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Abstract

In reasoning about time and duration, re-
searchers often use Allen’s Interval Algebra.
This algebra describes possible relations be-
tween 1-D intervals. An interval can precede
the other one, follow the other one, start the
other one, etc. This algebra describes the re-
lationship between different intervals in terms
of words from natural language. To give a nat-
ural language description of 2D images, it is
desirable to develop a similar approach for de-
scribing the relationship between 2-D objects
in a picture. In their recent papers, Jim Keller
and his collaborators proposed a new approach
based on a simulation of a “force” between
these objects. In this paper, we show that their
force formula is theoretically optimal.
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1 Introduction
1.1 How to describe relation between

2-D objects: informal description
of the problem

In reasoning about time and duration, re-
searchers often use Allen’s Interval Algebra;
see, e.g., [2–5]. This algebra describes possible
relations between 1-D intervals. An interval can
precede the other one, follow the other one, start
the other one, etc. This algebra describes the re-
lationship between different intervals in terms
of words from natural language.

To give a natural language description of 2D
images, it is desirable to develop a similar ap-
proach for describing the relationship between
2-D objects in a picture.

1.2 Force histogram method of
describing the relation between
2-D objects

A new method of describing the relation be-
tween the 2-D objects, a method that seems to
be in a very good accordance with the expert
reasoning, was recently described in [6], [7],
[9]. Namely, to describe the relation between
the two setsA andB, this “force histogram”
method proposed, crudely speaking, to do the
following:� take all possible pairsa 2 A andb 2 B,� compute, for each pair, the “force” whose

direction is froma to b and whose value isr�2, and then,� add up these force vectors.

The orientation of the resulting vector~F de-
scribe the intuitive understanding of where the
sets are in relation to each other, and the length
of this vector describes how close these sets are
to each other.

1.3 This method is somewhat ad hoc

In the above description of the force
method, the idea that we should:� take all possible pairs compute, for each

pair of pointsa 2 A and b 2 B, the
“force” whose direction is froma to b and
whose valuef(r) depends on the distance
between the points, and then,� add up these force vectors

is very natural. What is not very natural is the
exact form of the dependence onf(r) onr. It is
therefore desirable to consider all possible de-
pendencies and come up with the optimal (best
possible) functionf(r).
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1.4 What we are planning to do

In order to solve this problem, we must
describe, in precise terms, which functions
are possible and which functions are the best.
In this paper, we propose such a description,
and show that this description leads to a new
symmetry-based justification for the above for-
mula (actually, for a slightly more general for-
mular��).

This new justification is in line with the
general symmetry-based approach which has
been shown, in [8], to explain similar heuris-
tic formulas in fuzzy, neural, genetic, and other
approaches, and to explain a similar heuristic
force formula in robotic control.

2 First Idea: Only Decreasing
Functions f(r) Make Sense

The functionf(r) describes the “weight”
with which directions between different pairs(a; b) influence the resulting sum. Intuitively,
when we decide which of the two objects is,
say, to the left and which is to right, we pay
more attention to close points and less attention
to points which are far away from each other.
Therefore, it is reasonable to require that the
weight f(r) should be larger for closer points
and smaller for more distant points. In other
words, it is reasonable to require that the func-
tion f(r) be strictly decreasing.

3 Second Idea: We Must Choose a
Family of Functions, Not a Single
Function

Once we select a force functionf(r), for
every two setsA andB, the orientation of the
resulting vector~F describe the intuitive under-
standing of where the sets are in relation to each

other, and the length̀ =def= j~F j of this vector
describes how close these sets are to each other.

Our main goal is to describe the orientation,
i.e., the typical angle between the two sets. We
also get some information from the value of the
“closeness”̀ , but this information comes only
from the comparison of different pairs of sets. If
we simply say that the closeness between two
setsA andB is, say, 1.5, we did not gain any
knowledge about how close they are.

If, however, for some other pair of setsA0 andB0, the closeness is 4.5, we can already make
some meaningful conclusions: namely, we can
say thatA is closer toB thanA0 is close toB0.
We can even say thatA is three times closer toB thanA0 is close toB0.

From this viewpoint, the absolute values ofF do not carry much information, what carries
information is the relation between the valuesF
corresponding to different pairs of sets.

In particular, if we multiply all the values of
the original functionf(r) by a constant, i.e., if
we replace the functionf(r) with a new func-

tion ef(r) def= C �f(r) for some constantC, then
all the values of the forces get multiplied byC
and hence, all the resulting vectors~F are mul-
tiplied by the same constantC. When we mul-
tiply a vector by a constant, it orientation does
not change, and its length gets multiplied by the
same constant.

