
The Legacy of Lisp
“Observations/Rants”

Dedicated to Prof. E. Goto

Henry Baker, Ph.D.
Partner

Baker Capital Corp.
hbaker@bakercapital.com

Computing Bio
• 1401 (4K), 1620 (20K) experience
• 7040 (16KW) IBSYS experience
• 360/50 (256K) DOS experience
• 360/30 (64K?) PL/I experience
• 7090 (32KW) Timesharing
• PDP-10 (256KW) ITS Lisp experience
• PDP-8 (4KW) experience
• Lisp Machine (2-8KW) experience
• Spent ½ of career fighting memory issues

Computing Bio II
• Assemblers w/macros
• Fortran I (IF, subscripts)
• PL/I
• TECO
• Lisp
• APL
• Pascal/Ada
• C/C++
• Spent ¼ of career in “batch” processing

Computing Bio III
• Radiation treatment planning SW (7040/360)
• Bus DP – DB & RT Production Planning SW (now called “MRP”);

Disk-based hash tables
• MIT – discrete simulation SW in Fortran
• MIT – Forrester simulations
• MIT – Asynchronous HW (Petri Nets & Marked Graphs)
• MIT – natural language in Lisp
• MIT – parallel processing (“futures”)
• MIT – shallow binding
• MIT – RTGC
• Symbolics – Sales & Graphics
• Nimble – non-moving GC & “Cheney on the MTA”
• Spent significant time with applications & numeric applications

45 Years of Moore’s Law

• 1960: ~128Kbytes & ~100Kops/sec
• 2005: ~10Gbytes & ~4Gops/sec
• ~15 doublings in mem & proc in 45yrs

(doesn’t count $$)
• Most arguments against Lisp have

become obsolete

• So how come Lisp isn’t ubiquitous?

No Moore’s Law for Software

• After 50 years of trying, US R&D
establishment has thrown in the towel on
SW – no silver bullets

• SW labor-intensive, so move SW offshore
to Asia – lots of bright, cheap developers

• Why provide expensive tools for grunt
labor?

• Why isn’t this conference held in India or
China?

Incremental SW Development

• “Debugging blank sheet of paper”
• Very low hurdle to execution => coding w/o

thinking
• Old days of batch processing w/ one

compile/day led to deep thinking
• Computer is tool to aid thought, but doesn’t

replace thought
• Computer language is inherently a pun – needs

to be interpreted by both men & machines

SW Development Process
• Personal style of programming
• Prototype idea – forget performance
• Define some test cases
• Refine structure & interfaces
• Rearrange code (substantial/global revisions)
• Refine for maintainability, performance
• Insert type checking
• Serious performance tuning
• Prove program correct
• Gets larger, more annotated/documented

SW Development II

• Want to move smoothly through preceding
sequence

• Don’t want to retype or reprogram
• Need substantial global changes:

(name changes, arglist changes, etc.)
• Incremental/local changes not enough
• Must integrate comments, annotations,

test cases
• Must integrate type checking & proving

SW Development III
• SW development tools needed (how theory should guide

practise)
• Input directly into symbols & conses – should never be

necessary to find unbalanced parens
• Alpha renaming essential
• Beta expansion essential
• Beta abstraction essential
• Eta conversion essential
• Argument rearrangement essential
• Nested -> continuation-passing mode
• Datatype substitution
• “Homomorphic Image” (slice?) views

SW Development IV

• Holy Grail of Maintenance: Database
evolution w/o tears

• Need to find & replace all references to
data structures in programs AND

• Need to automatically generate programs
to update the existing databases

• Lisp should be able to do this, but hasn’t

Programming in the Large v.
Programming in the Small

• Fractal/scalable system would utilize same tools
& mechanisms for small & large programs

• λ-calculus infinitely composable, BUT
• # free variables builds up non-scalably
• Largest # of free variables are function names

(10’s of thousands of names)
• Quite difficult to develop/edit/debug heavily

lexically-nested programs
• C gave this up for multiple reasons
• Lisp has never addressed this issue

Lisp Features
• Trivial syntax
• Recursion only (originally no iteration)
• Recursive/fractal data structures
• Reflection (EVAL/APPLY)
• Macros
• Garbage Collection
• Hashed Atoms & property lists
• Read-Eval-Print loop
• Tagged Architecture

Chars Considered Harmful:
“C Envy”

• Corollary 1: if you write a parser for some application, you probably
have too much spare time on your hands

• Corollary 2: “Finite State Machines considered harmful” – beware
any enterprise that requires new syntax, or the creation of a finite
state machine

• Lisp was invented as a symbol-processing language, not a byte-
processing language

• Proper rep for Lisp source code is S-expressions (or some other
symbolic representation), NOT character files

