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Abstract 

 
A new hybrid page layout analysis algorithm is 

proposed, which uses bottom-up methods to form an 
initial data-type hypothesis and locate the tab-stops 
that were used when the page was formatted. The 
detected tab-stops, are used to deduce the column 
layout of the page. The column layout is then applied 
in a top-down manner to impose structure and 
reading-order on the detected regions.  

The complete C++ source code implementation is 
available as part of the Tesseract open source OCR 
engine at http://code.google.com/p/tesseract-ocr. 
 
1. Introduction 
 

Physical Page layout analysis, one of the first steps 
of OCR, divides an image into areas of text and non-
text, as well as splitting multi-column text into 
columns. This paper does not address logical layout 
analysis, which detects headers, footers, body text, 
numbered lists, and segmentation into articles. 

Physical Layout Analysis is essential to enable an 
OCR engine to process images of arbitrary pages, such 
as from books, magazines, journals, newspapers, 
letters, and reports. Methods for physical layout 
analysis fall roughly into two categories: 

Bottom-up methods are both the oldest [1] and more 
recently published [2,3] methods. They classify small 
parts of the image (pixels, groups of pixels, or 
connected components), and gather together like types 
to form regions. The key advantage of bottom-up 
methods is that they can handle arbitrarily shaped 
regions with ease. The key disadvantage is that they 
struggle to take into account higher-level structures in 
the image, such as columns. This often leads to over-
fragmented regions.  

Top-down methods [4] cut the image recursively in 
vertical and horizontal directions along whitespaces 
that are expected to be column boundaries or paragraph 
boundaries. Although top-down methods have the 
advantage that they start by looking at the largest 

structures on the page, they are unable to handle the 
variety of formats that occur in many magazine pages, 
such as non-rectangular regions and cross-column 
headings that blend seamlessly into the columns below. 

A third type of method [5-7] is based on analysis of 
the whitespace in an image. This solves some of the 
flaws in the recursive top-down methods, by finding 
gaps between columns by a bottom-up analysis of the 
gaps, looking explicitly for white rectangles. These 
algorithms mostly still suffer from the problem of 
being unable to handle non-rectangular regions. 
 
2. Page layout via tab-stop detection 
 

When a page is laid out, either by a professional 
publishing system, or by a common word processor, 
the regions of a page are bounded by tab-stops. The 
margins, column edges, indentation, and columns of a 
table are all placed at fixed x-positions at which edges 
or centers of text lines are 
aligned vertically. Tab-stops 
distinguish tables from body 
text, and they also bound 
rectangular non-column 
elements, such as inset 
images and pull-out quotes. 

The tab-stops in the 
example of Fig. 1 are the 
column boundaries with an 
additional tab-stop for the 
paragraph indentation that is 
not required for finding the 
page layout. The non-rectangular inset image, 
typically, strays outside of the column boundaries. 

In some sense, white rectangles match tab-stops, but 
white rectangles may be disrupted by background noise 
or background images. Also the ends of white 
rectangles do not match the ends of the region bounded 
by the tab-stops, because the white rectangles run on 
into the perpendicular whitespace. 

The proposed algorithm is similar to the whitespace 
rectangle methods in that it uses a bottom-up method 
to find a top-down structure, but instead of finding the 

Fig.1.  Input image.
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space between columns, it looks for the tab-stops that 
mark their edges, and, through further combination of 
bottom-up and top-down methods, copes easily with 
non-rectangular regions. 

There are for main phases: preprocessing, in which 
bottom-up morphological and connected component 
analysis form initial hypotheses over the local data 
types; bottom-up tab-stop detections; finding the 
columns layout; and finally applying the column layout 
to create an ordered set of typed regions. These phases 
will be detailed in sections 3-6.  
 
3. Preprocessing 
 

The aim of the preprocessing step is to identify line 
separators, image regions, and separate the remaining 
connected components into likely text components and 
a smaller number of uncertain type. 

            
Fig.2. (a) Vertical lines, (b) Image elements. 
 

Starting with the image of Fig. 1, the morphological 
processing from Leptonica [8] detects the vertical lines 
shown in Fig. 2(a) and the image mask shown in Fig. 
2(b). These detected elements are subtracted from the 
input image before passing the cleaned image to 
connected component analysis. 

