaf of a
size-N shuttle tree is O((logN)/B1/3 +(log2 N)/B).

Proof. Inserting into a leaf that has room for more keys is es-
sentially free (i.e., only the block containing the leaf must be in
memory). There is only an extra cost when nodes split. Note that
at the time of an insert into the leaf, Lemma 2 states that the leaf-
to-root path (and a constant number of neighboring blocks) is in
memory.

The costs incurred by an insert are the costs of updating the lay-
out (i.e, splitting nodes and inserting new buffers), finding space in
the PMA, and updating pointers.

We first bound the cost of making space in the PMA. Lemma 11
says that the average amount of space inserted isO(1), so making
space amortizes toO(log2 N/B) per insert. In fact, we choose a
larger initial rebalance region than the PMA dictates. This addi-
tional cost is amortized against the layout update.

We now bound the cost updating the dynamic layout. Lemma 10
states that the cost of splitting nodes and inserting buffers amortizes
to O(logN/B).

Finally, we bound the cost of parent-pointer updates. Lemma 13
states that the cost of updating parent pointers outside the rebal-
anced region amortizes toO(logN/B1/3). Updating parent pointers
within a rebalance region comes for free with a constant number of
scans.

Adding all these costs together gives the lemma.

The next lemma bounds the number of buffers of each size along
a root-to-leaf path in the shuttle tree. We then apply this lemma to
show that the cost of recursively inserting into all of these buffers
is small.

LEMMA 15. Consider the nodes along a root-to-leaf path of a
height-Fk shuttle tree. At most Fk− j+2 of these nodes have height-
FH ( j) (or larger) buffers.

Proof. We count the number of nodesu along a root-to-leaf path
with ξ(h(u)−1) ≥ Fj .

A node only has a height-FH ( j) buffer if its child has Fibonacci
factor at leastFj . Thus, the number of nodes with Fibonacci factor
at leastFj is an upper bound on the number of nodes with height-
FH ( j) buffers.

Let N(k, j) be the number of nodes along the root-to-leaf path of
a height-Fk shuttle tree such that the nodes have Fibonacci factor at
leastFj . We claim thatN(k, j) = Fk− j+2, and we prove this claim
by induction onk.

The claim is true fork = 3 and j with 1 < j ≤ k—the tree has
heightF3 = 2. For j = 3, F3− j+2 = F2 = 1 indicates that one node
(the root) has Fibonacci factor at leastF3 = 2. For j = 2, F3− j+2 =
F3 = 2 indicates that two nodes (the root and leaf) have Fibonacci
factorF2 = 1.

Suppose that the claim is true for allk′ < k and all j ≤ k′. Notice
thatN(k,k) = 1 = Fk−k+2 because only the root of a height-Fk tree
has Fibonacci factorFk. For j = k−1, onlyFk−(k−1)+2 = 2 nodes
have Fibonacci factor at leastFk−1. For j ≤ k−2, observe that for
any nodeu with heighth(u) > Fk−1, ξ(h(u)) = ξ(h(u)−Fk−1) (by
the definition of Fibonacci factor). Thus, the nodes of these height
have exactly the same Fibonacci factors as the nodes in a height-
Fk−2 subtree.

Thus, by inductive assumption on the values ofk and j ≤ k−
2, we obtain the recurrenceN(k, j) = N(k− 1, j) + N(k− 2, j) =
F(k−1)− j+2 +F(k−2)− j+2 = Fk− j+2.

We now bound the cost to insert intoall leaves, including those
in the (recursive) shuttle-tree buffers. Note that this lemma does not
account for bringing the root-to-leaf path of the shuttle tree (or the
recursive shuttle-tree buffers) into memory. The cost of transferring
these blocks will be accounted for in Theorem 17.

LEMMA 16. The amortized cost of (recursively) inserting into
the leaves of all shuttle-tree buffers along the root-to-leaf path of a
size-N shuttle tree is O((logN)/B1/3 +(log2N)/B).

Proof. Without loss of generality, suppose that the height of the
tree is the Fibonacci numberFk, giving N = O(cFk).

