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Why SMP?

Demand from customers

and also

Makes better use of modern hardware
Multi-core hardware readily available
Fun!



Roadmap

Multiprocessing models in LispWorks
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Changes in LispWorks

* Runtime system changes
— Change some global data to be per-thread

e Bindings, catch tags, current thread
— Compiler changes to access to per-thread data
— Garbage collector (addition of locking)
— FLI (removal of locking)

e Common Lisp implementation
e Extensions and libraries



Interaction of CL with SMP

No formal specification for threads in CL

— Some consensus between implementations
Thread-safety

Atomicity

Specify some semantics

— Goal is to remain the same as existing threading model



What does thread-safe mean?

e Safety in the implementation
— Avoids breaking the implementation
— Implicit locks

e Safety for applications

— We need to specify some semantics that can be
guaranteed



Safety in the CL implementation

* Access to all standard CL objects is thread-safe
— Readers always return valid CL objects
— Does not imply useful semantics overall
* Immutable objects
— Numbers, characters, functions, pathnames and restarts
— Can be freely shared between threads
* Mutable objects

— Use with more than one thread needs to be controlled
— Atomic access possible in some cases



Atomic access

* Scenario:
— There is one object
— Several threads are reading and writing one of its slots

* The value of each read operation looks like
— Some write operations have finished
— But all other write operations have not started yet

* Not specified for multiple reads

— Same slot or different slots



Mutable objects: atomic access

Access to conses, simple arrays, symbols and structures is atomic.
— Does not apply to non-simple arrays (compound objects)
Slot access in objects of type standard-object is atomic with respect to
— modification of the slot
— class redefinition, but MOP semantics are problematic
vector-pop, vector-push, vector-push-extend, (setf fill-pointer) and adjust-
array

— atomic with respect to each other and with respect to other access to the
array elements

Hash tables operations are atomic with respect to each other
— Making several calls to these functions will not be atomic overall

— New: modify-hash to atomically read and write an entry and with-hash-table-
locked for more complex operations

Access to packages is atomic
— Though some scenarios are nonsensical



Mutable objects: non-atomic access

Access to lists (including alists and plists) is not atomic

— Lists are made of multiple cons objects, so although access to the individual
conses is atomic, the same does not hold for the list as a whole

Sequence operations that access multiple elements are not atomic
— E.g. delete, find
Macros that expand to multiple read/write operations are not atomic
— push, incf, rotatef etc
— Atomic versions of some of these are available in LispWorks 6
Stream operations are in general not atomic
— Optional locking of streams at application granularity



New atomic operators

e Usable with a restricted set of Common Lisp places
* Primitives

— atomic-exchange

— compare-and-swap

— atomic-fixnum-incf
* High level

— atomic-push

— atomic-pop

— atomic-incf



Synchronization Objects

Locks

— Simple and exclusive/sharing

Mailboxes

— FIFO queues, use for communication between threads

Barriers

— Wait until fixed number of threads have synchronized

Condition variables

— Used with a lock for a complex Lisp condition to control the scheduler

Counting semaphores

— Traditional APl to control number of concurrent uses of a resource



Native scheduler vs. Lisp scheduler

Native scheduler uses synchronization objects

Lisp scheduler uses an arbitrary predicate to control
wake-up

Syntax

process-wait reason predicate &rest args

process-wait is still supported
— Using synchronization objects is usually better
— process-wait has some problems



Problems with process-wait

It is unspecified which thread calls the predicate

— The dynamic environment is also unknown
Thread-safety in the predicate is often assumed

Lisp scheduler wake-up vs. native wake-up (timeout)
Lifetime of the predicate

— May have dynamic extent data in the predicate
— But that will become invalid if native wake-up occurs

Error handling and debugging is difficult
Very easy for the scheduler to become a bottleneck



An alternative process-wait

e Retain the convenience of process-wait
— Distribute the work of the Lisp scheduler
— Same syntax and still has a Lisp predicate

* Comparison to process-wait
— The waiting thread calls the predicate when needed

— Callis triggered by calling process-poke process
— Or it can be called periodically

— Predicate lifetime and environment is well defined

— Errors and debugging no longer a problem



An alternative process-wait (cont)

Working name is process-wait-local
Syntax

process-wait-local reason predicate &rest args

We don't like the name
— Can you suggest a better one?

Could instead rename process-wait as
process-wait-using-scheduler

— Not quite correct for backward compatibility



Native GUI threading

Used by the LispWorks IDE and CAPI applications

Windows
— Threading is built-in
— Per thread event processing

GTK+

— Threading via a global lock

— Per thread event processing can be simulated
Cocoa

— One GUI thread
— No good way to simulate per thread events



Changes for applications

Remove use of macros like without-preemption etc
— Works as an all-powerful lock, stopping the world

— Avoid like the (plague) swine flu

— Cannot be mixed reliably with other locks

Use other threading primitives like atomic-push
Atomic read-modify-write primitives like compare-and-swap
More use of locks

— need a design to avoid deadlocks
— use sparingly to avoid contention

Try to use process-wait-local rather than process-wait
Use other synchronization objects



An application: the LispWorks IDE

* Already multithreaded

* Many changes to the editor
— Original design was single threaded
— Many types of interacting objects

e Buffer, window etc
— Programmatic and interactive
— Streams



Common conversion pitfalls

Overuse of locks

Deadlocks

Avoiding locks by sleepy waiting or busy waiting
Misuse of new atomic operations



Entertaining bug

* Goalis a pop/push resource for conses

e Atomic push: (atomic-push N *list¥)
*list* tail
° > (loop
(let* ((tail *list¥*)
head (head (cons N tail)))
(when (compare-and-swap
i *1ist* tail head)

(return))))

*list* head tail

—{E -0 -0
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Entertaining bug (cont)

e Atomic POp: (atomic-pop *list*) => N
*list*
+— {5 -GS0
*list* tail
T > (loop
(let* ((head *list¥*)
Iéad (tail (cdr head)))
(when (compare-and-swap
i *list* head tail)

(return (car head)))))

e Can we reuse the cons?
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Entertaining bug (cont)

* Atomic pop cons: (atomic-pop-cons *list*) => (N)
*list*
+— {5080
*list* tail
o > (Loop
(let* ((head *list¥*)
head (tail (cdr head)))

(when (compare-and-swap

i *list* head tail)
(return)))

e Atomic push cons is similar
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*list*

Entertaining bug (cont)

head

*list*

tail

tail

*list*

*list*

~
Cd

head

(loop
(let* ((head *list¥*)
(tail (cdr head)))
(when (compare-and-swap
*list* head tail)
(return head))))

head
head tail
tail
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Most MP code can be ported easily

 Watch for code that was never thread-safe
— Much more likely to break in a SMP Lisp

e Customers should contact us for advice



What comes next

* LispWorks 6 beta

* Possible future work
— Multithreaded GC?
— Other threading primitives?
— Other paradigms such as transactional approaches



Summary

* Changes in LispWorks

— New atomic access model

— New primitives

— Performance comparable to current stable release
* Application changes

— Limited to interaction with threads

* Available in LispWorks 6