The connected components (CCs) are filtered by 
width, w, and height, h into small, medium, and large 
sizes as follows: CCs with h < 7 (at 300ppi) are small. 
The 75th percentile of the heights of the remainder, h75, 
is computed, and CCs with h < h75/2 are small; h > 2h75 
or w > 8h75 are large, and the rest are medium. 

This filtration is important, since small CCs (noise 
or diacriticals) and large non-text CCs, (line drawings, 
logos, or frames) are likely to confuse the text-line 
algorithms, but large text headings are important to 
reading order detection. Large CCs are considered text 
at this stage if there is a left or right neighbor that has a 
similar stroke width. On “stressed” fonts, the stroke 
width is greater on vertical lines than on horizontal 
lines, so stroke width is calculated separately in both 
directions. Stroke width is calculated from horizontal 
and vertical local maxima of the distance function on 

the binary image of the CC. 
Fig. 3 shows the CCs are 
filtered as medium or large 
text. 
 
4. Finding tab 
positions as line 
segments 
 

The process of finding tab-stop line segments has 
several major sub-steps: candidate tab-stop CCs that 
look like they may be at the edge of a text region are 
found and then grouped into tab-stop lines, then 
connections between tab-stop lines are found, enabling 
removal of false positives. 

 
4.1. Finding candidate tab-stop components 

 
The initial candidate tab-stop CCs are found by a 

radial search starting at every filtered CC from 
preprocessing. Assuming that the CC is at a tab-stop, 
the search looks for aligned neighbors and neighbors in 
the gutter where there should be a space. Each CC is 
processed independently and marked according to 
whether it is a candidate left tab, right tab or neither. 
Fig. 4(a) illustrates the candidate tab-stop CCs. 

   
Fig.4. (a) Candidate tab-stop components 

(b) Fitted tab lines and traces connections. 
  

4.2. Grouping candidate tab components 
 
Candidate tab CCs are grouped into lines, and, 

where there are sufficiently many CCs in a group, they 
are kept. A least median of squares algorithm is used to 
fit a line to the appropriate (left or right) edge of each 
CC in a group. After finding all tab-stop line segments, 
all the lines are refitted to the page-mean direction, 
such that all the member tab CCs fall to one side of the 
line segment. 

 
4.3. Tracking text lines to connect tab stops 

 

Fig.3. Filtered  CCs
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The next step connects tab-stops by tracking text 
lines from one tab-stop to another. Closely adjacent, 
vertically overlapping CCs qualify, but large gaps 
cannot be jumped. Tab-stops that have a text-line 
connecting them are associated with each other, as 
being likely opposite sides of a text column. Fig. 4(b) 
shows the tab-stop lines and connecting text lines. Tab-
stop lines that have no connection are discarded.  

The most frequently occurring widths of the text 
lines connecting tab stops are recorded for use in 
finding the column layout. 

 
4.4. Cleaning up tab stop ends 

 
The final step attempts to 

make connected tab lines end 
at the same y coordinate, by 
allowing the ends to move 
between the last member CC 
whose edge was used for the 
tab line, and the first non-
member CC that the line 
intersects. Fig. 5 shows the 
final tab line segments. 

After construction of the 
tab stops, the CCs are re-
classified, as “Text” or 
“Unknown” using the same 
text-line tracing algorithm as was used above to find 
connections between tab stops. If a group of CCs of 
significant width form a text line, then they are 
classified as text. Artificial image CCs of about the 
same size as the body-text CCd are created from the 
image mask from the morphological preprocessing. 
 
5. Finding the column layout 
 

The next major step is to find the column layout of 
the page. All the rest of the steps make use of the 
Column Partition (CP) objects which are created now.  

Scanning the CCs from left to right and top to 
bottom, runs of similarly classified (text, image, or 
unknown) CCs are gathered into CPs, subject to the 
constraint that no CP may cross a tab stop line. Fig. 6 
shows the result of this process. A collection of CPs  
from a single horizontal scan are stored in a  Column 
Partition Set (CPset).  