Let T(Fk) be the amortized cost of inserting into the leaf of
a height-Fk shuttle-tree and all leaves of shuttle-tree buffers (re-
cursively) along the root-to-leaf-path. LetC(Fk) ≤ c1(Fk/B1/3 +



F2
k /B) be the cost of inserting into the leaves of a particular height-

Fk shuttle tree (not counting the cost to recursively insert into
buffers—this cost is bounded in Lemma 14).

Applying Lemma 15 gives the recurrenceT(Fk) ≤
C(Fk) +

Pk
j=b Fk− j+2T(FH ( j)), where b = Θ(1) is the small-

est buffer-height index. Thus, we haveT(Fk) ≤ C(Fk) +
Pk

j=b Fk− j+2T(FH ( j)) = C(Fk) +
Pk−b

j=0 Fk− j+2−bT(FH ( j+b)) ≤
C(Fk)+

Pk−b
j=0(Fk−1/Fj−3+b)T(FH ( j+b)).

We make the inductive hypothesis thatT(Fi) ≤ c2(Fi/B1/3 +
F2

i /B) for all i < k, which can be proved by substitution into the
summation.

The next theorem bounds the total cost of an insert into the shut-
tle tree. The main idea of this theorem is that whenever an item
moves from one block to another, at leastBΘ(1/(log logB)2) items
also move, and we can amortize against these to get a small cost of
moving down the tree.

THEOREM 17. The amortized cost of an insert into the shuttle
tree of size N is O((logBN)/BΘ((1/ log logB)2) +(log2 N)/B).

Proof. The full insert cost has two contributors: the cost of
letting an item move toward the leaves in the tree(s), and the cost
of inserting into the leaves. The latter is bounded by Lemma 16.

Here we analyze the cost of moving down the tree. This cost
follows a similar recurrence to that in Lemma 4’s proof. In partic-
ular, we letT(Fk+1) be the cost to move an item through a height-
Fk+1 shuttle tree. Then we haveT(Fk+1) = T(Fk−1) + T(Fk) +
T(FH (k))+T(FH (k+1)).

This proof differs from that in Lemma 4 because of a different
base case. Once we recurse down to buffered recursive subtreesof
size roughlyB, we have a subtree with leaves containing buffers
of size roughlyBΘ(1/(log logB)2). The only reason an item being in-
serted enters a new block is if it overflows from one of these buffers
in a previous block. Thus, we can amortize the cost of this move
to get a base case ofT(FΘ(log logB)) = O(1/BΘ(1/(log logB)2)). The
recurrence solves in the same way as in the proof of Lemma 4.

Scanning
We conclude this section by analyzing the scan cost.

THEOREM 18. Suppose that M= Ω(BlogN). Suppose also
that we just performed a search on an element x. Then a range
query starting at x that returns L elements in sorted order makes
O(L/B) memory transfers.

Proof. Finding the successor of an elementx entails findingx’s
successor in the shuttle tree and recursively in all the buffers along
the root-to-leaf path in the shuttle tree. Assuming all (recursive)
root-to-leaf paths are in memory, a successor query is free. A new
block must only be brought in everyΩ(B) successor queries, for an
amortized cost ofO(1/B).

Lemma 4 states that a search costsO(logBN) block transfers.
Thus, assuming memory has sizeM = Ω(BlogBN), all (recursive)
root-to-leaf paths are in memory. Finding a successor is, therefore,
amortized toO(1/B).

3. CACHE-OBLIVIOUS LOOKAHEAD
ARRAY (COLA)

This section describes thecache-oblivious lookahead array
(COLA). We begin by describing the structure of the COLA with an
amortized analysis. Then we show how to deamortize the COLA to

provide better worst-case bounds. We explain the deamortization
in two steps, showing first the basic idea, and then dealing with the
full complexity of the data structure. We conclude this section with
a discussion of the tradeoff between updates and queries.

COLA structure and amortized analysis
The cache-oblivious lookahead array (COLA) is similar to the bi-
nomial list structure [9] of Bentley and Saxe. It consists of⌈log2 N⌉
arrays, orlevels, each of which is either completely full or com-
pletely empty. Thekth array is of size 2k and the arrays are stored
contiguously in memory. The COLA maintains the following in-
variants:

1. Thekth array contains items if and only if thekth least sig-
nificant bit of the binary representation ofN is a 1.

2. Each array contains its items in ascending order by key.

To maintain these invariants, when a new item is inserted we effec-
tively perform a carry. That is, we create a list of length one with
the new item, and as long as there are two lists of the same length,
we merge them into the next bigger size.