Thus, if we replace the functionf(r) by a
new functionC � f(r), for every pair of sets, we
get the exact same orientation as before, and for
every two pairs, we get the exact same ratio be-
tween their “closenesses”. So, intuitively, there
is no big difference between using the original
functionf(r) and the new functionC � f(r).

Hence, we cannot select a unique functionf(r) and claim it to be the best, because for ev-
ery functionf(r), the functionC � f(r) leads to
exactly the same results. In view of this, instead
of formulating a problem of choosing the best
force function, it is more natural to formulate a
problem of choosing the bestfamilyfC �f(r)gC
of force functions.

4 Which Family Is the Best? We
May Need Non-Numerical
Optimality Criteria

Among all the familiesfC�f(r)gC , we want
to choose the best one.

In mathematical optimization problems, nu-
merical criteria are most frequently used, when
to every alternative (in our case, to each fam-
ily) we assign some value expressing its per-
formance, and we choose an alternative (in
our case, a family) for which this value is the
largest. In our problem, as such a numerical cri-
terion, we can select, e.g., the average approx-
imation errorA, measured as the mean square
deviation between the orientation generated by
the corresponding force method and the orien-
tation marked by an expert.
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However, it is not necessary to restrict our-
selves to such numerical criteria only. For ex-
ample, if we have several different families that
have the same average approximation errorA,
we can choose between them the one that has
the minimal computation timeT . In this case,
the actual criterion that we use to compare two
families is not numerical, but more compli-
cated: a family F1 is better than the familyF2 if and only if eitherA(F1) < A(F2), orA(F1) = A(F2) andT (F1) < T (F2). A cri-
terion can be even more complicated. What a
criterionmustdo is to allow us for every pair of
families to tell whether the first family is better
with respect to this criterion (we’ll denote it byF1 � F2), or the second is better (F1 � F2) or
these families have the same quality in the sense
of this criterion (we’ll denote it byF1 � F2).
Of course, it is necessary to demand that these
choices be consistent, e.g., ifF1 � F2 andF2 � F3 thenF1 � F3.

5 The Optimality Criterion Must
Select a Unique Optimal Family

Another natural demand is that this crite-
rion must choose auniqueoptimal family (i.e.,
a family that is better with respect to this crite-
rion than any other family). The reason for this
demand is very simple.

If a criterion does not choose any family at
all, then it is of no use.

If several different families are “the best”
according to this criterion, then we still have a
problem to choose among those “best”. There-
fore, we need some additional criterion for that
choice. For example, if several families turn out
to have the same average approximation error,
we can choose among them a family with the
minimal computation time.

So what we actually do in this case is aban-
don that criterion for which there were several
“best” families, and consider a new “compos-
ite” criterion instead:F1 is better thanF2 ac-
cording to this new criterion if either it was bet-
ter according to the old criterion or according to
the old criterion they had the same quality andF1 is better thanF2 according to the additional
criterion.

In other words, if a criterion does not allow
us to choose a unique best family it means that
this criterion is not final. We have to modify it
until we come to a final criterion that will have
that property.

6 The Optimality Criterion Must
Be Scale-Invariant

The next natural condition that the criterion
must satisfy is connected with the fact that the
numerical value of the distancer depends on
the choice of the unit for measuring distance.

If we replace the original unit of length by
a new unit which is� times larger (i.e., replace
feet by meters), then numerical values change
from r to er = r=�. How will the force function
look in the new units? Let us assume that in the
new units, the distance between the two points
equalser. Then, the same distance in the old
units is equal tor = � � er. Thus, the force be-
tween the two points is equal tof(r) = f(� �e).
Thus, if we know the distanceer in the new units,
we can compute the corresponding force value
as ef(er), where ef(z) denotesf(� � z). So, the
same force function which, in the old units, had
the formf(r), in the new units, has a new formf(� � r).

Since this change is simply a change in a
unit of length, it is reasonable to require that go-
ing from f(r) from f(� � r) should not change
the relative quality of the force functions, i.e.,
if a family fC � f(x)gC is better that the familyfC � g(r)gC , then for every� > 0, the fam-
ily fC � f(� � r)gC must be still better than the
family fC � g(� � r)gC .

So, we arrive at the following definitions.

