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Abstract

Diagrams  are a critical part of virtually all scientific 
and technical documents. Analyzing diagrams will be 

important for building comprehensive document retrieval 

systems. This paper focuses on the extraction and 
classification of diagrams from PDF documents.  We 

study diagrams available  in vector (not raster) format in 

online research papers.  
PDF files are parsed and their vector graphics

components installed in a spatial index. Subdiagrams are 

found by analyzing white space gaps.  A set of statistics is 
generated for each diagram, e.g., the number of 

horizontal lines and vertical lines. The statistics form a 

feature vector description of the diagram.  The vectors 
are used in a kernel-based machine learning system 

(Support Vector Machine).  Separating a set of bar 

graphs from non-bar-graphs gathered from 20,000 
biology research  papers gave a classification accuracy of 

91.7%. The approach is directly applicable to diagrams 

vectorized from images.

1. Introduction

Documents in Portable Document Format, PDF [1] 

allow sophisticated formatting but can have complex 

internal structure. Analysis of their components and 

layout can be daunting.  Though there is a great deal of 

work on the analysis, indexing and retrieval of the text 

content of documents in many formats, including PDF, 

much less attention has been paid to the graphics content 

of documents.  In particular, it would be quite useful to 

analyze the internal structure of diagrams to extract their 

content. This would allow them to be classified for 

indexing and retrieval purposes. The overwhelming 

majority of work on document analysis today is focused 

on document image analysis.  Many millions of 

documents now have their text available in electronic 

form, obviating the need for OCR.  But the figures in 

these documents still require analysis if we are to be able 

to index and retrieve them in comprehensive document 

systems.  The diagrams (line drawings) are available in 

vector format in some documents, e.g., PDF files, or more 

commonly, in raster format, e.g., GIF and JPEG.  This 

paper focuses on the classification of vector-based 

diagrams.  We have chosen all of the diagrams contained 

in a collection of 20,000 biology research papers in PDF 

format.   

For some time, our group has been involved with the 

analysis of diagrams in technical documents to a level of 

detail that includes parsing diagrams to produce syntactic 

descriptions for them [2-5]. This paper reports on 

extensions of our work to PDF documents, including 

using supervised machine learning (kernel methods) to 

classify diagrams. 

The stages of analysis are: 

1. PDF documents are downloaded from a large 

collection, American Soc. Microbiology (ASM) 

2. The PDF command sequences comprising each 

document are parsed, producing a corresponding 

object sequence. 

3. Using an interpreter, the command sequence is 

analyzed to discover visible objects. 

4. The resulting objects are rendered into coarse 1D 

and 2D spatial indexes (SPAS). 

5. Multiple diagrams and subdiagrams on each page 

are recursively extracted by looking for horizontal 

and vertical separating white space bands. 

6. Statistics on the diagrams are compiled (number 

of lines, curves, text items, etc.) 

7. The statistics are used to train a Support Vector 

Machine to classify bar graphs versus non-bar-

graphs. 

The strategy above has been successful, yielding 

91.7% overall classification accuracy (leave-one-out 

measure) in these initial studies. It is important to 

emphasize that the PDF documents discussed here that 

contain vector graphics are in the distinct minority, since 

most PDFs we have examined contain figures in raster 

format. In our separate Strategic Vectorization Project,

we are developing a new approach to converting raster 

images of diagrams to vector format (vectorization) 

(Crispell and Futrelle, in preparation).  The raster images 

are obtained in JPEG or GIF format from the HTML 

versions of papers. In our corpus of 50,000 ASM HTML 

papers there are approximately 500,000 such raster-
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format diagrams (counting the multiple diagrams that 

frequently occur together in a single figure). In the 20,000 

PDF documents in the collection, totaling about 120,000 

pages, we found only 52 pages that had vector-based 

diagrams.  Though this is a tiny percentage, it offered us 

the opportunity to experiment with classification methods 

which we will later apply to the much more numerous 

vectorized diagrams.  Full syntactic analysis of vector 

diagrams has been discussed in our previous papers [2, 3, 

5] and is not covered here. 

