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Computing Bio
• 1401 (4K), 1620 (20K) experience
• 7040 (16KW) IBSYS experience
• 360/50 (256K) DOS experience
• 360/30 (64K?) PL/I experience
• 7090 (32KW) Timesharing
• PDP-10 (256KW) ITS Lisp experience
• PDP-8 (4KW) experience
• Lisp Machine (2-8KW) experience
• Spent ½ of career fighting memory issues



Computing Bio II
• Assemblers w/macros
• Fortran I (IF, subscripts)
• PL/I
• TECO
• Lisp
• APL
• Pascal/Ada
• C/C++
• Spent ¼ of career in “batch” processing



Computing Bio III
• Radiation treatment planning SW (7040/360)
• Bus DP – DB & RT Production Planning SW (now called “MRP”);

Disk-based hash tables
• MIT – discrete simulation SW in Fortran
• MIT – Forrester simulations
• MIT – Asynchronous HW (Petri Nets & Marked Graphs)
• MIT – natural language in Lisp
• MIT – parallel processing (“futures”)
• MIT – shallow binding
• MIT – RTGC
• Symbolics – Sales & Graphics
• Nimble – non-moving GC & “Cheney on the MTA”
• Spent significant time with applications & numeric applications



45 Years of Moore’s Law

• 1960: ~128Kbytes & ~100Kops/sec
• 2005: ~10Gbytes & ~4Gops/sec
• ~15 doublings in mem & proc in 45yrs

(doesn’t count $$)
• Most arguments against Lisp have 

become obsolete

• So how come Lisp isn’t ubiquitous?



No Moore’s Law for Software

• After 50 years of trying, US R&D 
establishment has thrown in the towel on 
SW – no silver bullets

• SW labor-intensive, so move SW offshore 
to Asia – lots of bright, cheap developers

• Why provide expensive tools for grunt 
labor?

• Why isn’t this conference held in India or 
China?



Incremental SW Development

• “Debugging blank sheet of paper”
• Very low hurdle to execution => coding w/o 

thinking
• Old days of batch processing w/ one 

compile/day led to deep thinking
• Computer is tool to aid thought, but doesn’t 

replace thought
• Computer language is inherently a pun – needs 

to be interpreted by both men & machines



SW Development Process
• Personal style of programming
• Prototype idea – forget performance
• Define some test cases
• Refine structure & interfaces
• Rearrange code (substantial/global revisions)
• Refine for maintainability, performance
• Insert type checking
• Serious performance tuning
• Prove program correct
• Gets larger, more annotated/documented



SW Development II

• Want to move smoothly through preceding 
sequence

• Don’t want to retype or reprogram
• Need substantial global changes:

(name changes, arglist changes, etc.)
• Incremental/local changes not enough
• Must integrate comments, annotations, 

test cases
• Must integrate type checking & proving



SW Development III
• SW development tools needed (how theory should guide 

practise)
• Input directly into symbols & conses – should never be 

necessary to find unbalanced parens
• Alpha renaming essential
• Beta expansion essential
• Beta abstraction essential
• Eta conversion essential
• Argument rearrangement essential
• Nested -> continuation-passing mode
• Datatype substitution
• “Homomorphic Image” (slice?) views



SW Development IV

• Holy Grail of Maintenance: Database 
evolution w/o tears

• Need to find & replace all references to 
data structures in programs AND

• Need to automatically generate programs 
to update the existing databases

• Lisp should be able to do this, but hasn’t



Programming in the Large v.
Programming in the Small

• Fractal/scalable system would utilize same tools 
& mechanisms for small & large programs

• λ-calculus infinitely composable, BUT
• # free variables builds up non-scalably
• Largest # of free variables are function names 

(10’s of thousands of names)
• Quite difficult to develop/edit/debug heavily 

lexically-nested programs
• C gave this up for multiple reasons
• Lisp has never addressed this issue



Lisp Features
• Trivial syntax
• Recursion only (originally no iteration)
• Recursive/fractal data structures
• Reflection (EVAL/APPLY)
• Macros
• Garbage Collection
• Hashed Atoms & property lists
• Read-Eval-Print loop
• Tagged Architecture



Chars Considered Harmful:
“C Envy”

• Corollary 1: if you write a parser for some application, you probably 
have too much spare time on your hands

• Corollary 2: “Finite State Machines considered harmful” – beware 
any enterprise that requires new syntax, or the creation of a finite 
state machine