LEMMA 19. Insertion into the COLA incurs an amortized
O((logN)/B) block transfers.

Proof. Once an item has been involved inO(logN) merges, it is
in the last array. The first log2 B moves incur no cost because these
arrays fit into a constant number of blocks, which we can assume
are always kept in memory. After this, the arrays being merged
have length at leastB. Thus, the cost of merging two such arrays of
lengthk is O(k/B). The amortized cost of one merge isO(1/B) per
item, and so the total amortized merge cost isO((logN)/B) block
transfers.

Näıvely, searches can be implemented by binary searching sep-
arately in each of theO(logN) levels for a total complexity of
O(log2 N). We call this first data structure thebasic COLA.

We speed up searches by fractional cascading [13]. Every eighth
element in the(k+ 1)st array also appears in thekth array, with a
real lookahead pointer to its location in the(k+ 1)st array. Each
fourth cell in thekth array is reserved for aduplicate lookahead
pointer, which holds pointers to the nearest real lookahead pointer
to its left and right. Thus, every level uses half its space for actual
items and half for lookahead pointers.

LEMMA 20. COLA searches incur O(logN) block transfers.

Proof. To simplify the proof, on each level store−∞ and+∞ in
the first and last cell and give them real lookahead pointers.

We prove inductively that a search for keyr looks at at most eight
contiguous items in each level and thatr is greater than or equal to
the smallest of these and less than or equal to the largest of these.
This induction will establish both the time bound and correctness
of the search procedure.

The claim is true in the first three levels, because each has size
at most eight (even with the−∞ and+∞ pointers added). Suppose
the claim is true at thekth level, wherek≥ 3, and the search in this
level looked at contiguous items with keysr1 < r2 < .. . < r8 and
thatr1 ≤ r ≤ r8.

Let ℓ be such thatrℓ ≤ r < rℓ+1. If rℓ = r then we have found the
target element or lookahead pointers that lead to the target element.
In this first case the induction goes through trivially for all remain-
ing levels. Otherwise,rℓ < r. In this second case we restrict our
search on the next level to those keys between the elements pointed
to by two lookahead pointers, the two lookahead pointers whose
key values are the maximum belowr and the minimum abover.



We can find both lookahead pointers quickly using the duplicate
lookahead pointers.

Lookahead pointers can also be used to achieveO(logN) block
transfers for predecessor and successor queries andO(logN+L/B)
block transfers for range queries, whereL is the number of items
reported.

Deamortization of basic COLA
As a first step, we show how to partially deamortize the ba-
sic COLA (which includes no lookahead pointers) whenM =
Ω(logN). We improve the worst-case bound fromO(N/B) to
O(logN). We ignore the issue of deamortizing global rebuilding
after the data structure doubles in size because this can be handled
using standard methods [19, Ch. 5].

The idea is as follows. In levelk of the lookahead array we
maintain two arrays each of size 2k. Whenever a level contains
items in both of its arrays, we begin merging those two arrays into
an empty array in the next level. Each level is said to be either
safe or unsafe. Informally, a level is unsafe during merging. More
formally, initially all levels are safe, levelk become unsafe once
it contains exactly 2k+1 items, and an unsafe level becomes safe
when both of its arrays become empty.

We place newly inserted items into level 0. We then scan the
levels from left to right, merging from unsafe levels to the next
level, stopping when we have either run out out of unsafe levels or
moved a total ofm items, whichever comes first (m to be chosen
later). We keep three arrays of size⌈log2N⌉. One array keeps track
of which levels are safe. The other two arrays’kth entries hold the
indices we are at in the merge of the two arrays at levelk.

The biggerm, the more aggressively we merge. We need to make
sure we merge aggressively enough to guarantee that whenever we
merge from a level there is at least one free array in the next level,
which would be implied by the next level being safe. The insertion
worst-case bound is clearlyO(m), so we wantm as small as possi-
ble while still keeping us aggressive enough. Lemma 21 shows that
a fairly low setting ofmsuffices.

LEMMA 21. If a lookahead array contains k levels, setting m=
2k+2 guarantees that two adjacent levels are never simultaneously
unsafe.

