

The Image that called me
Active Content Injection with SVG Files

A presentation by Mario Heiderich, 2011

Introduction

● Mario Heiderich
● Researcher and PhD student at the Ruhr-

University, Bochum
● Security Researcher for Microsoft, Redmond
● Security Consultant for XING AG, Hamburg
● Published author and international speaker
● HTML5 Security Cheatsheet / H5SC
● PHPIDS Project

Today

● SVGs and the modern web
● What are SVGs?
● What are they capable of?
● Which browsers “understand” SVG?
● Why there are conflicted areas?

● And what does that have to do with
security?

SVG Images

● Scalable Vector Graphics

● XML based, therefore
● Versatile
● Accessible
● Compressible
● “Stylable” w. CSS
● Open

● Great for mobile devices

● Easy to parse and process

● Ancient format, older than 10 years

● Relations to HTML5, the living standard

SVG History

● Proposed by several W3C members in 1998
● Derived from Adobe Postscript and VML
● Developed in 1999
● Currently at version 1.1

● Version 1.2 still a working draft
● Might be overtaken by SVG 2.0

● Good browser support
● Gecko, Webkit, Presto, and Trident

Basic Example

<svg xmlns=“http://www.w3.org/1999/svg“>
<circle r=“40“ fill=“red“></circle>

</svg>

http://www.w3.org/1999/svg

SVG Family

● SVG Tiny 1.2
● Designed for cellphones and smart-phones
● 47 Tags

● SVG Basic 1.1
● Designed for handhelds, tablets and net-books
● 71 tags

● SVG Full 1.1
● Full feature set
● 81 tags

Features

● Geometrical shapes
● Circles, ellipses, squares, lines and more
● SVG fonts

● Font specific formatting and glyph styles
● Links
● Animations and Transformations
● Gradients and Effects
● Meta-data
● Scripting and Events
● Inclusion of arbitrary objects

SVG in Action

Scripting

● The following SVG executes JavaScript

● More examples?

<svg xmlns=“http://www.w3.org/1999/svg“>
<script>

alert(1)
</script>

</svg>

http://www.w3.org/1999/svg

More Scripting
<svg xmlns="http://www.w3.org/2000/svg">

<g onload="javascript:alert(1)"></g>
</svg>

<svg xmlns="http://www.w3.org/2000/svg">
<animation xlink:href="javascript:alert(1)"/>

</svg>

<svg xmlns="http://www.w3.org/2000/svg">
<foreignObject xlink:href="javascript:alert(1)"/>

</svg>

<svg xmlns="http://www.w3.org/2000/svg">
<set attributeName="onmouseover" to="alert(1)"/>

</svg>

<svg xmlns="http://www.w3.org/2000/svg">
<handler

xmlns:ev="http://www.w3.org/2001/xml­events"
ev:event="load"

>alert(1)</handler>
</svg>

http://www.w3.org/2000/svg
javascript:alert(1
http://www.w3.org/2000/svg
javascript:alert(1
http://www.w3.org/2000/svg
javascript:alert(1

Deploying SVGs

● Several ways of deploying SVGs,
implemented by modern browsers

● Five important ones are:
● Opening the file directly
● Deployment via <object> or <embed>
● Deployment via or <image>
● Deployment via CSS background/list-
style/content/cursor

● In-line SVG

Security Boundaries

● SVG capabilities based on deployment
method

● A model, based on expectations
● Heterogeneous implementations

● And a whole new world of bugs and
vulnerabilities

XSS

● SVGs deployed via and <image> tag should
not execute JavaScript

● Same goes for SVGs used via CSS
● Or SVG fonts

● SVGs deployed via <iframe>, <embed> or <object>
should, though

● So browsers need different approaches

● Learning by fixing?

Local SVGs

● SVGs opened directly are allowed to script
● Imagine the following attack:

● Attacker uploads an image with an exciting motive to a server

● Victim navigates to the image, likes it, saves it locally, downloads
folder or desktop

● Victim wants to watch the image again and double-clicks it

● Image is an SVG and executes JavaScript locally

● Attacker can read local files (same directory, sub-folders)

● Attacker can even load and start Java applets or worse

● Very likely too be used in real life attacks!