7 Definitions and the Main Result

Definition 1.� By a force functionwe mean a strictly de-
creasing function from non-negative real
numbers to non-negative real numbers.� By a familyof functions we mean the fam-
ily fC �f(r)gC , wheref(r) is a given force
function andC runs over arbitrary positive
real numbers.� A pair of relations(�;�) is calledconsis-
tent [8] if it satisfies the following condi-
tions:(1) if a � b andb � c thena � c;(2) a � a;(3) if a � b thenb � a;(4) if a � b andb � c thena � c;(5) if a � b andb � c thena � c;(6) if a � b andb � c thena � c;(7) if a � b, thenb � a or a � b are

impossible.
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Definition 2.� Assume a setA is given. Its elements will
be calledalternatives. By an optimality
criterion we mean a consistent pair(�;�)
of relations on the setA of all alternatives.
If b � a, we say thata is betterthan b; ifa � b, we say that the alternativesa andb areequivalentwith respect to this crite-
rion.� We say that an alternativea is optimal (or
best) with respect to a criterion(�;�) if
for every other alternativeb eitherb � a ora � b.� We say that a criterion isfinal if there ex-
ists an optimal alternative, and this optimal
alternative is unique.� Let � > 0 be a real number. By the�-rescalingR�(f) of a functionf(r) we

mean a function(R�(f))(r) def= f(� � r).� By the�-rescalingR�(F ) of a family F ,
we mean the set of the functions that are
obtained fromf 2 F by �-rescaling.

In this paper, we consider optimality criteria on
the setF of all families.
Definition 3. We say that an optimality cri-
terion onF is scale-invariantif for every two
familiesF andG and for every number� > 0,
the following two conditions are true:

i) if F is better thanG in the sense of this
criterion (i.e.,G � F ), thenR�(G) � R�(F );

ii) if F is equivalent toG in the sense of this
criterion (i.e.,F � G), thenR�(F ) � R�(G):

As we have already remarked, the demands
that the optimality criterion is final and scale-
invariant are quite reasonable. The only prob-
lem with them is that at first glance they may
seem rather weak. However, they are not, as the
following Theorem shows:

Theorem. If a familyF is optimal in the sense
of some optimality criterion that is final and
scale-invariant, then every force functionf(r)
from this optimal familyF which has the formf(r) = A �r�� for some real numbersA and�.

Thus, our theorem says, in effect, that the force
functions used by J. Keller (or, to be more pre-
cise, a slightly more general class of force func-
tions) are indeed optimal.

8 Proof

1. Let us first prove that the optimal familyFopt
is scale-invariant, i.e., thatR�(Fopt) = Fopt for
all � and�.

Indeed, let� > 0 be a positive real num-
ber. By definition of optimality, for every fam-
ily F 2 F , we haveF � Fopt. In particular,
we can conclude thatR1=�(F ) � Fopt. From
the scale-invariance of the optimality criterion,
we can now conclude thatR�(R1=�(F )) �R�(Fopt), i.e., thatF � R�(Fopt). This is true
for every familyF 2 F and therefore, the fam-
ily R�(Fopt) is optimal. But since the criterion
is final, there is only one optimal family; hence,R�(Fopt) = Fopt. So, the optimal family is
indeed scale-invariant.
2. Scale-invarianceR�(Fopt) = Fopt means, in
particular, that for every functionf(r) from the
optimal familyFopt, we haveR�(f) 2 Fopt.
By definition,R�(f) meansf(� � r), andFopt
consists of all the functions of the typeC �f(r).
Thus, we conclude that for every� > 0, there
exists aC > 0 (depending on�) for which, for
everyr, we havef(� � r) = C(�) � f(r): (1)
All decreasing solutions of this functional equa-
tions are known (see, e.g., [1]); these solutions
are f(r) = A � r��. Thus, the theorem is
proven.

For readers’ convenience, let us describe
how this can be proven whenf(r) is a differ-
entiable function. In this case,f(� � r) is a
differentiable function as well, hence their ra-
tio C(�) = f(� � r)=f(r) is also differentiable.
Thus, both sides of the equality (1) are differ-
entiable with respect to�. Differentiating both
sides relative to� and substituting� = 1, we
get the following equation:r � df(r)dr = C0 � f(r); (2)
whereC0 denotes the derivative of the functionC(�) at � = 1. Multiplying both sides of the
equation (2) bydr=(r � f), we conclude that:
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dff = C0 � drr :
Integrating, we getln(f) = C0 � ln(r) + C1.
Hence,f = exp(C � ln(r) + C1) = exp(C1) � rC0 ;
i.e., the desired formula forA = exp(C1) and� = �C0.
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