Proof. By induction on levels we show that levelsi andi +1 are
never simultaneously unsafe. Fori = 0 there are at least 2 levels,
som≥ 6 and we can afford to perform an entire merge from level 1
to 2 whenever level 1 becomes unsafe. Thus level 1 never remains
unsafe, showing the base case.

We show that if levelℓ is unsafe, it becomes safe before level
ℓ−1 becomes unsafe. When levelℓ becomes unsafe, levelℓ−1 is
empty. Furthermore, for us to have moved items from levelℓ−1 to
level ℓ, all previous levels had to have been safe since we process
unsafe levels from left to right. Therefore, levels 0 toℓ−2 hold a
total of at most

Pℓ−2
j=0 2 j = 2ℓ−1 − 1 items, and for levelℓ− 1 to

become unsafe again there must be at least 2ℓ−1 + 1 inserts. We
show that levelℓ becomes safe after at most 2ℓ−1 inserts. After
2ℓ−1 inserts, we have accumulated at leastmℓ2ℓ−1 moves, and no
move will go unused as long as levelℓ is unsafe.

After 2ℓ−1 insertions there can be at most 2ℓ −1 items in levels
ℓ−1 and below, and each one could have used at mostℓ−2 moves
to get to its level. Thus, items below levelℓ could have used a total
of at most(ℓ− 2)(2ℓ − 1) moves. We want at least 2ℓ+1 moves
available to move all the items from levelℓ to the next level, so we
wantm2ℓ−1 ≥ (ℓ−2)(2ℓ −1)+2ℓ+1, which holds form≥ 2ℓ.

THEOREM 22. The basic COLA can be deamortized to per-
form O(logN) block transfers per insertion in the worst case and
O((logN)/B) amortized block transfers per insertion as long as
M = Ω(logN).

Proof. The worst-case bound follows immediately from
Lemma 21 sincek = O(logN).

For the amortized bound, the argument is similar to that for
the amortized COLA. The difference is that now when we incur
a block transfer at a level beyond the(log2 B)th level, that block
may be evicted due to previous levels becoming unsafe before we
get a chance to moveB items. We charge such an eviction to the
block that is brought in. Since unsafe levels are processed from
left to right, there can be no cycles in blocks charging one another
for evictions. Furthermore, if a blockC evicts a blockD from a
later level then is evicted itself before completing the merge it was
brought in for, whenC is later brought back into memory it must
be because a block at an earlier level finished participation in its
merge;C can take that block’s space in memory. Thus, a block
brought into memory during a merge is only charged for evicting
at most one other block. This guarantees that the amortized cost of
moving one item is still 1/B.

Furthermore, sinceM = Ω(logN), we can assume the three ar-
rays keeping track of merge information are always in memory, so
the insertion algorithm can determine which merges need to take
place without incurring extra transfers.

Deamortization of COLA
The introduction of lookahead pointers complicates COLA
deamortization since we must maintain the pointers in the middle
of merges to keep queries fast. Since the deamortized structure is
only allowed to perform a small amount of work per update, it is
not clear how this can be done. We show how to extend the deamor-
tization technique for the basic COLA to the COLA in such a way
as to completely hide the details of the deamortization from the
queries; from the viewpoint of a query, no level will appear to be in
the middle of a merge. The precise description and proofs follow.

At level k we now maintain three arrays, each of size 2k. At least
one array is ashadow array and at least one is avisible array (un-
less levelk is beyond the levels being used by the data structure yet,
in which case all three arrays are considered shadow). Query algo-
rithms ignore the shadow arrays. This labeling of shadow versus
visible is non-constant throughout time; during updates a shadow
array may become visible, and vice versa. Items in visible arrays
never appear to be in the middle of a merge from a query’s view-
point, so the data structure induced by only looking at visible ar-
rays appears almost exactly as the amortized COLA with looka-
head pointers. The key difference from the deamortization method
of the previous section is that when levelk becomes unsafe, we
do not move items from levelk to k+ 1; we insteadcopythem to
a shadow array of levelk+ 1. Thus, from the point of view of a
query, no arrays appear to be in the middle of a merge.