● Porn sites, Email attachments, Malware

In-line SVG

● Suggested by the HTML5 specs
● Working on all modern browsers – except

Opera
● No strict XML parser anymore

● <svg><circle r=40 fill=red></svg>
● See – no quotes, no trailing slash

● Reduced feature set
● <svg> introduces many new XSS vectors
● XSS filter bypasses

Scoping

● SVG images are treated by browsers as XML

● Same is for in-line SVG blocks

● XML treats plain-text tags differently
● Entities and canonical character representations are treated equally

● 0-Day filter bypasses ahead

● This enables a new attack technique on Firefox

● DEMO

● And it's even worse

● In-line SVG “self-terminates” open HTML elements

http://jsbin.com/orufu4

Opera

● A long history of SVG flaws
● JavaScript execution via SVG fonts
● XSS via CSS background images

● Now SVGs deployed via CSS/ cannot
script anymore

● But - not all kinds of attacks need scripting
to succeed

● DEMO

http://html5sec.org/#43
http://heideri.ch/opera

Other Browsers

● Firefox 4 crashed badly on SVGs embedding JS

● Chrome produces weird things when using
<foreignObject> and <iframes

● Opera deploys Java applets via SVG fonts

● And what about other XML related attack patterns?
● External entities
● SVG Tiny 1.2 Java Events
● Entity bombs
● Etc. etc.

● Some browsers support SVG Masks, perfect for click-
jacking

Wrap-Up

● SVGs are not just images but mini-applications

● tags can now deploy Java, PDF and Flash – and call you
on Skype

● In-line SVG creates small XML islands enabling XML attacks on
HTML websites

● SVG and XSLT work too, enabling DoS and other attacks

● Web-security and XML security, they meet again!

● And XXE is back – remember 2002's advisories?

● SVG is not getting enough attention in the security
community

● SVG provides a lot of room for more security research

Defense

● More difficult than one might assume
● No existing filter libs
● No good documentation
● XSS vectors are hard to comprehend
● New vectors coming up weekly

● SVG files should not be perceived as images

● Allowing SVG for upload == allowing HTML for upload

● SVG can embed, link or reference any kind of content
over cross domain borders

● SVG provides new ways of payload obfuscation

Future Work

● SVG Purifier
● Based on HTMLPurifier 4.2.0
● Still very young, and so far unpublished

● More articles on the HTML5 Sec Cheatsheet Wiki
● Publications, to raise awareness

● Academic publication is in preparation

● More demo vectors on the H5SC to demonstrate
impact

● OWASP research and documentation?

Links
● Wikipedia on SVG http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

● W3C SVG Working Group http://www.w3.org/Graphics/SVG/

● SVG Full 1.1 (W3C) http://www.w3.org/TR/SVG11/

● SVG Basic 1.1 and SVG Tiny 1.2 http://www.w3.org/TR/SVGMobile/

● SVG 2.0 http://dev.w3.org/SVG/profiles/2.0/publish/intro.html

● Adobe's SVG Zone http://www.adobe.com/svg/

H5SC http://html5sec.org/

● XSLT and SVG http://scarybeastsecurity.blogspot.com/20...riousity.html

● Opera SVG Bug http://heideri.ch/opera/

● HTMLPurifier http://htmlpurifier.org/

● JSBin http://jsbin.com/

● More SVG fun http://maliciousmarkup.blogspot.com/20...re-xml-fun.html

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVGMobile/
http://dev.w3.org/SVG/profiles/2.0/publish/intro.html
http://www.adobe.com/svg/
http://html5sec.org/
http://scarybeastsecurity.blogspot.com/2011/01/harmless-svg-xslt-curiousity.html
http://heideri.ch/opera/
http://htmlpurifier.org/
http://jsbin.com/
http://maliciousmarkup.blogspot.com/2008/11/svg-and-more-xml-fun.html

Thanks

● Thanks for listening
● Questions || Comments?
● Discussion and tool preview?

● Thanks to
● Gareth Heyes and Manuel Caballero from UNH
● Alexey Silin / LeverOne
● Dave Ross

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

