Implementing Symmetric
Multiprocessing in LispWorks

Making a multithreaded application
more multithreaded

Martin Simmons, LispWorks Ltd

Copyright © 2009 LispWorks Ltd

Martin Simmons, LispWorks Ltd, ECLM 2009



Outline

Introduction

Changes in LispWorks
Application requirements
Future work



Why SMP?

Demand from customers

and also

Makes better use of modern hardware
Multi-core hardware readily available
Fun!



Roadmap

Multiprocessing models in LispWorks

Green threads Native threads “

1987 1997 2009
LispWorks 2 & 3 LispWorks 4 & 5 LispWorks 6
Lisp scheduler Lisp scheduler Native scheduler
implements chooses thread for guided by Lisp
threads native scheduler scheduler
Martin Simmons, LispWorks Ltd, ECLM 2009 meow!;!g \\ )



Changes in LispWorks

* Runtime system changes
— Change some global data to be per-thread

e Bindings, catch tags, current thread
— Compiler changes to access to per-thread data
— Garbage collector (addition of locking)
— FLI (removal of locking)

e Common Lisp implementation
e Extensions and libraries



Interaction of CL with SMP

No formal specification for threads in CL

— Some consensus between implementations
Thread-safety

Atomicity

Specify some semantics

— Goal is to remain the same as existing threading model



What does thread-safe mean?

e Safety in the implementation
— Avoids breaking the implementation
— Implicit locks

e Safety for applications

— We need to specify some semantics that can be
guaranteed



Safety in the CL implementation

* Access to all standard CL objects is thread-safe
— Readers always return valid CL objects
— Does not imply useful semantics overall
* Immutable objects
— Numbers, characters, functions, pathnames and restarts
— Can be freely shared between threads
* Mutable objects

— Use with more than one thread needs to be controlled
— Atomic access possible in some cases



Atomic access

* Scenario:
— There is one object
— Several threads are reading and writing one of its slots

* The value of each read operation looks like
— Some write operations have finished
— But all other write operations have not started yet

* Not specified for multiple reads

— Same slot or different slots



Mutable objects: atomic access

Access to conses, simple arrays, symbols and structures is atomic.
— Does not apply to non-simple arrays (compound objects)
Slot access in objects of type standard-object is atomic with respect to
— modification of the slot
— class redefinition, but MOP semantics are problematic
vector-pop, vector-push, vector-push-extend, (setf fill-pointer) and adjust-
array

— atomic with respect to each other and with respect to other access to the
array elements

Hash tables operations are atomic with respect to each other
— Making several calls to these functions will not be atomic overall

— New: modify-hash to atomically read and write an entry and with-hash-table-
locked for more complex operations

Access to packages is atomic
— Though some scenarios are nonsensical



Mutable objects: non-atomic access

Access to lists (including alists and plists) is not atomic

— Lists are made of multiple cons objects, so although access to the individual
conses is atomic, the same does not hold for the list as a whole

Sequence operations that access multiple elements are not atomic
— E.g. delete, find
Macros that expand to multiple read/write operations are not atomic
— push, incf, rotatef etc
— Atomic versions of some of these are available in LispWorks 6
Stream operations are in general not atomic
— Optional locking of streams at application granularity



New atomic operators

e Usable with a restricted set of Common Lisp places
* Primitives

— atomic-exchange

— compare-and-swap

— atomic-fixnum-incf
* High level

— atomic-push

— atomic-pop

— atomic-incf



Synchronization Objects

Locks

— Simple and exclusive/sharing

Mailboxes

— FIFO queues, use for communication between threads

Barriers

— Wait until fixed number of threads have synchronized

Condition variables

— Used with a lock for a complex Lisp condition to control the scheduler

Counting semaphores

— Traditional APl to control number of concurrent uses of a resource



Native scheduler vs. Lisp scheduler

Native scheduler uses synchronization objects

Lisp scheduler uses an arbitrary predicate to control
wake-up

Syntax

process-wait reason predicate &rest args

process-wait is still supported
— Using synchronization objects is usually better
— process-wait has some problems