All levels start as being safe and all arrays start as being shadow
arrays. Levelk becomes unsafe once two of its arrays become full.
Two full arrays at an unsafe level must be merged into any shadow
arrayA of level k+ 1. If there is more than one shadow array in
levelk+1, preference is given to one already containing lookahead
pointers. After the merge, lookahead pointers are copied fromA
into an empty shadow array at levelk. We restrict ourselves to
having a total combined number of copied lookahead pointers and
merged items to being at mostm during each insertion,m to be
chosen later. Levelk becomes safe once both the merge intoA
and the placement of lookahead pointers fromA into level k are



complete. At this point we say the array in levelk that received
lookahead pointers fromA becomeslinked to A.

We now discuss the transition from shadow to visible and vice
versa. Level 0 only contains two arrays, both of which are always
visible. A shadow array becomes visible when there is a sequence
of linked arrays beginning at level 0 to that array. When a shadow
array becomes visible there are two cases. If there are two other vis-
ible arrays in that level, their statuses are both changed to shadow
and both arrays are then considered empty. Otherwise, if there are
0 or 1 other visible arrays, they remain visible.

LEMMA 23. Suppose level k becomes unsafe and merges into
a shadow array A at level k+ 1. Then, A becomes visible before
another merge into level k+1 occurs.

Proof. We prove the claim by induction on level. If we merge
from level 0 to an arrayA at level 1, the arrayA becomes imme-
diately visible since an array at level 0 then becomes linked toA.
Now, suppose we just merged two arrays from levelk into arrayA
at levelk+1. At the end of the merge, levelk has two arrays with
items (the arrays that engaged in the merge) and one shadow array
B that is linked toA. Since there are never two adjacent unsafe lev-
els,B has received all its lookahead pointers fromA before a merge
into levelk can occur. When a merge into levelk does occur, it is
into B, and the other two arrays at levelk then become shadow. For
another merge into levelk+1 to occur, there must be another merge
into levelk after the merge intoB in order to make levelk unsafe.
By our induction hypothesis,B becomes visible by this time, and
thus so doesA sinceB is linked toA.

THEOREM 24. The COLA with lookahead pointers can be
deamortized to perform O(logN) block transfers per insertion in
the worst case and O((logN)/B) amortized block transfers per in-
sertion as long as M= Ω(logN).

Proof. Safeness of a level is similar to safeness in the basic
COLA. In both scenarios, if levelk is unsafe then we must scan
Θ(2k) items before levelk becomes safe again (note that placing
lookahead pointers in the previous level after a merge can be done
by two simultaneous scans). Thus, we can use the proof idea of
Lemma 21 to state that two adjacent levels are never unsafe if we
choose to moveΘ(logN) items per insertion. By Lemma 23, three
arrays per level suffice to guarantee that for any unsafe level there
is at least one shadow array in the next level to merge into. The rest
of the argument follows that of the proof of Theorem 22.

We discuss how to slightly modify the query algorithms to work
when the COLA has two arrays at each level. As with the basic
COLA, each levelk will actually have at most two arrays in use at
any given time. At least one of these arrays will be themain array.
Should there only be one array in use at levelk, we consider that
array to be the main array. Otherwise, the array merged into least
recently is the main array and the other issecondary.

The main array contains lookahead pointers into both the main
and secondary arrays of the next level, and the secondary array,
if it exists, contains no lookahead pointers. We only use half the
space of the secondary array to maintain that every array is exactly
half-full with real items. When merging into what will become
the main array of levelk+ 1, every eighth element in this main
array appears as a lookahead pointer in an array of levelk. When
merging into what will become the secondary array of levelk+1,
every sixteenth element of each of the main and secondary arrays
of level k+1 appears as a lookahead pointer in an array at levelk.
Thus, main arrays always contain exactly half real items and half
lookahead pointers. Duplicate lookahead pointers at levelk point to

the nearest real lookahead pointers to their left and right in each of
the main and secondary arrays of levelk+ 1. Queries then search
both arrays at a level in parallel.