2. Extracting vector objects 

The PDF documents were downloaded from the 

American Society for Microbiology site, asmusa.org, 

using a web-bot built on the Java HTTPClient package 

[6]. (Northeastern University has a license agreement with 

the ASM to download and analyze six years worth of their 

publications.)  The PDF commands are parsed using 

Etymon PJ written in Java [7].  This produces a vector of 

graphics objects (GOs), Java class instances, that are in 

one-to-one correspondence with the sequence of PDF 

commands in the document. The objects are then 

converted to our own GO representation to make them 

independent of the PJ classes.  An excerpt from such a 

PDF sequence describing a path is, 

   172.443 482.809 m   

   172.443 483.756 l 

   172.885 483.775 173.187 483.805 173.365 483.844 c  

   173.646 483.906 173.871 484.027 174.049 484.215 c 

which produces four GOs, corresponding to a move of the 

drawing position (m), drawing a line from there to the 

position given (l) and then drawing two curved lines in 

succession (c). PDF also provides a rectangle object, as a 

primitive. The most complex object that we have to deal 

with is the PDF Graphics State.  It encapsulates rendering 

parameters such as line widths, fill color, font face, font 

size, and the affine transformation that is applied during 

rendering, e.g., to reposition the page coordinate system 

or to rotate text, typically by 90 .

The initial identification of pages that contain graphics 

has been done by counting the number of GOs on a page. 

If a page has > 20 GOs, it is likely to be a diagram and 

was analyzed further. 

3. The complexities of PDF rendering 

PDF commands involve more than simply building 

paths and stroking or filling them.  Changes to the 

Graphics State are also made, applied to the current 

Graphics State.  The identity of the current Graphics State 

can be changed by pushing and popping it from a stack 

built into PDF.  We discovered that PDF rectangles are 

used for two distinct purposes.  One is the normal use to 

create visible outlined and/or filled rectangular regions.  

The other is to define clipping regions that restrict what 

portions of stroked or filled paths are visible.  Some 

clipping regions are defined by more complex paths such 

as the one in Sec. 2. The clipping paths don't directly 

produce graphics that is visible to the human reader of an 

article and are not counted in characterizing the visible 

diagram.  We discovered that in the diagrams we 

collected that the clipping regions could be safely ignored 

in analyzing the visible portions of the diagrams because 

they have little or no effect on its appearance. 

When the GOs are isolated, they, plus their attendant 

clipping regions and Graphics State commands are used, 

via the Etymon PJ tools, to create a PDF page that 

contains only the graphics.  The running text, footnotes, 

etc., are not included. This graphics-only page can be 

examined and printed using the Adobe Acrobat Reader. 

In order to discover what objects were visible, we had 

to track the Graphics State stack.  We constructed  a 

specialized PDF interpreter, acting on GOs, that collected 

paths, including lines, curves and rectangles and 

processed them in two ways. If they were subsequently 

found to define a clipping region, or if they were stroked 

and filled with white, the paths were discarded.  If they 

were stroked and/or filled with any non-white color, they 

were added to a list of visible objects. Only these visible 

objects were output by the interpreter and used for the 

diagram analyses that followed. 

4. Installing objects in a spatial index 

In order to analyze the spatial layout structure of the 

graphics in a page, a spatial index is used.  The one used 

is SPAS (Spatially Associative Substrate) that we 

developed for diagram parsing [2-4].  

A 64 cell wide by 128 cell tall array was used, a coarse 

representation of the x,y page space.  Each array element 

contains a Cell object, a Java instance.  The GOs in a page 

are rendered at the appropriate resolution and for each 

Cell through which the object passes, a reference to the 

GO is added to a list in the corresponding Cell as shown 

in Fig. 1.  A pair of one-dimensional projection indexes 

are built as shown in the figure.  The contents of these 

ProjectionCells in the 1D arrays are the merged contents 

of all Cells in the 2D array at that position. For example, a 

ProjectionCell at a specific x index contains information 

from the Cells in the 2D array at that x index and at all y 

indexes. A ProjectionCell in the 1D array contains the set 

of all GOs at that 1D position, and in addition, the total 

number of straight lines, rectangles, curves and text 

objects at that position. 
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Figure 1. An 8x8 SPAS structure for spatial 
indexing. The paths for each object are installed in 
(rendered into) the SPAS and the cell sets for each 
path are collected. The three objects shown here 
are "A" (1), a straight line (2) and a curve (3).  
References to each object are installed in the cells 
they occupy in the 2D array (ref. numbers not 
shown here in the 2D array) as well as in the two 
1D projection arrays. Additional information and 
statistics are collected in the ProjectionCells in the 
1D arrays. 