Problems with process-wait

It is unspecified which thread calls the predicate

— The dynamic environment is also unknown
Thread-safety in the predicate is often assumed

Lisp scheduler wake-up vs. native wake-up (timeout)
Lifetime of the predicate

— May have dynamic extent data in the predicate
— But that will become invalid if native wake-up occurs

Error handling and debugging is difficult
Very easy for the scheduler to become a bottleneck



An alternative process-wait

e Retain the convenience of process-wait
— Distribute the work of the Lisp scheduler
— Same syntax and still has a Lisp predicate

* Comparison to process-wait
— The waiting thread calls the predicate when needed

— Callis triggered by calling process-poke process
— Or it can be called periodically

— Predicate lifetime and environment is well defined

— Errors and debugging no longer a problem



An alternative process-wait (cont)

Working name is process-wait-local
Syntax

process-wait-local reason predicate &rest args

We don't like the name
— Can you suggest a better one?

Could instead rename process-wait as
process-wait-using-scheduler

— Not quite correct for backward compatibility



Native GUI threading

Used by the LispWorks IDE and CAPI applications

Windows
— Threading is built-in
— Per thread event processing

GTK+

— Threading via a global lock

— Per thread event processing can be simulated
Cocoa

— One GUI thread
— No good way to simulate per thread events



Changes for applications

Remove use of macros like without-preemption etc
— Works as an all-powerful lock, stopping the world

— Avoid like the (plague) swine flu

— Cannot be mixed reliably with other locks

Use other threading primitives like atomic-push
Atomic read-modify-write primitives like compare-and-swap
More use of locks

— need a design to avoid deadlocks
— use sparingly to avoid contention

Try to use process-wait-local rather than process-wait
Use other synchronization objects



An application: the LispWorks IDE

* Already multithreaded

* Many changes to the editor
— Original design was single threaded
— Many types of interacting objects

e Buffer, window etc
— Programmatic and interactive
— Streams



Common conversion pitfalls

Overuse of locks

Deadlocks

Avoiding locks by sleepy waiting or busy waiting
Misuse of new atomic operations



Entertaining bug

* Goalis a pop/push resource for conses

e Atomic push: (atomic-push N *list¥)
*list* tail
° > (loop
(let* ((tail *list¥*)
head (head (cons N tail)))
(when (compare-and-swap
i *1ist* tail head)

(return))))

*list* head tail

—{E -0 -0

Martin Simmons, LispWorks Ltd, ECLM 2009



Entertaining bug (cont)

e Atomic POp: (atomic-pop *list*) => N
*list*
+— {5 -GS0
*list* tail
T > (loop
(let* ((head *list¥*)
Iéad (tail (cdr head)))
(when (compare-and-swap
i *list* head tail)

(return (car head)))))

e Can we reuse the cons?

Martin Simmons, LispWorks Ltd, ECLM 2009



Entertaining bug (cont)

* Atomic pop cons: (atomic-pop-cons *list*) => (N)
*list*
+— {5080
*list* tail
o > (Loop
(let* ((head *list¥*)
head (tail (cdr head)))

(when (compare-and-swap

i *list* head tail)
(return)))

e Atomic push cons is similar

Martin Simmons, LispWorks Ltd, ECLM 2009



*list*

Entertaining bug (cont)

head

*list*

tail

tail

*list*

*list*

~
Cd

head

(loop
(let* ((head *list¥*)
(tail (cdr head)))
(when (compare-and-swap
*list* head tail)
(return head))))

head
head tail
tail

Martin Simmons, LispWorks Ltd, ECLM 2009

Works 5



Most MP code can be ported easily

 Watch for code that was never thread-safe
— Much more likely to break in a SMP Lisp

e Customers should contact us for advice



What comes next

* LispWorks 6 beta

* Possible future work
— Multithreaded GC?
— Other threading primitives?
— Other paradigms such as transactional approaches



Summary

* Changes in LispWorks

— New atomic access model

— New primitives

— Performance comparable to current stable release
* Application changes

— Limited to interaction with threads

* Available in LispWorks 6