Cache-aware update/query tradeoff
With a few changes, it is possible to make the lookahead array
cache-aware and achieveO(logBε+1N) block transfers per query
and O((logBε+1N)/B1−ε) block transfers per insertion for any
ε ∈ [0,1], matching the bound of the Bε-tree [10]. Instead of having
the array at levelk be twice as big as the array at levelk−1, we can
have it grow in size by some arbitrary multiplicative factorg which
we call thegrowth factor, e.g.g = 2 yields the COLA. We discuss
settingg = Θ(Bε). Instead of every eighth element of levelk also
appearing in levelk− 1, everyΘ(Bε)th element will appear as a
lookahead pointer in the previous level. During queries we must
look throughΘ(Bε) instead ofΘ(1) cells of each array, butΘ(Bε)
cells still fit in at most 2 blocks implying a constant number of
block transfers per level. When performing an insertion, the level
being merged into may not be empty and we thus have to merge
the pre-existing items with the ones from the previous level. Since
the sum of the sizes of the firstk−1 levels is at least anΩ(1/Bε)
fraction of the size of thekth level, a level is merged into at most
Bε times before its items participate in a merge into a future level.
This fact, together with there being at mostO(logBε+1N) levels,
gives the amortizedO((logBε+1N)/B1−ε) insertion bound.

The deamortization technique of the last section can be adjusted
to reduce the worst-case insertion complexity of this cache-aware
lookahead array toO(logBε+1N). The main differences are that
we need to moveΘ(Bε logBε+1N) items per insertion instead of
Θ(logN) items, and that we need an extra array per level to provide
space for holding the result of merges into non-empty arrays.

4. COLA: EXPERIMENTAL RESULTS
This section presents an experimental evaluation of the COLA.

We compared COLAs with B-trees as well as the impact of in-
sertion order on performance. First we describe our implementa-
tion, then the experiments, and present our results showing that the
COLA can be orders of magnitude faster than traditional B-trees
without sacrificing much performance on searches.

Implementation
Here we describe the implementation details of the amortized
COLA from, parametrized by growth factorg (g-COLA for short)
andpointer density p. For pointer densityp, each levelℓ includes
an additional⌊2p(g−1)gℓ−1⌋ redundant elements (real lookahead
pointers). We setp = 0.1 in all our experiments. For ag-COLA,
a level receivesg− 1 merges before being merged into a higher
level. Therefore levelℓ has size 1 forℓ = 0 and size 2(g−1)gℓ−1

for ℓ > 0. When a level is not completely full (e.g., when it contains
only redundant elements or has received fewer thang−1 merges)
we maintain the elements right justified in their array. Elements
comprise key/value pairs, where keys and values each are of size
64 bits. We pad the elements to a total size of 32 bytes. Instead
using of duplicate lookahead pointers, each real element uses 64 of
its padding bits to hold a copy of the closest real lookahead pointer
to its left. Redundant elements use 64 of their padding bits to hold
the real lookahead pointer. When performing merges, we merge
the 2 smallest levels at a time as in the last paragraph of the proof
of Lemma 19. We alternate placing the result of the merge at the
beginning of the target level and at the newly freed space at the
beginning of the data structure, thus requiring space for only 1 ad-
ditional element during merges.



102

103

104

105

106

107

220 221 222 223 224 225 226 227 228 229 230

A
ve

ra
ge

 In
se

rt
s 

/ s
ec

on
d

Number of Inserts (N)

COLA vs B-tree (Random Inserts)

14 Days

8 Mins

61 Mins
14 Mins

2 Mins

2-COLA
4-COLA
8-COLA

B-tree

Figure 2: Data is inserted in random order. The 4-COLA is 790 times faster
than the B-tree forN = (256×220)−1 (the largestN tested). Structures no
longer fit in main memory whenN ≈ 227.

105

106

107

220 221 222 223 224 225 226 227 228 229 230

A
ve

ra
ge

 In
se

rt
s 

/ s
ec

on
d

Number of Inserts (N)

COLA vs B-tree (Sorted Inserts)

2-COLA
4-COLA
8-COLA

B-tree

Figure 3: Data is inserted in sorted order, which gives best-case perfor-
mance for the B-tree. The 4-COLA is 3.1 times slower than the B-tree for
N = 230−1.

This merge pattern requiresO(k) CPU time andO(k/B) memory
transfers to merge a total ofk items across any number of levels.
When distributing lookahead pointers after a merge we proceed
level by level. The target level is scanned to copy pointers down
one level, the next largest level is scanned to copy pointers down to
the next level, and so on. We perform searches as in the proof of
Lemma 20, except that we compute right-hand lookahead pointers
on the fly by scanning subsequent levels.