• Adopting C approach of character source files was major step
BACKWARD

• BBNLisp was better approach
• Proper way to edit Lisp is with structure, NOT character, editor

(“Emacs considered harmful”)
• Comments & other annotations should be essential part of source

code

Lisp Variables

• Original Lisp used dynamic/fluid binding rather
than static/lexical binding

• Occurrence problem in dynamic binding is
undecidable – you can’t find all name
occurrences to rename

• Major screwup, which was slavishly copied by
APL & many other interpreted languages

• Deep & unbounded variable searches led to
“shallow binding” mechanism

Legacy of Shallow Binding

• Used in “undo”
• Two-phase transaction protocols

(speculate/commit/rollback)
• Unwind-protect/try generalization of

shallow binding
• Crash recovery protocols in databases
• Speculative execution in processors
• Reminiscent of “label-swapping” in

networking protocols

Lisp Roots – Lambda Calculus

• λ-calculus uses application & abstraction
• λ-calculus has 3 rules:
• α-renaming (A rose by any other name…)
• β-reduction (fn application/argument

binding)
• η-reduction (tail recursion)

What’s in a Name?
• Semantics of naming exposed when things are

renamed
• Must know all & only occurrences of the name
• Must know what new names won’t conflict with

existing names
• λ-calculus cares only about distinguishability of

names, not spelling, per se
• (GC deals with names at different level; GC finds

all & only occurrences; copying GC renames all
& only occurrences)

Kinds of Names in Lisp

• Atom names (PNames)
• Keywords
• Macro names
• File names
• Record component names
• (Addresses for GC)

Why Renaming is Important

• Important to understanding someone
else’s code

• Important to find all occurrences during
development & debugging

• Important during program maintenance to
upgrade programming documentation

• Important when importing program
fragments for reuse

Argument Handling

• Long arg lists considered harmful
• Keyword/&rest is better, but still relatively

unstructured – difficult to know who &
when info is being used

• Need better idea of argument “bundles”
• Generally how to pass info though many

levels of calls
• Sometimes, dynamic/fluid variables are

more efficient!

Memory Management
• Dynamic – no fixed sizes for tables/arrays
• Don’t run out of space until all space is

exhausted
• Break up memory into discrete chunks
• Dynamically allocate chunks
• Dynamically reclaim chunks not in use
• Emulate long arrays with multiple levels of short

arrays – no significant slowdown (already done
in HW, e.g.)

• Lisp didn’t invent dynamic memory allocation
(IPL-V), but did invent tracing GC

GC is Cache-Friendly

• Write-allocate cache: allocate when written
(don’t read from memory)

• Works well with sequential allocating
copying collector

• Most cells live & die in cache & are never
written to memory!

Real-time Time Management

• Analogous to Memory Management
• Time broken into discrete chunks
• Unbounded stretches of uninterrupted

execution don’t happen
• Scheduling thru allocation/deallocation of

these chunks
• Repetitive/cyclic tasks (filling/emptying

buffers)

Efficiency Matters
• Efficiency hacking is major % of all programming effort
• If large builtin library is inefficient, then why bother with

it?
• Need smooth transition from generic/slow library routines

to efficient specialized routines (e.g., graphics 1/sqrt(x))
• Lisp never able to shake its bad reputation for

inefficiency
• Too easy to write slow programs (ditto for PL/I)
• Size of program not correlated with efficiency
• Too many bad books
• Too many bad implementations – e.g., slow

readers/interning/printers

Efficiency Matters II

• Not easy to write efficient code
• No static typing, horrible declaration

language, non-existent tools
• Few profilers
• Difficult/impossible to replace buggy/slow

builtin/library routines
• Need reflective system to replace stuff

“under the hood”
• “Inline” declaration that is guaranteed

Type Checking in Lisp

• Why not? “Real men don’t type check”
• Lack has led to “hacker” view of Lisp

programmers – always prototyping, never
delivering production code

• Type checking doesn’t solve every
problem, but is helpful in large systems

• Just the exercise of trying to “type” Lisp
highlights some bad design features

• One of the many balls dropped by Lisp

Necessary Changes for Lisp
• A static language is a dead language (e.g., Latin)
• Common Lisp halted most innovation in Lisp

• Rationalize the type system – too many functions have bad typing
that force inefficient implementations

• More efficient bit-hacking
• Immutable list cells & strings (Just Do It!)
• Linear variables (more controversial)
• Micro-kernel with reflective portions

(decompose monolithic Lisp systems into simple pieces)
• Real-time scheduler
• Persistent DB for code, comments, test cases, etc.
• Better integration with threads & NUMA parallel processors
• Much better system construction tools

(“ifdef considered harmful”)