5. Slice & Dice for subdiagram discovery 

For reasons of space economy and coherence of 

presentation, diagrams in papers often composite,

containing a number of subdiagrams. We attempt to 

separate out each subdiagram and then do further analysis 

on each separately. The separation is done by recursively 

constructing and examining the 1D SPAS arrays for white 

space gaps.  The SPAS for the entire page is pushed on a 

stack, popped and examined for any large gaps on the y-

axis, typically gaps of 20 points or more (about two font 

heights). If any are found, new SPAS containing the GOs 

in the separate y regions are created and pushed on the 

stack.  Each is then examined for white space gaps along 

the x-axis. The process continues using the stack to 

handle the inherent recursion.  All SPAS discovered along 

the way that cannot be split are saved for the further 

processing stages.  We call this analysis process "Slice & 

Dice".  An example is shown in Fig. 2. The version of 

Slice & Dice described above is based on the number of 

GOs in each 1D SPAS array ProjectionCell.  A white 

space is indicated by a zero count in a ProjectionCell. 

Extensions to this approach are obvious and will be 

necessary to achieve the most accurate identification of 

subdiagrams.  For example rows or columns of text or 

numerical labels are positioned along the edges of 

diagrams with some white space separating them from the 

diagram graphics (lines, etc.).  It would be an error to 

identify such a row or column of text as a complete 

subfigure on its own.  So a more refined Slice & Dice 

algorithm will need to keep such text bound to the 

adjacent graphics items. Ambiguities can arise when text 

is positioned between two collections of graphics and a 

decision needs to be made as to which graphics items will 

be chosen as the ones bound to the text. We have 

previously discussed ambiguity in diagram organization 

in another paper [8], where we suggest ambiguity 

resolution methods such as context restrictions, semantic 

restrictions and minimal complexity measures.  See also 

[9].  As one example of a disambiguation strategy, note 

that the diagram in Fig. 2 has two subfigure labels, "a" 

and "b", which could aid the Slice and Dice decisions.  

Our own Fig. 1 has significant white space within it and 

could require careful analysis.

6. Machine learning for classification 

There are many compelling reasons to separate 

diagrams into various classes.  The primary one is to aid 

in the  indexing of diagrams contained in documents 

which in turn can lead to more powerful and useful 

retrieval systems.  In our work, classification can be used 

as an aid in deciding which specific grammars are most 

applicable for parsing a diagram.  Classification is a 

complex topic but is basically divided into two types of 

methods, supervised and unsupervised.  A typical 

unsupervised technique is clustering in which the 

algorithm attempts to find a partition of a set of items into 

classes which contain items that are similar to one another 

but not as similar to items in other classes [11]. This 

approach has proved useful in word-meaning 

classification [12] and will be pursued for diagrams also.   

In this paper we describe the techniques we have used for 

supervised learning.  For supervised learning, our system 

was trained by presenting it with instances whose classes 

were labeled manually. For  our initial study we used the 

complete set of 129  subdiagrams, 65 of which were bar 

graphs and 64 of which were other, primarily ordinary 

data graphs, but a few gene diagrams were included.  We 

used a binary classifier, a kernel-based Support Vector 
Machine (SVM), SVMlight [13, 14]. Support vector 

methods tend to generalize well when classifying new 

items that were not used in the training; they avoid the 

over-training problem.  The strategy used was "one-

against-all", in our case bar graphs versus all non-bar-

graphs.  
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Figure 2.  Slice and Dice: Object-count-based signature for a vector format diagram.  The signature function 
below the diagram plots the number of graphic objects directly above the x-cells shown. The horizontal gap 
between the two subdiagrams shows up clearly as an empty cell, count = 0.   Note that this analysis is entirely 
different from pixel density counts for a raster image.  The approach is extended in the machine learning 
study later in this paper, in which heterogeneous signatures are computed using statistics such as the number 
of horizontal lines, the number of text objects near small vertical lines, etc.  (A "crisp" vector-based PDF file of 
the diagram image above is available at http://www.ccs.neu.edu/home/futrelle/papers/104-7-3.pdf and the full 
paper is [10].) 