Each CPset is potentially a division of the page into 
columns at that vertical position. Finding the column 
layout is therefore a process of finding an optimal set 
of CPsets that best "explains" (see below) all the 
CPsets on the page, but first some definitions: 

A good CP either 
touches a tab line on both 
vertical edges of its 
bounding box, or its width 
is close to a frequently 
occurring width. (See 4.3.) 

The coverage of a CPset 
is the total width of all the 
good CPs that it contains. 

CPset A is better than CPset B if A has greater 
coverage, or equal coverage, but more good CPs, or 
equal good CPs, but more total CPs. 

CPset A explains set B unless one or more of the 
following are true:  
1. The edge of one of B's CPs lies outside of all of A's 
CPs. This is not allowed, as it shows that B has more 
text than A.  
2. The edges of one of B's CPs fall in different CPs of 
A, and the width of the B CP is a common one. This 
means that A has split a column of common width.  
3. The right edge of one of B's CPs falls in the same A 
CP as the left edge of the next B CP, and the B CPs are 
of roughly the same width. It looks like A has a 
different number of columns to B. The same-width 
condition allows A to explain B with a pull-out. 
4. Both edges of two CPs of B fall in the same CP of 
A. This means that A has merged two columns of B.  

Note that the two edges of 
one of B's CPs are allowed to 
fall into two CPs of A, as 
long as the width is not a 
common one. This allows 
headings that merge columns 
in B to be explained by A. 

A list of column 
candidates is made from the 
set of CPsets on the page, 
ordered best first, and with 
duplicates eliminated by the 
A explains B rules above. In 
this process, all image CPs are ignored. 

 After the initial candidates are made, they are 
improved by adding new CPs and widening existing 
CPs, by using the edge of a CP in a different CPSet 
while widening doesn't cause overlap of CPs.  

An iterative process then labels the longest segment 
of consecutive (allowing for a very small region of 
failure) page y-coordinates that is explained by one of 
the column candidates. Fig. 7 shows the result of this 
process. 
 
6. Finding the regions 
 

Fig.6. Column 
Partitions (CPs) 

Fig.7. Columns. 

Fig.5. Cleaned 
tab-stops. 
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After the columns are found, CPs are given a type 
according to how many columns they span. CPs within 
a single column are flowing, partitions that touch more 
than one column, but do not span to the outer edges of 
either are pull-out, and partitions that completely span 
more than one column are heading. 
 
6.1. Create flows of CPs 

 
Each CP chooses its best matching upper and lower 

partner, being the vertically nearest CP that overlaps 
horizontally. Since each CP registers itself with its 
chosen partner, each CP may have zero or more 
registered upper and lower partners.  

The size of the list of registered partners is forced to 
become zero or one for each of upper and lower, using 
the following rules in order:  
1. Type. If there are multiple types, text can only stay 
with its own (exact) type, whereas image can stay with 
any other image type.  
2. Transitive partner shortcuts are broken. If A has 2 
partners B and C, and also B has C as a partner in the 
same direction, then delete C as a partner of A, leaving 
a clean chain A-B-C. Also if A has a partner B, and B 
has a partner A in the same direction, break the cycle.  
3. (Text only) If A still has 2 partners B, C, chase B 
and C's partners to see which has the longest chain. 
Delete from A the partner that has the shortest chain, 
and convert the type of the shortest chain to pull-out.  
4. (Image only) Choose the partner CP with the largest 
horizontal overlap.  

All CPs now have 0 or 1 
partners. Even so, (re)run 
rule 1 above. This purifies all 
chains of text to a single type 
and splits text chains from 
image chains. Image chains 
are purified by setting all 
CPs in a chain to the most 
general type in the chain. 
Fig. 8 shows the final typed 
CPs, where flowing text is 
blue, heading text is cyan, 
heading image is magenta, 
and pull-out image is orange. 

Chains of text CPs are further divided into groups 
of uniform line-spacing, which make text blocks. Now 
each chain of CPs represents a candidate region, but 
the regions have to be ordered.  

 
6.2. Reading order determination 

 
Recall that image and text partitions are typed as 

one of 3 possibilities: flowing, pull-out, and heading. 