Bit Hacking -- Compression

• Compression is ubiquitous
• Gzip, jpeg, mpeg, etc.
• Disk, network, memory management
• Factors > 2 matter!
• Huge improvements in computer

architecture from multiple levels of
compression/encoding/decoding

Productivity Example –
JPEG Decode

• Interpret bit strings
• Integer DCT
• Color space conversion

• No particular advantage for Lisp; very
large potential disadvantage for Lisp

Immutable Cons Cells & Strings
• Long overdue – don’t need heavyweight CONS cells & strings
• Define your own structs if you want to
• EQ -> EQUAL
• Hash CONS if you like
• Substantial compiler efficiencies

(e.g., treatment of &rest args, pnames)
• Substantial runtime efficiencies (e.g., cache coherence)
• Copying collectors don’t need forwarding
• Thread-safe
• Non-shared memory parallel processors
• Conversion from “linear” to “immutable” during CONS (“publishing”)

“Resources” are Linear
• “Hidden” arguments & returned values to/from

subroutines:
stack space, freelist, processor time

• Real-time systems must tightly manage
resources (I/O devices, space, time)

• Need to make hidden arguments visible
• Analogy: Scheme provided access to return

address & previous stack through “continuation”
• “Linear” Lisp would provide explicit access to

freelist, scheduling queues, etc.

Linear Variables/Data Structs

• Linear variables are referenced exactly
once within scope (once per if arm)

• Non-shared, so thread-safe
• Cache-friendly (access => dead)
• Reflection: Freelist is linear
• Shared variable = linear variable +

semaphore

Lisp Systems Too Monolithic

• Traditional Lisp systems were monolithic –
large amounts of non-Lisp code

• At the mercy of the implementor re quality
& efficiency – can’t easily replace/upgrade
inefficient parts

• Have to “re-invent the wheel” to get decent
performance

• Efficiency matters!

Need Reflective Lisp Systems

• Need to be able to replace/upgrade
significant portions of a system – Lisp
reader, GC

• Much more productive to preserve
application code & make “builtins” more
efficient

• Efficiency matters!

Real-Time Lisp

• Lisp one of the 1st to automatically
manage storage

• Break storage into small “packets”;
Large objects are composed from such
packets

• Packets dynamically allocated & freed

Real-Time Lisp II

• Why not automatically manage time?
• Break time up into small “packets”
• Allocate (& deallocate) packets with

scheduler
• Never have to do “pre-emption” – no

interrupts, no masking, etc.
• No god-given right to continuous execution

Real-Time Lisp III
• Early byte-addressed computers used variable-

length data (1401/1410/1620) delimited by “word
marks”

• Instructions ran arbitrarily long, depending upon
size of the data

• Impossible to interrupt; large amount of state to
save/restore

• Modern computers try to limit duration & state of
single instruction by using fixed-size data
packets (“words”)

Real-Time Lisp IV

• Modern computers have fixed-size cache
lines

• Modern compilers & processors worry
about jump-free instruction sequences

• Typical jump-free sequences are about the
order of magnitude of a cache line

• No real overhead cost from limiting size of
non-interruptible sequence

Real-Time Lisp V

• Need to allocate time in the future
• One-time allocations; cyclic allocations
• Allocate buffers & times for I/O transfers
• Often need to deallocate future slots

(e.g., variable-length I/O transfer is
complete)

• Need to allocate time for background tasks
– e.g., GC

Seamlessly Integrated Persistent
Database

• Original BBN Lisp model almost OK
• Dumped/restored Lisp symbols & properties
• Didn’t meet “ACID” test
• Lisp Machine was its own DB (kept running for

years), but wasn’t sharable & didn’t meet ACID
test; also, it stored code in char files

• Allegro OODB excellent, but not seamlessly
integrated

• Lisp could have won big on this one feature
alone

What Lisp Did Right

• Personal, interactive environment
• Fast prototyping
• Symbols & lists v. characters/bits/numbers
• Simple syntax
• Small core of intrinsics/”special forms”
• Spectacular success: Boyer-Moore

theorem prover

What Lisp Did Wrong

• Garbage collection doesn’t solve leaks
(accumulations of stuff unexpected by higher
levels)

• Didn’t become the Operating System
• Didn’t handle real-time events, interrupts
• Didn’t incorporate persistent storage
• Didn’t provide some level of typing
• Didn’t provide good enough tools/editors
• Didn’t address large-scale programming

Missed Opportunities
• No persistent Lisp database for source code &

applications
• Completely missed the PC revolution
• Dropped the ball on CAD – e.g., AutoCAD
• Dropped the ball on Macsyma – Mathematica &

Matlab
• Dropped the ball on text editors – Emacs v. MS

Word
• Dropping the ball on LispStat
• Dropping the ball on video games
• Dropping the ball on XML

Lisp Features Co-opted

• Interactive/immediate execution – APL,
Smalltalk, Javascript, etc.