7. Results 

As with virtually all machine learning methods, the 

items to be classified are represented by a vector. We 

used a vector with the following six integer components 

which counted various classes of items in each 

subdiagram: 

1. # of rectangles  

2. # of datapoints 

3. # of lines or curves 

4. # of categorial labels (non-numeric) 

5. # of short horizontal lines near a long vertical 

6. # of short vertical lines near a long horizontal 

For the SVM computations, we defined a simple 

inner-product kernel, K(xi,xj), for each pair of 6-

dimensional vectors xi and xj as the inner product xi xj.

We also defined a radial basis function kernel [13-15] of 

the form exp(- ||xi-xj.||
2). Both kernels performed 

adequately.  The results from the inner-product kernel are 

reported here. The binary classifier was trained to 

distinguish bar graphs primarily from ordinary data 

graphs (which use points and data lines). The bar graphs 

were labeled as the positive examples.  

The overall accuracy was 91.7% = (number of 

correctly classified diagrams / (total number, 129)). The 

recall was 98.5%  = (number of correct positives / (total 

positives, 65)).  The precision was 85.3% = (number of 

correct positives / (number classified as positive, 75)). 

8. Discussion 

8.1. Document image analysis 

There is a large amount of work on document image

analysis, analysis of raster format page images [16, 17]. 

Many of the approaches to document image analysis are 

quite applicable to the analysis of vector-based documents 
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and their included graphics. Among the more closely 

related papers, we mention one on document zone content 

classification [18].  In that work 25 parameters are 

extracted for each rectangular zone on a page, including 

run length statistics, text glyph features, etc.  The 

approach is tested on the UWCDROM-III document 

image database [19]. Since the study, as do all studies of 

document images, deals with pixels in a raster image, no 

statistics involving classes of graphic objects such as lines 

or curves can be computed. There can be no later stage of 

parsing either, as there are no objects to input to a parser. 

Another study in which a large collection of document 

metrics was developed is [20], which focused on metrics 

for images in documents. 

Other recent work on comprehensive approaches to 

document image structure analysis includes [21] and [22]. 

8.2. PDF document analysis 

There are a few studies of PDF document structure.  

One used the PDFEdit facilities in the Adobe SDK, but it 

did not appear to produce consistent bounding boxes for 

the identical documents converted in various ways [23]. 

Another approach, the AIDAS system[24], used a bottom-

up iterative chunking procedure to discover the document 

logical structure (sections, paragraphs, etc.) based on cues 

such as font size and style, e.g., large and bold text.  The 

initial conversion of PDF in AIDIS is built on top of the 

Xpdf tools.  Our interpreter, implemented in Java, is 

focused on extracting the visible components relevant to 

compiling statistics for machine learning.  Being written 

in Java, it runs on a wide variety of systems and needs no 

special porting.  The same applies to out download and 

initial parsing using the Etomyn PJ tools, also written 

entirely in Java. In AIDIS, no detailed analysis of diagram 

internals was done.  Our approach, using a spatial index, 

makes it possible for us to discover the correct spatial 

extent of any graphic object including the cubic Bézier 

curves in PDF. Our SPAS structure includes the detailed 

location of the graphic elements, at a coarse resolution, 

rather than just the bounding boxes [23]. 

8.3. Vectorization of diagrams 

The majority of the PDF versions of electronic journal 

papers we have examined do not contain diagrams in 

vector form, but in raster form.  But the development of 

techniques to deal classify and otherwise analyze vector 

diagrams is very important, because it is possible to 

convert the millions of published diagrams in raster 

format to vector format using vectorization algorithms

[25, 26]. Vectorization uses a specialized collection of 

image processing tools to discover and characterize 

elements such as lines and curves and generate compact 

vector representations for them.  Our lab has a major 

research project devoted to vectorization, mentioned 

earlier.