Our B-tree implementation employs blocks of size 4KiB. Key
and value sizes were each 64 bits to match our COLA implemen-
tation. Both data structures access external memory via memory
mapping. As a sanity check, we compared the performance of our
traditional B-Tree to the Berkeley DB [21], a high-quality commer-
cially available B-tree. Berkeley DB supports variable-sized keys,
crash recovery, and very large databases, none of which our imple-
mentation supports. The Berkeley DB with the default buffer-pool
allocation is much slower than our implementation, but is com-
parable once the parameters are tuned, and logging is turned off,
suggesting that we did a reasonable job implementing our B-tree.

100

101

102

20 22 24 26 28 210 212 214

A
ve

ra
ge

 S
ea

rc
he

s 
/ s

ec
on

d

Number of Searches

COLA vs B-tree (Random Searches)

2-COLA
4-COLA
8-COLA

B-tree

Figure 4: WhenN = 230−1, the 4-COLA performs 215 searches 3.5 times
slower than the B-tree. Initial searches are slow due to the cache being
empty. The source data was created from the test in Figure 3.

105

106

107

220 221 222 223 224 225 226 227 228 229 230

A
ve

ra
ge

 In
se

rt
s 

/ s
ec

on
d

Number of Inserts (N)

Ascending vs Descending vs Random Inserts

4-COLA (Ascending)
4-COLA (Descending)

4-COLA (Random)

Figure 5: We measured the time to insert into COLAs for ascending, de-
scending, and random keys. Inserting 230− 1 keys sorted in descending
order is 1.1 times faster than inserting in ascending order, and 1.1 times
faster than inserting in random order.

All experiments were performed on a dual Xeon 3.2GHz ma-
chine with 2MiB of L2 Cache, 4GiB RAM and two 250GB Maxtor
7L250S0 SATA drives using software RAID-0 with 64KiB stripe
width, running Linux 2.6.12-10-amd64-xeon in 64-bit mode.

Experiments
When performing the experiments we measured the time once ev-
ery 220 inserts. We measured user CPU timeu, kernel CPU timek,
and elapsed time since start of testw. We estimated disk timed as
d = w−u−k. The RAID array contains only the memory-mapped
file. Before measuring any times, we first created a large enough
file to hold the entire experiment. We measured raw disk bandwidth
of 120MiB/s by timing the write of 237 bytes to the RAID array. We
remounted the RAID array’s file system before every insertion test
to clear the file cache.

In all figures resulting from experiments, insert performance of
the COLA appears to be periodic when plotted on a logarithmic
scale because there is a merge of 2k elements after every 2k inserts.



We compared the B-tree to the COLA as follows. ForN = 230−
1 we inserted keys[N−1, . . . ,0] into a B-tree. We next attempted to
insert(256×220)−1 random elements into a new B-tree, stopping
after 87 hours at about 228 insertions. We repeated the tests for
a 2-, 4-, and 8-COLA, and completed the random insertion test
of N elements. We were able to complete the insertions for the
COLAs. After remounting the RAID array, we next searched in the
g-COLAs and B-tree for 215 random elements, measuring the time
after search number 2x, 0 ≤ x ≤ 15. (To construct the complete
B-tree we first sorted theN random elements then inserted them,
since directly inserting the elements would have taken too long.)

As shown in Figure 2, the 4-COLA is 790 times faster than
the B-tree for random inserts. Figure 3 shows that the 4-cola is
3.1 times slower for insertions where the insertions are performed
in descending, rather than random, order. Figure 4 shows that the
4-cola is 3.5 times slower for searches.

We believe that the B-tree performs faster for sorted data be-
cause it only uses the leftmost root-to-leaf path, which can stay
in memory. For random inserts, the B-tree loses the advantage
of keeping its insertion path in memory. For random inserts, se-
quential prefetching of more than one block does not significantly
help B-trees, but significantly helps COLAs. The 4-COLA is 1.1
times faster than the 2-COLA for random inserts, 1.1 times faster
for sorted inserts, and 1.4 times faster for searches. The 4-COLA
is 1.4 times faster than the 8-COLA for random inserts, 1.5 times
faster for sorted inserts, and 1.2 times slower for searches. Given
the superior tradeoff of the 4-COLAs, we use them for all subse-
quent experiments.