Also, the page is divided into sections of a consistent 
column layout. With this information, a reasonable 
reading order drops out of a few simple rules:  
1. Flowing blocks follow by y position within a 
column.  
2. Pull-out blocks follow by y position in an imaginary 
column between the real columns that they touch.  
3. A heading spans multiple columns and follows 
anything that is above it in the columns spanned, or 
between them. Anything that lies in the same columns 
below the heading follows after it.  
4. A change in column layout works just like a 
heading. Anything in any columns that are changed (or 
between them) goes before anything in the new 
columns. Unchanged columns are unaffected by a 
change in column layout.  
5. Between headings, the content of columns is ordered 
from left to right. 

  
6.3. Find the polygon boundary for each region  
 

For simplicity of implementation, the region 
polygons are isothetic: i.e. edges alternate between 
being horizontal and parallel 
to the mean tab line 
(Approximately vertical.) 
The polygon edges are 
chosen to minimize the 
number of vertices, while 
satisfying the constraint that 
all CPs are contained within 
their region polygon, and no 
CP from another region 
intersects. Fig. 9 shows the 
final blocks created for the 
input image of Fig. 1. 
 
7. Testing and results 
 

The algorithm described herein is implemented in 
C++, and the source code is available as part of the 
Tesseract open source OCR system [9,10]. It runs on a 
typical 8MPixel image in approximately 1 second on a 
3.4 GHz Pentium 4. 

 
Fig.10. Results on some of the ICDAR2007 set. 

Fig.8. Typed 
partition chains. 

Fig.9. Final blocks.
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Properly testing page layout analysis is a difficult 

problem [11] with very little publicly available ground-
truth for complex magazine pages. The UNLV test set 
[12], only measures text regions, and counts errors 
unless figure captions are placed after all the body text. 

The ICDAR page layout analysis competitions 
provide better measurement of overall accuracy, and 
the results of this algorithm appear in the 2009 
competition [13]. Some graphical results are shown in 
Fig. 10 and numerical comparisons with the entrants in 
the ICDAR 2007 competition are shown in Table 1. 
The results in Table 1 are computed on only the 2007 
test set, and the author would like to thank Apostolos 
Antonocopoulos for providing these results. For details 
on the testing methodology, see references [11] and 
[13]. 

 
Table 1. Results on the ICDAR 2007 set. 

Method Noise Sep Text Image Overall 
PRImA Metric 

2007-Besus 86.8% 76.9% 37.4% 42.5% 35.9% 
2007-TH1 68.0% 79.7% 76.1% 46.2% 67.6% 
2007-TH2 67.6% 79.6% 72.9% 48.4% 65.7% 
Tesseract 65.6% 74.1% 72.1% 55.3% 68.4% 

F-Measure 
2007-Besus 62.9% 76.2% 95.8% 57.2% 90.2% 
2007-TH1 79.2% 80.7% 91.9% 72.1% 88.2% 
2007-TH2 79.2% 80.6% 92.3% 72.4% 88.6% 
Tesseract 79.2% 70.9% 93.3% 82.0% 91.3% 

Recall 
2007-Besus 65.7% 71.7% 94.9% 67.0% 88.2% 
2007-TH1 65.6% 79.5% 96.9% 66.4% 89.8% 
2007-TH2 65.6% 79.5% 97.2% 66.9% 90.2% 
Tesseract 65.6% 81.4% 97.9% 76.5% 93.8% 

Precision 
2007-Besus 60.4% 81.3% 96.7% 50.0% 92.2% 
2007-TH1 100.0% 81.9% 87.4% 79.0% 86.7% 
2007-TH2 100.0% 81.7% 87.9% 79.0% 87.0% 
Tesseract 100.0% 62.8% 89.0% 88.3% 88.9% 

 
 
10. Conclusion and further work 
 

Tab-stops make an interesting and useful alternative 
to white rectangles for finding the column structure of 
a page.  Combining the top-down concept of column 
structure with bottom-up classification methods 
enables page layout analysis to easily handle the 
complex non-rectangular layouts of modern magazine 
pages without losing sight of the “bigger picture” that 
often happens when bottom-up methods are used 
alone. 

The algorithm described has no table detection or 
analysis, but the tab-stops make particularly useful 
features for both, so table analysis will be added in the 
future. 
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