8.4. Slice and Dice 

We have already discussed the problem of ambiguity 

that can make it difficult to accurately identify 

subdiagrams. Even an accurate separation can lead to later 

problems.  For example, it is not unusual to have a pair of 

side-by-side data graphs in which the y-axis label is only 

given for the graph on the left and assumed to be the same 

for the graph on the right [27].  Sometimes even the 

numerical scale values are given only on the left of a pair.  

So separating them could lead to a loss of information.  

The grammars we have developed for diagram parsing 

can deal with such cases [27].  There is a tension between 

the two extremes -- simply relying on white space for 

separation versus a detailed parsing-based analysis of 

each figure taken as a whole.  The conclusion is that the 

process of separation into subdiagrams and detailed 

diagram analysis and may need to be coordinated in some 

way and not assumed to be made up of a pair of 

independent steps. 

8.5. Signatures for slicing and classifying 

Our Slice and Dice techniques for separating out 

subfigures use signatures built from simple object counts, 

Fig. 2. One complication that was not mentioned earlier is 

the following.  In some PDF documents, text characters 

are themselves rendered by a succession of vector 

commands, sometimes requiring as many as twenty 

commands (lines and curves) to render a single character. 

Blindly counting such commands could badly skew a 

representation of the diagram content.  In fact, in the 

diagram of Fig. 2 this was the case.  Since we have not 

yet developed techniques for collapsing these command 

sequences into single character representations, the 

contribution of text items to the signature in Fig. 2 was 

computed manually.   

The object-based formulation allows us to create more 

complex structures that can aid in future work on 

subfigure separation.  For example, a feature could be 

constructed that consists of all short lines adjacent and 

perpendicular to a long line, and in addition, sets of labels 

adjacent to the short lines.  This could identify a scale 

structure that could be retained as a unit in the Slice and 

Dice work. 

One of the more powerful aspects of our approach is 

that if some particular object, O1, is identified in an X 

projection index array, the identical object can be located 

in the Y array and a correlated analysis can be done.  This 

is impossible when pixels alone are projected (unless each 

pixel is given its own location or object status in the 

projections!). 
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8.6. Machine learning for classification 

The kernel methods used in SVM-based machine 

learning [13, 15, 28-30] are free of the "curse of 

dimensionality' inherent in other methods. That is because 

the dimensionality is related to the number of training 

example pairs and not to the intrinsic dimensionality of 

each training example. So it is possible to use large 

feature sets for SVM learning. In future work, this might 

obviate the need for detailed parsing-level analysis.  

There are two other important advantages of SVM 

techniques.  The theory behind SVMs, computational 

learning theory [30], was designed to avoid overfitting to 

achieve the highest quality of generalization to as yet 

unseen examples. In addition, kernel methods allow 

complex nonlinear mappings of the feature space, in some 

cases equivalent to infinite-dimensional representations, 

while retaining a low order of complexity in the actual 

computations. We have primarily used the simplest inner-

product kernels in this work; radial basis function kernels 

gave similar results. 

A major problem that arises in all machine learning 

systems, and in document understanding in particular 

[31], is attempting to decide on the class of the document 

for training purposes.  A more detailed analysis has to 

determine whether or not the structural elements 

discovered are correct, or even that there is a genuine 

ambiguity [8] which can confound manual training 

decisions.  At a deeper level work has to be done to 

understand the class structure and ontology of diagrams.  

For example, some of the diagrams in our collection are 

hybrids, in which a single data graph contains both bar 

data and point and line data. 

A major application of machine learning to document 

analysis is the WISDOM++ system [32].  In that paper, 

document structure knowledge is represented by means of 

decision trees and first order rules automatically 

generated from a set of training documents. Decision trees 

require careful construction to avoid overfitting, a 

problem that is largely avoided by support vector 

machines.

The full characterization of a diagram, its class and its 

role in the document must also involve the text in the 

diagram, in the figure caption and in the body of the 

document where the diagram is discussed.  Diagrams and 

text can be strongly interwoven so that the full content 

can only be understood by an integrated analysis of the 

two [33, 34]. Machine learning techniques, and SVMs in 

particular [13], have been used for text classification and 

could readily be used to classify diagrams using their 

graphics content and associated text simultaneously. 
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