• Recursion – Pascal, C/C++, Java, even
Fortran!

• Recursive data structures – Pascal/Ada,
C/C++, Smalltalk, Java, etc.

• Garbage collection – Smalltalk, Java, etc.
• Lisp is too happy to play Greek slave to

the Roman master

Major Problems for Lisp today

• Beowulf-style Linux clusters
• Lisp’s preference for global address space

makes this infeasible
• Cache as cache can – Lisp doesn’t map

well to modern memory hierarchies
• Only standard method of persistence is

byte-based file systems

The “XML Question”

• By rights, Lisp should own XML
• Lisp should immediately embrace XML
• Lisp needs to quickly develop standard

XML readers & printers
• Lisp needs to utilize XML as alternate

syntax

Applications Matter
• People don’t buy languages, they buy

applications
• Matlab – language for accessing linear algebra

library
• Emacs – language for accessing text-processing

library
• LispStat – language for accessing statistics

library
• AutoCAD – language for accessing 2D CAD

drawing library
• => Differentiation is in the libraries

What Symbolics did right

• Raised enough $$ to start a real company
• Hired good production HW people
• Built good sales & service organization
• Implemented standards (Common Lisp,

Fortran/Pascal, Ethernet)
• Developed excellent documentation
• Had excellent training courses

What Symbolics did wrong
• Technical issues (SW done before lex vars; “stack

groups” horrible thread mechanism; stack architecture
incapable of optimization; paging done in ucode)

• Missed the whole PC revolution
• Missed the Unix wave (“I will not work for a company that

incorporates Unix into a product”)
• No “application delivery” box
• Lisp chip was too little, too late
• Could not respond with SW on commodity HW
• Could not respond with simpler software for non-wizards
• “Too Many Notes” – not enough focus

HW v. SW Design

• Mystery: why does Cadence get $$$ per
seat for HW design, while SW tools are
given away?

Why Aren’t SW Tools Expensive?

• HW tools cost $100K/seat/year
• How come people won’t pay

$100K/seat/year for SW developers?
• SW development takes a long time & is

very expensive
• SW bugs are extremely expensive to fix in

the field
• SW lasts longer than HW, so it should be

more important to do a good job in SW

Why Aren’t SW Tools Expensive II

• SW development has moved to Asia
• Lots of bright, cheap programmers
• SW productivity isn’t very good

Microsoft as a SW Black Hole

• Windows incorporates all else
• Embrace & Extend
• Bad money drives good out of circulation
• No incentive for non-MS innovation – all rewards

accrue to MS
• Pace of SW innovation at the mercy of MS
• Zero SW progress in last 10 years
• Therefore, MS hiring of all those PhD’s is

actually the cause of the lack of innovation

Wakeup Call for Lisp

• Lisp Conference 2006: Masada or China

• Masada: Die/suicide for religious purity

Or

• China: Embrace dramatic change

Contact Info

• hbaker1@pipeline.com
• http:/home.pipeline.com/~hbaker1

mailto:hbaker1@pipeline.com

	The Legacy of Lisp“Observations/Rants”
	Computing Bio
	Computing Bio II
	Computing Bio III
	45 Years of Moore’s Law
	No Moore’s Law for Software
	Incremental SW Development
	SW Development Process
	SW Development II
	SW Development III
	SW Development IV
	Programming in the Large v.Programming in the Small
	Lisp Features
	Chars Considered Harmful:“C Envy”
	Lisp Variables
	Legacy of Shallow Binding
	Lisp Roots – Lambda Calculus
	What’s in a Name?
	Kinds of Names in Lisp
	Why Renaming is Important
	Argument Handling
	Memory Management
	GC is Cache-Friendly
	Real-time Time Management
	Efficiency Matters
	Efficiency Matters II
	Type Checking in Lisp
	Necessary Changes for Lisp
	Bit Hacking -- Compression
	Productivity Example –JPEG Decode
	Immutable Cons Cells & Strings
	“Resources” are Linear
	Linear Variables/Data Structs
	Lisp Systems Too Monolithic
	Need Reflective Lisp Systems
	Real-Time Lisp
	Real-Time Lisp II
	Real-Time Lisp III
	Real-Time Lisp IV
	Real-Time Lisp V
	Seamlessly Integrated Persistent Database
	What Lisp Did Right
	What Lisp Did Wrong
	Missed Opportunities
	Lisp Features Co-opted
	Major Problems for Lisp today
	The “XML Question”
	Applications Matter
	What Symbolics did right
	What Symbolics did wrong
	HW v. SW Design
	Why Aren’t SW Tools Expensive?
	Why Aren’t SW Tools Expensive II
	Microsoft as a SW Black Hole
	Wakeup Call for Lisp
	Contact Info