We next performed an experiment to measure COLA perfor-
mance for different insertion patterns. ForN = 230−1 we inserted
[N−1, . . . ,0] into a COLA,[0, . . . ,N−1] into a second COLA, and
N random elements into a third COLA. Figure 5 shows that insert-
ing keys sorted in descending order is 1.1 times faster than inserting
keys sorted in ascending order, and 1.1 times faster than inserting
random keys. Inserting keys sorted in ascending order was 1.02
times faster than inserting random keys.

We believe inserting keys in descending order is faster due to the
final merge. The number of elements we merge at each level grows
geometrically. The last merge, into the target level, is the largest.
When inserting in descending order, elements already in the target
level do not move, whereas when inserting in ascending order, all
elements in the target level move to make room for elements from
smaller levels.

Acknowledgments
We gratefully acknowledge Christopher Wright for his help in im-
plementing, testing, and running experiments on theg-COLA.

5. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output complexity of

sorting and related problems.Commun. ACM,
31(9):1116–1127, Sept. 1988.

[2] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley,
and J. I. Munro. Cache-oblivious priority queue and graph
algorithm applications. InProceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC), pages
268–276, Montŕeal, Canada, Qúebec, Canada, May 2002.

[3] L. Arge and J. S. Vitter. Optimal external memory interval
management.SIAM Journal on Computing,
32(6):1488–1508, 2003.

[4] R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered indexes.Acta Inf.,
1(3):173–189, Feb. 1972.

[5] M. A. Bender, R. Cole, E. D. Demaine, and
M. Farach-Colton. Scanning and traversing: Maintaining
data for traversals in a memory hierarchy. InProc. 10th
Annual European Symp. on Algorithms (ESA), pages
139–151, Rome, Italy, Sept. 2002.

[6] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees.SIAM J. Comput., 35(2):341–358,
2005. An earlier version of this paper appeared in Proc. 41st
Annual Symp. on Foundations of Computer Science (FOCS),
pages 399-409, Redondo Beach, California, 2000.

[7] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A
locality-preserving cache-oblivious dynamic dictionary.J.
Algorithms, 3(2):115–136, 2004.

[8] M. A. Bender, M. Farach-Colton, and B. Kuszmaul.
Cache-oblivious string B-trees. InProc. 25th Symposium on
Principles of Database Systems (PODS), pages 233–242,
Chicago, Illinois, June 2006.

[9] J. L. Bentley and J. B. Saxe. Decomposable searching
problems i: Static-to-dynamic transformation.J. Algorithms,
1(4):301–358, 1980.

[10] G. S. Brodal and R. Fagerberg. Lower bounds for external
memory dictionaries. InProceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 546–554, Baltimore, Maryland, May 2003.

[11] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious
search trees via binary trees of small height. InProceedings
of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 39–48, San Francisco, California,
Jan. 2002.

[12] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. R. Westbrook. On external memory graph traversal. In
Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 859–860, San Francisco,
California, Jan. 2000.

[13] B. Chazelle and L. J. Guibas. Fractional cascading: I. a data
structuring technique.Algorithmica, 1(2):133–162, 1986.

[14] D. Comer. The ubiquitous B-tree.ACM Comput. Surv.,
11(2):121–137, June 1979.

[15] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. InProc. 40th Annual Symp. on
Foundations of Computer Science (FOCS), pages 285–297,
New York, New York, Oct. 1999.

[16] I. Katriel. Implicit data structures based on local
reorganizations. Master’s thesis, Technion, Israel Inst. of
Tech., Haifa, May 2002.

[17] D. E. Knuth.Sorting and Searching, volume 3 ofThe Art of
Computer Programming. Addison-Wesley, Reading,
Massachusetts, 1973.

[18] J. I. Munro, T. Papadakis, and R. Sedgewick. Deterministic
skip lists. InProceedings of the 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 367–375,
Orlando, Florida, January 1992.

[19] M. H. Overmars.The Design of Dynamic Data Structures.
Springer, 1983.

[20] H. Prokop. Cache-oblivious algorithms. Master’s thesis,
Department of Electrical Engineering and Computer
Science, Massachusetts Inst. of Tech., June 1999.

[21] Sleepycat Software. The Berkeley Database.
http://www.sleepycat.com, 2005.