• Lisp was invented as a symbol-processing language, not a byte-
processing language

• Proper rep for Lisp source code is S-expressions (or some other 
symbolic representation), NOT character files

• Adopting C approach of character source files was major step 
BACKWARD

• BBNLisp was better approach
• Proper way to edit Lisp is with structure, NOT character, editor

(“Emacs considered harmful”)
• Comments & other annotations should be essential part of source 

code



Lisp Variables

• Original Lisp used dynamic/fluid binding rather 
than static/lexical binding

• Occurrence problem in dynamic binding is 
undecidable – you can’t find all name 
occurrences to rename

• Major screwup, which was slavishly copied by 
APL & many other interpreted languages

• Deep & unbounded variable searches led to 
“shallow binding” mechanism



Legacy of Shallow Binding

• Used in “undo”
• Two-phase transaction protocols 

(speculate/commit/rollback)
• Unwind-protect/try generalization of 

shallow binding
• Crash recovery protocols in databases
• Speculative execution in processors
• Reminiscent of “label-swapping” in 

networking protocols



Lisp Roots – Lambda Calculus

• λ-calculus uses application & abstraction
• λ-calculus has 3 rules:
• α-renaming (A rose by any other name…)
• β-reduction (fn application/argument 

binding)
• η-reduction (tail recursion)



What’s in a Name?
• Semantics of naming exposed when things are 

renamed
• Must know all & only occurrences of the name
• Must know what new names won’t conflict with 

existing names
• λ-calculus cares only about distinguishability of 

names, not spelling, per se
• (GC deals with names at different level; GC finds 

all & only occurrences; copying GC renames all 
& only occurrences)



Kinds of Names in Lisp

• Atom names (PNames)
• Keywords
• Macro names
• File names
• Record component names
• (Addresses for GC)



Why Renaming is Important

• Important to understanding someone 
else’s code

• Important to find all occurrences during 
development & debugging

• Important during program maintenance to 
upgrade programming documentation

• Important when importing program 
fragments for reuse



Argument Handling

• Long arg lists considered harmful
• Keyword/&rest is better, but still relatively 

unstructured – difficult to know who & 
when info is being used

• Need better idea of argument “bundles”
• Generally how to pass info though many 

levels of calls
• Sometimes, dynamic/fluid variables are 

more efficient!



Memory Management
• Dynamic – no fixed sizes for tables/arrays
• Don’t run out of space until all space is 

exhausted
• Break up memory into discrete chunks
• Dynamically allocate chunks
• Dynamically reclaim chunks not in use
• Emulate long arrays with multiple levels of short 

arrays – no significant slowdown (already done 
in HW, e.g.)

• Lisp didn’t invent dynamic memory allocation 
(IPL-V), but did invent tracing GC



GC is Cache-Friendly

• Write-allocate cache: allocate when written 
(don’t read from memory)

• Works well with sequential allocating 
copying collector

• Most cells live & die in cache & are never 
written to memory!



Real-time Time Management

• Analogous to Memory Management
• Time broken into discrete chunks
• Unbounded stretches of uninterrupted 

execution don’t happen
• Scheduling thru allocation/deallocation of 

these chunks
• Repetitive/cyclic tasks (filling/emptying 

buffers)



Efficiency Matters
• Efficiency hacking is major % of all programming effort
• If large builtin library is inefficient, then why bother with 

it?
• Need smooth transition from generic/slow library routines 

to efficient specialized routines (e.g., graphics 1/sqrt(x))
• Lisp never able to shake its bad reputation for 

inefficiency
• Too easy to write slow programs (ditto for PL/I)
• Size of program not correlated with efficiency
• Too many bad books
• Too many bad implementations – e.g., slow 

readers/interning/printers



Efficiency Matters II

• Not easy to write efficient code
• No static typing, horrible declaration 

language, non-existent tools
• Few profilers
• Difficult/impossible to replace buggy/slow 

builtin/library routines
• Need reflective system to replace stuff 

“under the hood”
• “Inline” declaration that is guaranteed



Type Checking in Lisp

• Why not?  “Real men don’t type check”
• Lack has led to “hacker” view of Lisp 

programmers – always prototyping, never 
delivering production code

• Type checking doesn’t solve every 
problem, but is helpful in large systems

• Just the exercise of trying to “type” Lisp 
highlights some bad design features

• One of the many balls dropped by Lisp



Necessary Changes for Lisp
• A static language is a dead language (e.g., Latin)
• Common Lisp halted most innovation in Lisp

• Rationalize the type system – too many functions have bad typing 
that force inefficient implementations

• More efficient bit-hacking
• Immutable list cells & strings (Just Do It!)
• Linear variables (more controversial)
• Micro-kernel with reflective portions

(decompose monolithic Lisp systems into simple pieces)
• Real-time scheduler
• Persistent DB for code, comments, test cases, etc.
• Better integration with threads & NUMA parallel processors
• Much better system construction tools

(“ifdef considered harmful”)



Bit Hacking -- Compression

• Compression is ubiquitous
• Gzip, jpeg, mpeg, etc.
• Disk, network, memory management
• Factors > 2 matter!
• Huge improvements in computer 

architecture from multiple levels of 
compression/encoding/decoding



Productivity Example –
JPEG Decode

• Interpret bit strings
• Integer DCT
• Color space conversion

• No particular advantage for Lisp; very 
large potential disadvantage for Lisp



Immutable Cons Cells & Strings
• Long overdue – don’t need heavyweight CONS cells & strings
• Define your own structs if you want to
• EQ -> EQUAL
• Hash CONS if you like
• Substantial compiler efficiencies

(e.g., treatment of &rest args, pnames)
• Substantial runtime efficiencies (e.g., cache coherence)
• Copying collectors don’t need forwarding
• Thread-safe
• Non-shared memory parallel processors
• Conversion from “linear” to “immutable” during CONS (“publishing”)



“Resources” are Linear
• “Hidden” arguments & returned values to/from 

subroutines:
stack space, freelist, processor time

• Real-time systems must tightly manage 
resources (I/O devices, space, time)

• Need to make hidden arguments visible
• Analogy: Scheme provided access to return 

address & previous stack through “continuation”
• “Linear” Lisp would provide explicit access to 

freelist, scheduling queues, etc.



Linear Variables/Data Structs

• Linear variables are referenced exactly 
once within scope (once per if arm)

• Non-shared, so thread-safe
• Cache-friendly (access => dead)
• Reflection: Freelist is linear
• Shared variable = linear variable + 

semaphore



Lisp Systems Too Monolithic

• Traditional Lisp systems were monolithic –
large amounts of non-Lisp code

• At the mercy of the implementor re quality 
& efficiency – can’t easily replace/upgrade 
inefficient parts

• Have to “re-invent the wheel” to get decent 
performance

• Efficiency matters!



Need Reflective Lisp Systems

• Need to be able to replace/upgrade 
significant portions of a system – Lisp 
reader, GC

• Much more productive to preserve 
application code & make “builtins” more 
efficient

• Efficiency matters!



Real-Time Lisp

• Lisp one of the 1st to automatically 
manage storage

• Break storage into small “packets”;
Large objects are composed from such 
packets

• Packets dynamically allocated & freed



Real-Time Lisp II

• Why not automatically manage time?
• Break time up into small “packets”
• Allocate (& deallocate) packets with 

scheduler
• Never have to do “pre-emption” – no 

interrupts, no masking, etc.
• No god-given right to continuous execution



Real-Time Lisp III
• Early byte-addressed computers used variable-

length data (1401/1410/1620) delimited by “word 
marks”

• Instructions ran arbitrarily long, depending upon 
size of the data

• Impossible to interrupt; large amount of state to 
save/restore

• Modern computers try to limit duration & state of 
single instruction by using fixed-size data 
packets (“words”)



Real-Time Lisp IV

• Modern computers have fixed-size cache 
lines

• Modern compilers & processors worry 
about jump-free instruction sequences

• Typical jump-free sequences are about the 
order of magnitude of a cache line

• No real overhead cost from limiting size of 
non-interruptible sequence



Real-Time Lisp V

• Need to allocate time in the future
• One-time allocations; cyclic allocations
• Allocate buffers & times for I/O transfers
• Often need to deallocate future slots

(e.g., variable-length I/O transfer is 
complete)

• Need to allocate time for background tasks 
– e.g., GC



Seamlessly Integrated Persistent 
Database

• Original BBN Lisp model almost OK
• Dumped/restored Lisp symbols & properties
• Didn’t meet “ACID” test
• Lisp Machine was its own DB (kept running for 

years), but wasn’t sharable & didn’t meet ACID 
test; also, it stored code in char files

• Allegro OODB excellent, but not seamlessly 
integrated

• Lisp could have won big on this one feature 
alone



What Lisp Did Right

• Personal, interactive environment
• Fast prototyping
• Symbols & lists v. characters/bits/numbers
• Simple syntax
• Small core of intrinsics/”special forms”
• Spectacular success: Boyer-Moore 

theorem prover



What Lisp Did Wrong

• Garbage collection doesn’t solve leaks 
(accumulations of stuff unexpected by higher 
levels)

• Didn’t become the Operating System
• Didn’t handle real-time events, interrupts
• Didn’t incorporate persistent storage
• Didn’t provide some level of typing
• Didn’t provide good enough tools/editors
• Didn’t address large-scale programming



Missed Opportunities
• No persistent Lisp database for source code & 

applications
• Completely missed the PC revolution
• Dropped the ball on CAD – e.g., AutoCAD
• Dropped the ball on Macsyma – Mathematica & 

Matlab
• Dropped the ball on text editors – Emacs v. MS 

Word
• Dropping the ball on LispStat
• Dropping the ball on video games
• Dropping the ball on XML



Lisp Features Co-opted

• Interactive/immediate execution – APL, 
Smalltalk, Javascript, etc.

• Recursion – Pascal, C/C++, Java, even 
Fortran!

• Recursive data structures – Pascal/Ada, 
C/C++, Smalltalk, Java, etc.

• Garbage collection – Smalltalk, Java, etc.
• Lisp is too happy to play Greek slave to 

the Roman master



Major Problems for Lisp today

• Beowulf-style Linux clusters
• Lisp’s preference for global address space 

makes this infeasible
• Cache as cache can – Lisp doesn’t map 

well to modern memory hierarchies
• Only standard method of persistence is 

byte-based file systems



The “XML Question”

• By rights, Lisp should own XML
• Lisp should immediately embrace XML
• Lisp needs to quickly develop standard 

XML readers & printers
• Lisp needs to utilize XML as alternate 

syntax



Applications Matter
• People don’t buy languages, they buy 

applications
• Matlab – language for accessing linear algebra 

library
• Emacs – language for accessing text-processing 

library
• LispStat – language for accessing statistics 

library
• AutoCAD – language for accessing 2D CAD 

drawing library
• => Differentiation is in the libraries



What Symbolics did right

• Raised enough $$ to start a real company
• Hired good production HW people
• Built good sales & service organization
• Implemented standards (Common Lisp, 

Fortran/Pascal, Ethernet)
• Developed excellent documentation
• Had excellent training courses



What Symbolics did wrong
• Technical issues (SW done before lex vars; “stack 

groups” horrible thread mechanism; stack architecture 
incapable of optimization; paging done in ucode)

• Missed the whole PC revolution
• Missed the Unix wave (“I will not work for a company that 

incorporates Unix into a product”)
• No “application delivery” box
• Lisp chip was too little, too late
• Could not respond with SW on commodity HW
• Could not respond with simpler software for non-wizards
• “Too Many Notes” – not enough focus



HW v. SW Design

• Mystery: why does Cadence get $$$ per 
seat for HW design, while SW tools are 
given away?



Why Aren’t SW Tools Expensive?

• HW tools cost $100K/seat/year
• How come people won’t pay 

$100K/seat/year for SW developers?
• SW development takes a long time & is 

very expensive
• SW bugs are extremely expensive to fix in 

the field
• SW lasts longer than HW, so it should be 

more important to do a good job in SW



Why Aren’t SW Tools Expensive II

• SW development has moved to Asia
• Lots of  bright, cheap programmers
• SW productivity isn’t very good



Microsoft as a SW Black Hole

• Windows incorporates all else
• Embrace & Extend
• Bad money drives good out of circulation
• No incentive for non-MS innovation – all rewards 

accrue to MS
• Pace of SW innovation at the mercy of MS
• Zero SW progress in last 10 years
• Therefore, MS hiring of all those PhD’s is 

actually the cause of the lack of innovation



Wakeup Call for Lisp

• Lisp Conference 2006: Masada or China

• Masada: Die/suicide for religious purity

Or

• China: Embrace dramatic change



Contact Info

• hbaker1@pipeline.com
• http:/home.pipeline.com/~hbaker1

mailto:hbaker1@pipeline.com
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